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Vortex lattice melting line in superconductors with paramagnetic pair breaking
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Recent experiments on the iron-based superconductor FeSe in a high magnetic field have suggested the
presence of both the fluctuation-induced vortex liquid regime and a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
vortex lattice. To get a general picture of the magnetic phase diagram in type II superconductors with strong
superconducting (SC) fluctuation and strong paramagnetic pair breaking (PPB) such as FeSe, the vortex lattice
melting curve Hm(T ) is theoretically investigated in situations where a FFLO state is expected to occur. In
general, PPB tends to narrow the vortex liquid regime intervening between Hc2(T ) and Hm(T ). In particular,
the vortex liquid regime is found to rapidly shrink upon entering; by cooling, the temperature range in which the
FFLO state with a periodic modulation parallel to the magnetic field is stable in mean-field theory. Based on the
present results, the high-field SC phase diagrams of FeSe in the parallel and perpendicular field configurations
are discussed.
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I. INTRODUCTION

In type II superconductors, two kinds of spatial modu-
lations are created in the superconducting (SC) states by
an applied magnetic field. One is the vortex structure [1]
protected by the flux quantization, which is a topological
condition in real space, and the other is a kind of Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) spatial modulation [2,3]
which is usually supported by a field-induced splitting be-
tween the up-spin and down-spin portions of the Fermi
surface. The former is a consequence of the orbital pair break-
ing effect of the magnetic field, while the latter is that of the
Pauli paramagnetic pair breaking (PPB).

The presence of the vortices qualitatively changes the na-
ture of the SC fluctuation: The fluctuation changes the SC
transition line (or, the upper critical field) Hc2(T ) in the
mean-field theory to a crossover line between the regions with
strongly interacting SC fluctuations and with weakly interact-
ing fluctuations [4,5]. The former region below the Hc2(T )
curve is often called the vortex liquid regime. In clean limit,
the true SC transition line in a magnetic field is the position
of the vortex lattice melting in the field vs temperature (H-T )
phase diagram and separates the vortex liquid regime from the
vortex lattice or solid [5,6]. So far, any SC material, including
the high Tc cuprates, with a broad vortex liquid regime has
not shown PPB-induced SC phenomena. On the other hand,
most searches for a FFLO state have been performed so far in
situations where the effects of fluctuating vortices are invisible
[7,8].

Recent experiments on the iron-based quasi-two-
dimensional (Q2D) superconductor FeSe have shown that,
in both cases with a field parallel to the SC layers (H ⊥ c)
[9] and a field perpendicular to the layers (H ‖ c) [10],
the fluctuation-induced vortex liquid regime coexists with
a PPB-induced novel high-field SC (HFSC) phase in the

same phase diagram. To the best of our knowledge, this
is the first material with a possible FFLO vortex phase
existing just below a well-defined vortex liquid regime. One
remarkable feature on the high-field phase diagram of FeSe
is that the mean-field Hc2 transition in FeSe is apparently
continuous in both field configurations [9–11] in contrast
with the corresponding ones in CeCoIn5 discussed repeatedly
previously [7,8,12]. On the other hand, the nature of the
transition between the HFSC phase and the low-field vortex
solid differs between the two field configurations [9,10].

In the present work, we investigate how the position of
the vortex lattice melting of a Q2D type II superconductor
is affected by strong PPB. Throughout the present work, we
focus on the configuration with an applied magnetic field
perpendicular to the basal plane of the superconductor [13],
and the vortex lattice structure is assumed to be the conven-
tional hexagonal one. The melting line will be examined in
the following two manners. First, the elastic free energy of the
vortex lattice is derived by taking into account the possibility
of a formation of a FFLO spatial modulation parallel to the
applied magnetic field, and the Lindemann criterion on the
melting line [6,14] is derived based on the obtained elastic
energy. Second, the melting curve will also be examined
within the Ginzburg-Landau (GL) fluctuation analysis [15]
by comparing the free energy obtained by approaching from
the normal state with the free energy in the fluctuating vortex
solid. In both methods, the obtained vortex liquid region be-
comes narrower with increasing PPB and, in particular, upon
entering the low-temperature range in which the FFLO state is
stable in the mean-field approximation. Qualitatively, this re-
sult is consistent with the previous argument [13] based on the
Lindemann criterion that the melting line should merge with
the Hc2 line in the temperature range where the mean-field
Hc2 transition is of first order. On the other hand, it will also
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be clarified that the amplitude fluctuation makes the validity
of this argument vague.

The present paper is organized as follows. The vortex
lattice melting field Hm(T ) is derived according to the Linde-
mann criterion in Sec. II and based on comparison between the
obtained free energies in Sec. III. In Sec. IV, numerically ob-
tained phase diagrams resulting from the methods in Secs. II
and III are compared with each other. In Sec. V, our results
are summarized, and their relevance to experimental phase
diagrams of FeSe is discussed in detail. In the Appendix, the
microscopic derivation of the GL model is reviewed.

