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We analyze a wave function of a tensor model in the canonical formalism, when the argu-
ment of the wave function takes Lie group invariant or nearby values. Numerical compu-
tations show that there are two phases, which we call the quantum and the classical phases.
In the classical phase fluctuations are suppressed, and configurations emerge which are dis-
cretizations of classical geometric spaces invariant under Lie group symmetries. This is ex-
plicitly demonstrated for emergence of Sn (n = 1, 2, 3) for SO(n + 1) symmetries by checking
the topological and geometric (Laplacian) properties of the emerging configurations. The
transition between the two phases has the form of splitting/merging of distributions of vari-
ables, resembling a matrix model counterpart, namely the transition between one-cut and
two-cut solutions. However, this resemblance is obscured by a difference in the mechanism
of distribution in our setup from that in the matrix model. We also discuss this transition
as a replica symmetry breaking. We perform various preliminary studies of the properties
of the phases and the transition for such values of the argument.
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1. Introduction
Lie groups [1] are ubiquitous in spacetime. Fundamental interactions are disciplined by Lie
group gauge symmetries, Lorentz symmetry constrains the spacetime structure of theories, and
de Sitter symmetry is globally realized in the Universe. Therefore, when we think of emergence
of spacetimes in quantum gravity [2–15], it would be natural to think of emergence of Lie group
symmetries at the same time, or even consider them as different aspects of one phenomenon.

In this paper we discuss a tensor model in the Hamiltonian formalism from the perspec-
tive above. Tensor models [11–14] were originally introduced as a generalization of the matrix
model, which successfully describes two-dimensional quantum gravity, to higher dimensions.
However, tensor models were shown to suffer from dominance of singular spaces [16,17], which
makes it difficult to generate globally extended spaces. Hoping to improve the issue, one of the
present authors introduced a new type of tensor model with a time direction [15,18], which we
call the canonical tensor model (CTM). CTM incorporates an analogue of the spacetime dif-
feomorphism invariance, which is a fundamental in general relativity, by mimicking the struc-
ture of the Hamiltonian formalism of general relativity (more precisely, the Arnowitt–Deser–
Misner (ADM) formalism [19]). The reason we think introducing time may improve the diffi-
culty comes from the success of causal dynamical triangulation [20] over dynamical triangula-
tion in the emergence of globally extended spacetimes, where the former is a dynamical lattice
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formulation of quantum gravity with a time direction, but the latter is one without it. It would
be a highly interesting question whether or not CTM enjoys similar success. From previous
studies [21,22], it is known that the wave function �(P) of CTM has peaks at Lie group invari-
ant Ps, where P denotes one of the canonically conjugate pair of the dynamical variables (ten-
sors) of CTM.1 This peak–Lie group relation implies that Lie group invariant configurations
are favored, or in other words, Lie group symmetries emerge in CTM. Then, from the perspec-
tive mentioned in the first paragraph, the question is whether this can be linked to emergence
of spacetimes. We show that this can be seen in �(Q), which is the wave function representing
the same state in the other variable, Q, conjugate to P.

The most important difference of this paper from the previous similar study [23] of �(Q) is
the discovery of a new phase, which we call the classical phase in this paper. Fluctuations of
variables are suppressed in this phase, and configurations emerge which are discretizations of
classical geometric spaces. This will explicitly be demonstrated for n-dimensional spheres Sn (n
= 1, 2, 3) by computing the wave function �(Q) for Q taking SO(n + 1) invariant or nearby
values by applying the Hamiltonian Monte Carlo method.

As we will see later, the transition to the classical phase has a striking resemblance to a matrix
counterpart, which is the transition from one-cut to two-cut solutions in the large-N limit of
the matrix model [24], or the Gross–Witten–Wadia-type transition [25,26]. In fact, in Ref. [27] a
two-logarithm matrix model which is a matrix analogue to the wave function of CTM was an-
alyzed, and it was shown that transitions exist from one-cut to two-cut solutions where certain
dimensional cloud-like configurations emerge. Though these configurations of certain dimen-
sions are hard to regard as spaces with classical geometry, it is interesting that we find a common
phenomenon in the matrix and the tensor models.

As discussed later, we want to stress the importance of the positivity of the cosmological
constant of CTM taken in this paper (see Appendix A about the cosmological constant in
CTM). When it is positive, the wave function is expressed by an oscillatory integration that
generally suppresses the configurations in the quantum phase due to cancellations, compared
to those in the classical phase. Therefore, the positivity is essential for the emergence of classical
geometric spaces in the classical phase.