II. LINDEMANN CRITERION

The GL Hamiltonian we use in the main text of this paper
takes the form

HGL = N (0)
∫

d3r
[
�∗(a0 + B

( − ∂2
z

) + C∂4
z

)
�

+ V4

2
|�|4 + V6

3
|�|6

]
(1)

under a magnetic field parallel to the z-axis, where N (0) is
the electronic density of states per spin in the normal state. In
Eq. (1), it was assumed that the order-parameter � is already
in its lowest Landau level (n = 0 LL) subspace, and that the
mean-field Hc2(T ) line is given by a0 = 0 as far as V4 is not
negative. A microscopic derivation of Eq. (1) in the presence
of PPB was performed previously [13,16], and the details of
the coefficients appearing in Eq. (1) are given in the Appendix.
In low enough fields and at higher temperatures where PPB
is negligible, the coefficients B and V4 are positive whereas
C and V6 are negative and are conventionally assumed to
be zero in such cases. On the other hand, in situations with
strong PPB, the coefficients C and V6 change their sign with
decreasing temperature and with increasing field, and, upon
cooling further, V4 and B become negative in higher fields.
A negative B implies that a FFLO state with a modulation
parallel to the field tends to form upon cooling. On the other
hand, a negative V4 implies that the mean-field Hc2 transition is
of first order, although in real systems with SC fluctuation, this
first-order transition never occurs in reality and is reflected
just as a crossover. As shown in Ref. [13], this crossover
may be accompanied by a hysteresis signaling the mean-field
discontinuous transition. Below, it will be examined how these
PPB effects affect the vortex lattice melting line Hm(T ).

The mean-field vortex lattice solution is obtained in a con-
ventional manner [1]. First, as far as any SC fluctuation is
absent, the non-Gaussian terms of Eq. (1) can be rewritten in
the manner

〈
V4

2
|�|4 + V6

3
|�|6

〉
s

= Ṽ4

2
(〈|�|2〉s)2 + Ṽ6

3
(〈|�|2〉s)3, (2)

where 〈 〉s denotes the spatial average, S is the system area
in the plane perpendicular to the field, and Ṽ4 = βAV4, and

Ṽ6 = γAV6 with

βA = 〈|�|4〉s

(〈|�|2〉s)2
= 1.1596,

γA = 〈|�|6〉s

(〈|�|2〉s)3
= 1.4230. (3)

Hereafter as a possible PPB-induced spatial modulation of �

developing along the applied field direction, the helical phase
modulation will also be included. Then, the mean-field solu-
tion with the in-plane triangular vortex lattice structure and
the out-of-plane helical phase modulation is given by �0 =
α0ϕ(r⊥|0)eiqmz with q2

m = θ (−B)|B|/2C, where ϕ(r⊥|0) is the
Abrikosov solution [1,14,17,18]

ϕ(r⊥|0) =
√

krH

π1/2

∞∑
n=−∞

exp

[
− y2

2r2
H

+ ikn

(
x + π

2k
n − iy

)]
(4)

constructed in the n = 0 LL and in the Landau gauge
A = −Hyx̂ and satisfying the normalization condition
〈|ϕ(r|0)|2〉s = 1, k = π1/231/4r−1

H , rH = √
φ0/(2πH ), φ0 =

π h̄/|e| is the flux quantum, and r⊥ = (x, y) denotes the 2D co-
ordinate. The value of α2

0 minimizing the free energy, Eqs. (1)
and (2), is given by

α2
0 = |Ṽ4|

2Ṽ6

(
− s4 +

√
1 − a′

0

)
, (5)

where

a′
0 = 4Ṽ6

Ṽ 2
4

a′
0 = 4Ṽ6

Ṽ 2
4

(
a0 − Cq4

m

)
, (6)

and s4 = V4/|V4|. The mean-field SC transition at Hc2 is of
second order when s4 > 0, whereas it is of first order when
s4 < 0. The resulting Hc2(T ) line is given by a′

0 = 0 for the
former, whereas it is given by a′

0 = 3/4 for the latter. Then,
the free-energy density of the mean-field solution becomes

fMF = −N (0)
|Ṽ4|3
12Ṽ 2

6

[
1

2
s4a′

0 + (1 − a′
0)3/2 − s4(1 − a′

0)

]
.

(7)
Next, the elastic energy of the vortex lattice will be consid-

ered. As far as we restrict ourselves to the type II limit with
no gauge-field fluctuation incorporated, the elastic energy of
the vortex lattice is obtained as the energy of the massless
harmonic fluctuation within the n = 0 LL around the vortex
lattice solution (4) [14,17,18]. Its derivation in the presence of
PPB is sketched in the Appendix. The resulting Hamiltonian
of the massless mode becomes

δHph = 1

2

∑
q,k⊥

(ρsq
2 + σsq

4 + C66k
4
⊥)|δχ (q, k⊥)|2, (8)

where q is the wave number measured from qm in the z
direction [13],

ρs = 2N (0) α2
0 |B| (1 + θ (−B)),

σs = 2N (0)C α2
0 θ (C), (9)

and

C66 = 2N (0) α4
0

(
0.119V4 + 0.276 α2

0 V6
)
. (10)
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The first term of Eq. (10) coincides with the result in the pre-
vious work [14]. In fact, in low enough fields (H 
 Hc2(0))
where PPB is negligible so that B approaches ξ 2

0 , we have
ρsr

−4
H � H2/(4πλ2(T )), and Eq. (8) becomes the energy of

the shear elastic fluctuation in type II limit by assuming, as
mentioned earlier, σs and V6 to be zero:

δHph � 1

2

∑
q,k⊥

(
H2

4πλ2(T )k2
⊥

q2 + C66k2
⊥

)
|sT(q, k⊥)|2, (11)

where r2
H (∇ × ẑ)δχ was identified with the transverse compo-

nent sT of the vortex displacement field [14,18]. Here ξ0 and
λ(0) are, respectively, the zero-temperature coherence length
and penetration depth defined within the GL theory in low
fields.

Based on Eq. (10), one might be afraid of whether C66 ap-
proaches zero upon cooling in the region where V4 is negative.
However, one can check that C66 remains positive even upon
approaching the first-order Hc2-transition line from below.

The Lindemann criterion for determining the vortex lattice
melting line Hm(T ) becomes

〈
s2

T

〉 =
∫

q

∫
k⊥

T k2
⊥r4

H

ρsq2 + σsq4 + C66k4
⊥r4

H

= c2
Lr2

H , (12)

where the k⊥ integral is performed by setting the first
Brillouin zone of the vortex lattice to be, for simplicity,
circular. The constant parameter cL needs to be determined
phenomenologically or empirically. The q integral can be
performed analytically, and the Lindemann criterion in the
presence of PPB becomes

T√
ρsC66

= c2
L
φ0

H

[
1 +

√√√√1 + 4

√
C66σs

ρ2
s

]
. (13)

Based on the above-mentioned fact that, when the Hc2 transi-
tion is of first order, C66 does not vanish on approaching the
Hc2 line from below, it is clear that the equality in Eq. (13)
is not satisfied at low enough T . It inevitably leads to the
argument that, in the temperature range where the mean-field
SC transition at Hc2 is of first order, the melting curve Hm(T )
tends to merge with the Hc2 curve at a finite temperature, and
consequently that the vortex liquid regime in a SC material
with strong PPB tends to disappear at the temperature on
cooling [11,13]. The validity of this argument based on the
elastic theory will be discussed again in Sec. IV.

III. APPROACH BASED ON FREE-ENERGY EVALUATION

It is useful to compare the result on the melting line Hm(T )
in Sec. II with that following from a different approach in
order to see to what extent the Lindemann criterion in Sec. II is
reliable. In this section, we try to obtain Hm(T ) based directly
on calculating the fluctuation free energy [15].

Imagine that one starts from the normal phase. The fluc-
tuation propagator Dp,q = 〈|�0,p,q|2〉 of the n = 0 LL modes

�0,p,q in the Gaussian approximation is defined as

Dp,q = T

N (0)(a0 + Bq2 + Cq4)
. (14)

in the case of the GL Hamiltonian in Eq. (1). Here as in Sec. II,
the Landau gauge was chosen for the vector potential. Due to
the degeneracy in each LL, the r.h.s. of Eq. (14) is independent
of the wave-number p defined in the plane perpendicular to the
field.

To extend this fluctuation propagator to the case with the
mode-coupling terms, the renormalized mass μ will be intro-
duced as

μ = a0 + �. (15)

Then, Eq. (14) is replaced by

Dp,q = T

N (0)(μ + Bq2 + Cq4)
. (16)

In general, the self-energy � is constructed based on the
perturbation expansion with respect to the mode-coupling
terms, and a non-Gaussian or renormalized theory of the SC
fluctuation is formulated [4,15]. In contrast with the case
[15,19] studied thoroughly so far with no PPB, however, it
is extremely cumbersome to study the large order behavior of
the perturbation series in the present case with PPB where the
sixth-order term and the quartic gradient term need to be taken
into account in the starting GL free energy. Fortunately, the
feature deep in the vortex liquid regime that the amplitude |�|
of the SC order parameter is well defined holds in the present
case with strong PPB. This feature is well approximated based
on the self-consistent Hartree-Fock approximation [20,21] in
which μ is independent of q. Below, the Hartree-Fock approx-
imation will be used by expecting the parameter dependences
of the resulting phase diagram to be comparable with those of
the result of the Lindemann criterion. Then, the renormalized
mass μ is determined by the self-consistent equation (15)
with

� = V4
H

N (0)φ0

T√
μ(B + 2

√
Cμ)

+ 3V6

2

(
H

N (0)φ0

)2

× T 2

μ(B + 2
√

Cμ)
. (17)

We note that, in the case with a negative B, i.e., in the tem-
perature range where the ordered phase in lower fields is a FF
vortex lattice, not μ but

μ′ ≡ μ − B2

4C
(18)

plays the role of the renormalized mass, reflecting the fact that
the corresponding bare mass is not a0 but a′

0 defined in Eq. (6).
Next, to write down the expression of the fluctuation free-

energy density f> in the normal phase, the exact expression on
the mean-squared average of the SC order-parameter 〈|�|2〉

N (0)〈|�|2〉 = ∂ f>(a0)

∂a0
(19)
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will be used. Then, in the Hartree-Fock approximation, the
free-energy density in B > 0 case becomes

f> =
∫ a0

∞
dε

∂ f>(ε)

∂ε
+ f0

= N (0)
∫ μ

0
dμ 〈|�|2〉 −

∫ μ

∞
dμ

∂�

∂μ

∂ f>(a0)

∂a0

= HT

φ0

[√
B + 2

√
Cμ − √|B|√
C

− V4

4

(
HT

N (0)φ0

)

× 1

μ(B + 2
√

Cμ)
− V6

2

(
HT

N (0)φ0

)2

× 1

[μ(B + 2
√

Cμ)]3/2

]
. (20)

In the above analysis, the expression

N (0)
∫ ∞

0
dμ〈|�|2〉 (21)

has been chosen as the constant f0 in the first line of Eq. (20).
Then, in C → 0 limit, Eq. (20) is precisely the same as the
corresponding expression in Ref. [15].