Obviously, the next question from the result of this paper would be whether the emergent
classical geometric spaces follow the equations of general relativity. We would like to stress that
there is a good chance for this to be shown in a future study. First of all, CTM is formulated
as a first-class constraints system which has a very similar structure to ADM (see Appendix A
for more details) [15,18]. In fact, in a formal continuum limit,2 the constraint algebra of CTM
agrees with that of ADM [28]. More explicitly, in the formal continuum limit, the classical equa-
tion of motion of P in CTM agrees with the Hamilton–Jacobi equation of general relativity
with a Hamilton’s principal function of a local form [29]. We can also add that the N = 1 case
of CTM agrees with the mini-superspace approximation of general relativity [30].

This paper is organized as follows. In Sect. 2 we explain the setup, namely the wave function
of CTM we analyze. In Sect. 3 we explain the Monte Carlo method we employ, namely the
reweighting method applied to the wave function. In Sect. 4 we explain how to construct the

1The dynamical variables of CTM are a canonical conjugate pair of real symmetric three-index tensors,
Qabc and Pabc (a, b, c = 1, 2, …, N). See Appendix A for more about CTM.

2This formal limit is analogous to formally taking the vanishing limit of a lattice size in a lattice theory
without considering its dynamics.
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Lie group invariant values of Q we take as the argument of the wave function. We consider
SO(n + 1) (n = 1, 2, 3) as the Lie groups, and take some natural sets of representations on Q.
In Sect. 5 we show the presence of two phases, the quantum and the classical phases, by the
Monte Carlo method. We observe the transition where the topology of the distributions of
the variables continuously changes between one bunch in the quantum phase and two bunches
in the classical phase. In the classical phase, the fluctuations of the variables are suppressed.
In Sect. 6 we discuss the translation between geometry and a real symmetric three-index ten-
sor through the tensor rank decomposition. In particular, we define a discrete analogue of the
Laplacian, which is used to analyze the geometry of emerging configurations in the classical
phase. In Sect. 7 we study the topology and the geometry of the emerging configurations in the
classical phase. We find Sn for SO(n + 1) (n = 1, 2, 3) invariant Q. In Sect. 8 we consider two
kinds of deformations of Q from those given in Sect. 4. One is to change the representations on
Q, and the other is to break the Lie group invariance. In both cases, we find the classical phase
becomes less likely by the deformations. In Sect. 9 we study the behavior of the complex part
in the reweighting method in some detail. Because of the positivity of the cosmological con-
stant, the configurations in the quantum phase are generally suppressed due to cancellations,
compared to those in the classical phase. This suppression is enhanced for larger |Q|, and the
main physical statement is that the system starts from the quantum phase with small |Q|, and
undergoes the transition to the classical phase as |Q| develops. This suggests that |Q| can be
naturally identified as a time direction in CTM. The last section is devoted to a summary and
future prospects.

2. The wave function
In this section we explain the setup of the wave function we will analyze, leaving some details
to Appendix A.

The canonical tensor model [15,18] is a tensor model in the canonical formalism, formulated
in the analogue of the ADM formalism [19] of general relativity. The motivation for the formu-
lation is to incorporate a time direction consistently with the fundamental of general relativity,
namely, the general covariance. The quantized Hamiltonian [31] of CTM is given by

Ĥ = NaĤa + N[ab]Ĵ[ab], (1)

where Ĥa and Ĵ[ab] are the quantized Hamiltonian and the momentum constraints of CTM,
and Na and N[ab] are the lapse and the shift parameters, respectively. Repeated lower indices
are assumed to be summed over throughout this paper. The commutation algebra between the
quantized constraints is non-linearly closed, making them first-class constraints. The physical
state condition is given by the CTM analogue of the Wheeler–DeWitt equation [32],

Ĥa|�〉 = 0, (2)

accompanied by Ĵ[ab]|�〉 = 0. An explicit solution to these equations for general N exists [33],
and the wave function in the P-representation is given by an integral expression,

�(P) := 〈P|�〉 =
∫
C

dφ d φ̃ exp

[
i

R∑
j=1

(
P(φ j )3 − (φ j )2φ̃ j + (φ̃ j )3/3

) ]
, (3)
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where the integration variables are φ
j
a, φ̃

j (a = 1, 2, …, N, j = 1, 2, …, R), and

dφ d φ̃ :=
R∏

j=1

d φ̃ j
N∏

a=1

dφ j
a, P(φ j )3 := Pabcφ

j
aφ

j
bφ

j
c , (φ j )2 := φ j

aφ
j
a. (4)