The corresponding expression to Eq. (20) in B < 0
case is obtained in almost the same manner, although
N (0)

∫ ∞
0 dμ′〈|�|2〉 is chosen as f0 of the first line in Eq. (20).

Then, the free-energy density in B < 0 case is given simply
by adding HT (|B|/C)1/2/φ0 to Eq. (20), that is,

f> = HT

φ0

[√
4μ′

2
√

Cμ + |B| − V4

16

(
HT

N (0)φ0

) |B| + 2
√

Cμ

Cμμ′

− V6

16

(
HT

N (0)φ0

)2[ |B| + 2
√

Cμ

Cμμ′

]3/2 ]
. (22)

In turn, the free-energy density of the vortex lattice state
will be examined [15]. To do this, the free energy arising
from the harmonic excitations around the mean-field vortex
lattice will be added to fMF given in Eq. (7). However, it
is a well-established fact within the approach based on the
critical SC fluctuation that the shear elastic mode of the vor-
tex lattice, i.e., the Goldstone mode, is a smaller correction
compared with that of the amplitude fluctuation. Therefore,
the free-energy term resulting from Eq. (8) can be neglected
below. The Hamiltonian δHamp on the Gaussian amplitude
fluctuation is presented in the Appendix. In the same way as
the derivation of the first term of f> in Sec. II, the fluctuation
correction δ f to fMF resulting from δHamp is obtained in the
form

δ f = HT√
2Cφ0

( √
B + 2

√
r<C −

√
B

)
, (23)

for B > 0, and

δ f = HT√
2Cφ0

√
2|B| + 2

√
r<C (24)

for B < 0, where

r< � Ṽ 2
4

Ṽ6

(
1 − a′

0 − s4

√
1 − a′

0

)
. (25)

In this manner, the free-energy density based on the approach
from lower temperatures is given by f< = fMF + δ f .

After all, the melting line Hm(T ) is determined by the
equality f> = f< within the approach in this section.

IV. RESULTS ON MAGNETIC PHASE DIAGRAM

In this section, the melting transition lines of the n = 0 LL
vortex lattice following from the two methods explained in the
preceding sections will be compared with each other to obtain
a generic picture on the magnetic (H-T ) phase diagram of the
type II superconductors with moderately strong PPB. To make
understanding of the parameter dependences of the phase di-
agram easier, it will be useful to rewrite the formula Eq. (13)
based on the Lindemann criterion in terms of dimensionless
variables in the form

T

4πTc0

ξ 2
0

r2
H

= Ñ0

(
cLα0

Tc0

)2

g [|b|1/2 +
√

|b| + 4|c|1/2g], (26)

where

g =
√

0.119α2
0Ṽ4 + 0.276α4

0Ṽ6, (27)

and

Ñ0 = N (0)Tc0ξ
2
0 ξ0,‖ = 0.003√

Gi
(28)

expressed in terms of the Ginzburg number

Gi = 2

(
7ζ (3)

64π3N (0)Tc0ξ
2
0 ξ0,‖

)2

= 2

(
7ζ (3)

32π2

(λ(0))2

�(Tc0)ξ0,‖

)2 |�(0)|4
T 4

c0

(29)

measuring the strength of the thermal fluctuation is the scaled
DOS, ξ0 and ξ0,‖ are the in-plane and out-of-plane coherence
lengths of a Q2D material, |�(0)| is the zero-temperature en-
ergy gap, �(T ) = φ2

0/(16π2T ) is the thermal length [5], and
the dimensionless coefficients, b = B/ξ 2

0,‖ and c = C/ξ 4
0,‖,

are given in Eq. (A6) in the Appendix. Based on Eq. (26),
Hm(T ) will be discussed hereafter as a function of the fluc-
tuation strength 1/Ñ0 and the PPB strength, i.e., the Maki
parameter [22]

αM = μ0H (orb)
c2 (T = 0)

2πTc0
, (30)

which is incorporated in the dimensionless GL coefficients
a0, b, c, α0/Tc0, T 2

c0V4, and T 4
c0V6, where μ0H is the Zeeman

energy for a single quasiparticle, and H (orb)
c2 (T ) is the Hc2(T )

line in H ‖ c in the absence of PPB. Similarly, the contribu-
tions to the free-energy density introduced in Sec. III, fMF,
f>, and δ f , are also described in terms of the dimensionless
GL coefficients parameterized by Ñ0 and αM. In all of the
H-T phase diagrams to be discussed below, the temperature
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(a)

(b)

FIG. 1. Field vs temperature (H -T ) phase diagrams obtained
(a) from Eq. (13) and (b) from the approach in Sec. III. The used
parameter values are αM = 0.25 and Ñ0 = 0.1. The red dotted curve
with red square symbols denotes the crossover line corresponding
to the mean-field second-order SC transition line Hc2(T ), while the
blue solid curve denotes the vortex lattice melting line which is the
genuine SC transition line in clean limit.

T and the field strength H are expressed in the units of Tc0

and the Pauli-limiting field Tc0/μ0 = H (orb)
c2 (T = 0)/(2παM),

respectively.
Hereafter, the parameter values αM = 0.25 and 0.75 will

be used together with Ñ0 = 0.1 and 1.0. Corresponding to the
Gi value of FeSe noted in Ref. [23], we have

Ñ0 = 0.12. (31)

Figures 1 and 2 are different examples of comparison
between the two melting lines obtained from the methods
introduced in the preceding two sections under a fixed set of
Ñ0 and αM values. In both Figs. 1 and 2, the melting curves ob-
tained in terms of the two methods nearly coincide with each
other when using the Lindemann constant cL = 0.414, sug-
gesting that the parameter dependences determining Hm(T )
are similar to each other between the two methods. Hereafter
the value cL = 0.414 will be commonly used in obtaining

(a)

(b)

FIG. 2. Field vs temperature (H -T ) phase diagrams obtained
(a) from Eq. (13) and (b) from the approach in Sec. III. The used pa-
rameter values are αM = 0.75 and Ñ0 = 1.0. The Hc2(T ) curve (red
square symbols) consists of the mean-field second-order transition
line (red dotted curve) at which a′

0 = 0 above T ∗ (i.e., when V4 > 0)
and the mean-field first-order transition line (the black-dotted one)
at which a′

0 = 3/4 below T ∗. The green solid curve at which the
coefficient B changes its sign is the transition line within n = 0 LL
between the conventional Abrikosov vortex lattice and the FFLO
vortex lattice at lower temperatures. The melting line is expressed
by the blue solid curve.

results based on the Lindemann criterion. It will be seen later
that such agreement is also seen in the case with stronger PPB
and stronger fluctuation at least outside the FFLO temperature
range in which a FFLO state is predicted in the mean-field
theory to occur (see Fig. 3 below).

In Fig. 1, a strong fluctuation strength Ñ−1
0 = 10 and a

relatively weaker PPB strength αM = 0.25 are used, and, as
in the case with no PPB, Hm(T ) is concave, i.e., a curve with
a positive curvature in the H-T phase diagram and approxi-
mately obeys the n = 0 LL scaling [4,14,15] at least in lower
fields where B > 0 and C = 0. At low enough temperatures
where B (>0) is small, and C > 0, the n = 0 LL scaling is
not satisfied any longer. Nevertheless, the deviation from the
n = 0 LL scaling seems to be unexpectedly small. In contrast,
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(a)

(b)

FIG. 3. Field vs temperature (H -T ) phase diagrams obtained
(a) from Eq. (13) and (b) from the approach in Sec. III. The content
of the figures are the same as that of Figs. 2(a) and 2(b) except the
use of the parameter values αM = 0.75 and Ñ0 = 0.1 in these figures.
The portion (green dotted curve) of the mean-field FFLO transition
line in the vortex liquid regime is just a crossover line [13].

in Fig. 2 with Ñ−1
0 = 1.0 and αM = 0.75, the vortex liquid

regime is narrow, and Hm(T ) begins to follow the functional
form of the Hc2(T ) curve. That is, Hm(T ) is convex and has
a negative curvature, except in the close vicinity of Tc0, in the
H-T phase diagram.

Note that the Hm(T ) curve in Fig. 2 apparently merges
with the Hc2(T ) curve at a higher temperature than the FFLO
temperature range. This tendency implying a shrinkage of the
vortex liquid regime at a finite temperature is in agreement
with the argument noted at the end of Sec. II [13]. As is seen
in Fig. 3, however, this tendency becomes unclear when the
fluctuation is stronger. To understand the Ñ0 and αM depen-
dences of the phase diagram in more detail, the results on the
phase diagram following from the two methods are shown in
Fig. 3, where the values Ñ−1

0 = 10 and αM = 0.75 are used.
These two figures show typical phase diagrams in the case
where both the fluctuation and the PPB are moderately strong.
One main feature is that, in spite of the strong fluctuation,

the Hm(T ) curve is convex over most of the field range in
the H-T phase diagram. On the other hand, concave portions
of Hm(T ) are seen close to Tc0 and in the FFLO temperature
range. The former, occurring in low enough fields where PPB
weakly contributes, is a consequence of the n = 0 LL scal-
ing [4,14,15] T − Tc0 ∼ (T H )2/3, while the latter reflects the
shrinkage of the vortex liquid due to PPB [13].

By comparing Figs. 2 and 3 with each other, it is easily
found that, at a fixed αM, an increase of Ñ0 leads to a shrinkage
of the vortex liquid regime while the convex Hm(T ) curve is
kept. This feature suggests that, in superconductors with weak
fluctuation, it is not easy to distinguish Hm(T ) from Hc2(T )
through experimental data.

On the other hand, by comparing Figs. 1 and 3 with each
other, it is found that an increase of PPB makes the vortex
liquid regime narrower. In particular, as mentioned above, it
is commonly seen that the Hm(T ) curve becomes convex, like
Hc2(T ) in the H-T phase diagram, reflecting an enhanced role
of PPB. Since Ñ−1

0 measures the strength of the fluctuation
in zero field, the feature mentioned above implies that, in
systems with moderately strong PPB, the actual fluctuation
strength tends to be underestimated through experimental data
in finite fields by, for instance, identifying the irreversibility
line on which the resistivity vanishes with the Hc2(T ) line,
because the melting curve lies quite close to the irreversibility
line in most cases.