Summations over the upper indices (namely, j above ) are explicitly indicated throughout this
paper. The parameter R is restricted to be R = (N + 2)(N + 3)/4, which comes from the her-
miticity of the Hamiltonian constraint Ĥa [31]. In the expression in Eq. (3), R serves as the
replica number of the set (φ j

a, φ̃
j ), and the possible values of N are restricted for R to be an

integer. However, we would be able to assume that small deviations of R would not largely
change the dynamics of our Monte Carlo simulations, and will take

R = �(N + 2)(N + 3)/4�, (5)

where � · � denotes the floor function, allowing any values of N. In Eq. (3), we have taken
a positive value3for the cosmological constant of CTM [30], since the positivity is essential
for the peak–Lie group symmetry relation [21,22] mentioned in Sect. 1. In the positive case, the
second term in the exponent of Eq. (3) takes the minus sign as shown there, generating the Airy
function dependence Airy( − (φj)2) (see Appendix A for more details), which is oscillatory and
essential in later sections. As for the integration region C, we take the integration region of φ

to be the real numbers RNR,4and the integration contour of φ̃ will be specified in Sect. 3.
The wave function in the Q-representation can be obtained by the Fourier transformation of

�(P) in Eq. (3). However, this generates a product of delta functions because the exponent of
the integrand is linear in P. This delta function product is difficult to handle in the Monte Carlo
method. Therefore, we introduce a regularization term −PabcPabc/4λ (λ > 0) into the exponent,
and then we obtain

�(Q, λ) =
∫

dPdφ d φ̃ eiPabcQabc−PabcPabc/4λ �(P)

=
∫
C

dφ d φ̃ exp

[
−λ

(
Q −

R∑
j=1

φ jφ jφ j

)2

+ i
R∑

j=1

(−(φ j )2φ̃ j + (φ̃ j )3/3
) ]

, (6)

where we have ignored an inessential overall factor, have performed φ → −φ for convenience,
and have introduced the short-hand notation(

Q −
R∑

j=1

φ jφ jφ j

)2

:=
(

Qabc −
R∑

j=1

φ j
aφ

j
bφ

j
c

)(
Qabc −

R∑
j=1

φ j
aφ

j
bφ

j
c

)
. (7)

In the above, the parameter λ is introduced as a regularization parameter, which changes
the wave function. Since the wave function should be a solution to the Wheeler–DeWitt equa-
tion, Eq. (2), the physical meaning of �(Q, λ) with a finite λ is not clear. Instead, rather
than as a regularization, we may introduce λ as part of an observable which operates on
�(q) := ∫

dP ei Pabcqabc �(P), which is the genuine wave function in Q-representation. More pre-
cisely, it can be introduced as a smearing operator 〈q1|Ôλ|q2〉 := e−λ(q1−q2 )2

acting on �:

�(Q, λ) := (Ôλ�)(Q) =
∫

dq e−λ(Q−q)2
�(q), (8)

3Namely, �c = 4/9. See Appendix A for more details.
4The integration region must be deformed slightly from the real values to make the integration conver-

gent, or a regularization must be introduced as in Ref. [21]. A mathematically rigorous way to define the
integration contour can be provided by the Lefschetz thimble [34].
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which has the same form as Eq. (6) up to an irrelevant normalization.
In the first way of introducing λ above, it must be taken infinitely large to remove the regular-

ization. In the second, it is not necessary to take it infinitely large, but, as we will see later, the
coupling λ is effectively given by λ|Q|2. This means that the coupling must be taken larger as
spacetime develops.5 However, we consider only the range λ � 107 in this paper, which comes
from the technical reason that our Monte Carlo simulation becomes inefficient above this value.

It is worth commenting on the convergence of Eq. (6). The sum
∑R

i=1 φi
aφ

i
bφ

i
c in Eq. (6) has

a lot of flat directions to infinity of φ, such as the one with φi
aφ

i
bφ

i
c + φ

j
aφ

j
bφ

j
c = 0 (i �= j) by

taking φi = −φj. It is therefore generally a non-trivial matter whether or not the integral in
Eq. (6) converges. The convergence for R � N2/2 was first noticed in Ref. [35], and was more
systematically analyzed in Ref. [36]. Since our value of R in Eq. (5) is roughly smaller by a factor
of 2, the current analysis does not suffer from the divergence, which indeed was checked in our
actual Monte Carlo simulations.

3. The Monte Carlo method
We want to evaluate Eq. (6) by the Monte Carlo method. However, the integrand contains an
oscillatory part, i.e. Eq. (6) suffers from the notorious sign problem [37]. To deal with this issue
we take the most naive method, the so-called reweighting method. Though more sophisticated
methods exist, it would be appropriate to apply this simple method to the current primary study
of the system, since it is difficult to foresee potential complications caused by the other more
sophisticated methods.