Next, let us discuss the fate of the melting line in the
FFLO temperature range. In Fig. 3(a) obtained based on the
Lindemann criterion, the Hm(T ) line suddenly begins to ap-
proach the Hc2(T ) line on entering the FFLO temperature
range. The origin of this sharp change seems to consist of
the change in the coefficient of the q2 term upon entering
the FFLO temperature range by cooling [see Eq. (9)]. As
seen in Fig. 3(b) obtained based on the free-energy approach
explained in Sec. III, however, this change in Hm(T ) upon
entering the FFLO range seems to become unclear as the
amplitude fluctuation is incorporated. Therefore the fate of
Hm(T ) in the FFLO temperature range is sensitive to the
details of its derivation, and it is not sufficiently understood at
present whether Hm(T ) truly merges with Hc2(T ) in systems
with strong enough fluctuation.

V. SUMMARY AND DISCUSSION

In the present work, the vortex lattice melting curve in
the type II superconductor with moderately strong PPB has
been theoretically examined by assuming the vortex lattice to
have the familiar hexagonal symmetry and hence to be de-
scribed by the lowest (n = 0) LL modes of the SC order
parameter. The present result extends the previous works
[14,24] constructing the Lindemann criterion of the vortex
lattice melting to the cases with PPB.

Below, let us discuss the magnetic phase diagrams of
FeSe [9–11] as an example of application of the results
in the preceding sections. The field configuration assumed
in the present work corresponds to FeSe in H ‖ c where
a nearly linear Hm(T ) in the temperature [11] and a
high-field SC (HFSC) phase [10] were found. The nearly
linear Hm(T ) curve is easily understood based on our Figs. 1
and 3. Clearly, the deviation from the concave melting curve
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suggesting the n = 0 LL scaling [14] is due to moderately
strong PPB, and the region in which the n = 0 LL scaling is
correctly seen is limited to the low-field range close to Tc0.
It has been argued elsewhere [25] that the low-field behavior
of the melting line is also affected by the strong-coupling
effect due to the SC fluctuation itself in a system close to the
so-called BCS-BEC crossover regime.

On the other hand, extensive discussion is needed to un-
derstand the identity of the HFSC phase in H ‖ c [10]. By
taking account of the fact that in H ‖ c where the fluctuation
effect may become relatively strong, PPB does not become
extremely strong compared with the orbital pair breaking cre-
ating the vortices, we have at most two candidates of such
a HFSC phase induced by PPB. One is the second lowest
(n = 1) LL vortex lattice [26–28]. Within the analysis based
on the weak-coupling BCS approach for a single-band elec-
tronic model, the low-temperature phase induced by PPB in
clean limit inevitably becomes the n = 1 LL vortex lattice
(see Fig. 6(a) in Ref. [13]). However, the HFSC phase in
FeSe in the H ‖ c case is not the n = 1 LL state, judging
from the experimental fact [10,29] that the field-induced struc-
tural transition between the conventional vortex solid in lower
fields and the HFSC one is continuous. Then, the HFSC phase
in H ‖ c should be identified with one of the FFLO vortex
solids which are described within the n = 0 LL and hence
have a spatial modulation parallel to the applied field [13].
According to Fig. 2 in Ref. [30], the n = 1 LL vortex state
may be destabilized even at zero temperature in the cases of
two-band electronic models with an αM value of order unity so
that it is possible that the HFSC phase in a two-band system in
clean limit is indeed an n = 0 LL vortex lattice with a spatial
modulation parallel to H.

In the case of an n = 0 vortex lattice described by the GL
model, the type of the FFLO spatial modulation is found to
depend on the nature of the Hc2 transition at low tempera-
tures [31,32]: When the mean-field Hc2 transition is of second
order, the HFSC phase should be a hybrid of the triangular
vortex lattice and the phase-modulated FF state [2] and cannot
become the triangular vortex lattice with the LO-like peri-
odic amplitude modulation [3] parallel to H. The triangular
vortex lattice with the LO-like spatial modulation parallel to
H becomes the HFSC phase only when the mean-field Hc2

transition is of first order. Then, one might wonder if the fact
[10] mentioned in Sec. I that the Hc2 transition in FeSe in
H ‖ c is apparently continuous contradicts the observation of
a nodal plane perpendicular to H at the sample surface [10],
suggesting that the HFSC phase in FeSe in H ‖ c should be
the LO vortex lattice. However, we find that once the strong
SC fluctuation in FeSe is taken into account, there may be
no such contradiction: By using the relations Eqs. (15), (17),
(31), (A6), and the data of V4 and V6 for αM = 0.8 given
in Fig. 5 of Ref. [13], we obtain Fig. 4 expressing the field
dependence of the mean-squared SC order-parameter 〈|�|2〉
at each temperature, t = T/Tc0 = 0.2, 0.15, 0.1, 0.05, and
0.01. We note that the mean-field Hc2 transition is of first
order, i.e., V4 < 0, in t � 0.35 for the set of the parameters
used in Fig. 4. Nevertheless, the Ñ0 value of Eq. (31) makes
the discontinuous change of 〈|�|2〉 in the mean-field theory
at Hc2(0) broad enough in t � 0.05 (compare Fig. 4 with
Figs. 9 and 11 in Ref. [13]). Here we note that the quantum

FIG. 4. Field dependences of the mean-squared amplitude 〈|�|2〉
of the SC order parameter at the temperatures T/Tc0 = 0.2 (blue),
0.15 (green), 0.10 (purple), 0.05 (red), and 0.01 (black dotted curve)
following from Eqs. (15) and (17) in terms of αM = 0.8 and Ñ0 =
0.12. Reflecting the fact that, when αM = 0.8, the Hc2(T ) line is
the first-order transition line in the mean-field approximation in t <

0.35, 〈|�|2〉 at t = 0.01 where the thermal fluctuation is extremely
weak shows a nearly discontinuous change at Hc2(0). Inclusion of the
quantum fluctuation neglected here would broaden even the t = 0.01
curve.

SC fluctuation has not been taken into account in the present
analysis. Inclusion of the quantum fluctuation would broaden
even the 〈|�|2〉 curve at t = 0.01 in Fig. 4. By comparing
the curves in Fig. 4 with the heat-capacity data in Ref. [10],
we conclude that it is difficult to determine the nature of the
mean-field Hc2 transition from the experimental data of real
FeSe with strong fluctuation in which the Hc2 is merely a
continuous crossover line. Thus the present theory does not
contradict the conclusion in Ref. [10] identifying the HFSC
phase in FeSe in H ‖ c as the LO vortex lattice.

Finally, the magnetic phase diagram of FeSe in H ⊥ c
will be briefly discussed. Although the present work was
performed by assuming the configuration with a field per-
pendicular to the basal plane in a Q2D system, the results
in Sec. IV should be qualitatively applicable even to the
H ⊥ c case. First, the Hm(T ) curve in Fig. 3 is quite similar
to the irreversibility line in Ref. [9] and to the melting line
estimated in Ref. [11] in that the Hm(T ) curve is convex
in the H-T phase diagram in spite of showing a broad vor-
tex liquid regime. However, we expect the FFLO phase in
the high H and low T corner in Fig. 3 in this H ⊥ c case,
to have been replaced by the n = 1 LL vortex lattice. In
Ref. [33], we have shown that a peculiar field dependence of
the resistive behavior around Hc2(T ) at low enough temper-
atures in H ⊥ c is qualitatively consistent with the resistivity
curve resulting from the quantum SC fluctuation not in the
familiar n = 0 LL but in the n = 1 LL in the case with mod-
erately strong PPB. It strongly suggests that the HFSC phase
in H ⊥ c should be the n = 1 LL vortex solid [26–28]. Then,
the vortex liquid controlled by the n = 1 LL modes of the SC
order parameter should be present just above the melting line.
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Theoretical description of such a novel vortex state should be
left for a future work.
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APPENDIX

Our starting model for deriving the GL Hamiltonian is the
simplest BCS Hamiltonian with a single electronic band

H =
∑

σ=±1

∫
d3rϕ†

σ (r)

[
h̄2

2m

(
− i∇ + π

φ0
A

)2

− Iσ

]
ϕσ (r)

− |g|
∑

q

�†(q)�(q), (A1)

where φ0 = π h̄/|e| is the flux quantum, I = μ0H is the Zee-
man energy, |g| is the attractive interaction strength, and

�(q) = 1

2

∑
p

∑
σ=±1

σ wp c−p+q/2,−σ cp+q/2,σ (A2)

is the pair-field operator expressed by a spin-singlet pairing
function wp and cp,σ which is the Fourier transform of the
electron operator ϕσ (r). For simplicity, the s-wave paired case
with wp = 1 will be assumed. The following GL Hamiltonian
is obtained from the electronic model (A1) through an exten-
sion to the Q2D case:

HGL = N (0)
∫

d3r
[
�∗(a0 + B

( − ∂2
z

) + C∂4
z

)
�

+ V4

2
|�|4 + V6

3
|�|6

]
, (A3)

where the order-parameter � is assumed to be in the n = 0 LL
subspace, and the applied field is assumed to be perpendicular
to the basal plane. The coefficient a0 is given by

a0 = ln(t ) +
∫ ∞

0
dρ

(
2πt

sinh(2πtρ)
− f (ρ) exp(−|ν|2ρ2/2)

)
,

(A4)
where t = T/Tc0, Tc0 is the zero-field SC transition tempera-
ture, and

f (ρ) = 2πt

sinh(2πtρ)
cos

(
2

I

Tc0
ρ

)
. (A5)

The coefficients of the gradient terms are given by B = bξ 2
0,‖

and C = cξ 4
0,‖, where

b =
∫ ∞

0
dρρ2 f (ρ) exp(−ρ2|ν|2/2),

c = −1

4

∫ ∞

0
dρρ4 f (ρ) exp(−ρ2|ν|2/2), (A6)

where ξ0,‖ is the out-of-plane coherence length at zero tem-
perature, and ν = √

2πξ0( p̂x + i p̂y)/rH .

The limitation to the n = 0 LL modes imply that the
mode coupling terms, the fourth-order and sixth-order terms
in Eq. (A3), are spatially nonlocal. As indicated in Ref. [13],
however, this nonlocality seems to be safely negligible for
most purposes, and, for simplicity, the local forms of the mode
coupling terms were assumed above. In the case of a layered
system with a cylindrical Fermi surface, the coefficients V4

and V6 have been derived in Refs. [13,16] and, in clean limit,
are given by

V4 = 3 T −2
c0

∫
�3

i=1dρi f

(
3∑

j=1

ρ j

)

×
〈

exp

(
− 1

2

(
R14 − 1

2
R24

))
cos(I4)

〉
FS

,

V6 = −15T −4
c0

∫
�5

j=1dρ j f

( 5∑
j=1

ρ j

)

×
〈

exp

(
− 1

2
(R16 + R26)

)
cos(I6)

〉
FS

, (A7)

where

R14 = |ν|2
(∑

j=1

3ρ2
j + ρ2(ρ3 + ρ1)

)
,

R24 = Re(ν2)
(
ρ2

2 + (ρ3 − ρ1)2
)

I4 = Im(ν2)

4

(
ρ2

2 − (ρ3 − ρ1)2)
R16 = |ν|2

(
e1 + e2 + e3 + 2

3
e4e5

)

R26 = Re(ν2)

(
e1 + e2 + e3 − e2

4 + e2
5

3

− 2

3
(e6 + e7 + e8 + e9)

)

I6 = Im(ν2)

4

(
e1 + e2 − e3 − e2

4 − e2
5

3

− 2

3
(e6 + e7 − e8 − e9)

)
(A8)

e1 = (ρ3 + ρ5)2 + (ρ3 + ρ4)2,

e2 = (ρ1 + ρ4 + ρ5)2,

e3 = ρ2
3 + ρ2

4 + (ρ2 − ρ5)2,

e4 = ρ1 + 2(ρ3 + ρ4 + ρ5),

e5 = ρ2 − ρ3 − ρ4 − ρ5,

e6 = (ρ4 − ρ5)2 + (ρ1 + ρ5 − ρ3)2,

e7 = (ρ1 + ρ4 − ρ3)2,

e8 = (ρ3 − ρ4)2 + (ρ2 + ρ3 − ρ5)2,

e9 = (ρ2 + ρ4 − ρ5)2. (A9)

To obtain the dispersion relations of the normal modes of
the Gaussian fluctuation around �0(r), the q-dependent terms,
we follow the Eilenberger’s analysis [17] to represent the total
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pair field in the form � = eiqmz(α0ϕ(r|0) + a+ϕ(r|r0)eiqz +
a−ϕ(r| − r0)e−iqz ). Then, in a situation with b < 0, the terms
harmonic with respect to a± in H take the form

δH
N (0)

= [
a′

0 + Cq2
(
q2 + 4q2

m

) + α2
0

(
2Ṽ4ξ d (r0)

+ 3Ṽ6α
2
0ηd (r0)

)]
(|a+|2 + |a−|2) + 4Cqmq3

× (|a+|2 − |a−|2)

+ α2
0

[(
Ṽ4ξ a(r0) + 2Ṽ6α

2
0ηa(r0)

)
a+a− + c.c.

]
,

(A10)

where
ξ d (r0) = β−1

A 〈|ϕ(r|0)ϕ(r|r0)|2〉s,

ξ a(r0) = β−1
A 〈(ϕ∗(r|0))2(ϕ(r|r0))2〉s,

ηd (r0) = γ −1
A 〈|ϕ(r|0)ϕ(r|r0)|2|ϕ(r|0)|2〉s,

ηa(r0) = γ −1
A 〈(ϕ∗(r|0))2(ϕ(r|r0))2|ϕ(r|0)|2〉s. (A11)

By performing the “Bogoliubov transformation,” the diago-
nalized form of Eq. (A10) becomes δH = N (0)(E+|ã+|2 +
E−|ã−|2), where

E± = Ṽ 2
4

4Ṽ6

(
− s4 +

√
1 − a′

0

)[
4s4ξ d + 3

(
− s4

+
√

1 − a′
0

)
ηd ± 2

∣∣∣∣s4ξ a +
(

− s4 +
√

1 − a′
0

)
ηa

∣∣∣∣
]

+ a′
0 + Cq4 + 2|B|q2. (A12)

In obtaining Eq. (A12), O(q6) terms were neglected. Here√
2a− = σe−iγ /2ã∗

σ ,
√

2a+ = e−iγ /2ãσ (σ = ±), and γ is the
phase of s4ξ a + (−s4 + √

1 − a′
0)ηa. The corresponding ex-

pression in the case with a positive B is given by Eq. (A12)
with the last term replaced by Bq2.

For the massive mode with the excitation energy E+, the
r0 dependence is not important so that all of the expressions
defined in Eq. (A11) may be of unity. Then, the Hamiltonian
expressing the Gaussian amplitude fluctuation around the vor-
tex lattice solution may be approximately expressed as

δHamp = N (0)
∑
q,k⊥

(
Ṽ 2

4

Ṽ6

(
1 − a′

0 − s4

√
1 − a′

0

)

+ 2|B|q2 + Cq4

)
|δ�q|2 (A13)

when B � 0. This expression will be used in determining
the melting line through comparison between the free energy
estimated from higher fields and the corresponding one from
lower fields.

As shown previously [14,18], the massless mode with the
excitation energy E− reduces to the purely phase fluctuation
in |k⊥| → 0 limit and corresponds to the shear elastic mode
of the vortex lattice, where k⊥ = (r0 × ẑ)/r2

H . By examining
the r0 dependence of the quantities defined in Eq. (A11) in
detail, the Hamiltonian expressing the massless mode is found
to become Eq. (8).
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