As we mentioned earlier, the integration contour is taken to be C = RNR × C̃R, where the
former is for φ and the latter for φ̃. Then we rewrite Eq. (6) as

�(Q, λ) = ZQ,λ

〈∫
C̃

d φ̃ ei
∑R

j=1(−(φ j )2φ̃ j+(φ̃ j )3/3)
〉

Q,λ

, (9)

where

ZQ,λ =
∫

RNR
dφ e−λ(Q−∑R

j=1 φ jφ jφ j )2

, (10)

and the expectation value 〈 · 〉 is taken for the system defined by the partition function in
Eq. (10). The expression becomes more convenient for actual Monte Carlo simulations by split-
ting the size of Q as Qabc = |Q|Q̃abc, where |Q| := √

QabcQabc, and performing the rescaling φ

→ |Q|1/3φ:

�(Q, λ) = |Q|NR/3 ZQ̃,λ|Q|2

〈
R∏

j=1

Airy
(−|Q|2/3(φ j )2)〉

Q̃,λ|Q|2
, (11)

where we have used the integral expression of the Airy function,

Airy(−z) =
∫

C̃
d φ̃ ei (−zφ̃+φ̃3/3). (12)

Note that our interest is only the positive region z ≥ 0 as in Eq. (11). A natural choice of the
Airy function for the current study is given by setting

Airy(−z) = Ai(−z) + i Bi(−z), (13)

since this function asymptotically approaches a plane wave form (see Fig. 1). This choice cor-

5We assume here that |Q| is correlated with time, as Q is proportional to the spatial volume in the
agreement of the N = 1 CTM with the mini-superspace approximation of general relativity [30].
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Fig. 1. Left: The plot of Eq. (13) against z. The solid and dashed lines represent the real and imaginary
parts, respectively. Right: The integration contour C̃, slightly deformed from the real axis for φ̃ > 0.

responds to the integration contour C̃ to be taken as in the right panel of Fig. 1. From Eq. (11),
we see that it is enough to compute ZQ, λ and 〈 · 〉Q, λ for |Q| = 1, which we will carry out in
later sections.

We employ the Hamiltonian Monte Carlo method [38] to generate the sampling sequence of
φ

j
a (a = 1, 2, …, N, j = 1, 2, …, R) for the system defined by Eq. (10). The leapfrog numbers

are typically taken with a few hundreds depending on the sizes of N, R. We also use parallel
tempering [39] across different values of λ for a difficult case (more concretely, the SO(4) case
with N = 30 and R = 264, which will appear later). The total numbers of samples for each
sequence are typically around 104 ∼ 106. As for the analyzed data, one data is taken from every
∼102 samples to remove correlations. The machine has a Xeon W2295 processor (3.0 GHz,
18 cores), 128 GB DDR4 memory, and runs the Ubuntu 20 operating system. The program is
written in C++ using pthreads for parallelization. As for the Airy function, the Boost library
[40] is used. Every run typically takes several hours with active use of parallelization.

Lastly, we want to stress the importance of taking the cosmological constant of CTM to
be positive in our setup. In this case, the Airy function is oscillatory, as is taken above, and
this oscillatory property plays the very important role of highlighting the configurations in the
classical phase, as discussed in Sect. 9. On the other hand, if the cosmological constant is taken
negative, Airy(z) with z = (φj)2 appears instead, which is given by a linear combination of the
two Airy functions Ai(z) and Bi(z). They are asymptotically exponential,6 and the only possible
choice will be Airy(z) = Ai(z) to avoid divergence as z → ∞. Now Ai(z) is a monotonic damping
function, and does not discriminate the configurations in the classical phase from those in the
quantum phase. In fact, in Refs. [35,41,42], the wave function in the negative cosmological
constant case was analyzed with an approximation to the Airy function part, but no signs of
emerging classical geometric spaces have been found.

4. Construction of Lie group invariant Q
Various ways exist to construct Lie group invariant Q. We employ the construction using har-
monic functions on Lie group invariant manifolds [43], with the expectation of the emergence
of space-like objects from the wave function in Eq. (6) for such Q. Some deformations from
such Q will also be considered in Sect. 8.

6They behave as Ai(z) ∼ e−2z3/2/3 and Bi(z) ∼ e2z3/2/3 for z → +∞.
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We consider three Lie groups here, SO(n + 1) (n = 1, 2, 3). The manifolds we expect to emerge
are Sn.

4.1. SO(2) invariant Q
The harmonic functions on S1 are given by

{ fa(θ )} = {1/
√

2} ∪ {cos(pθ ), sin(pθ ) | p = 1, 2, . . . , �}, (14)

with θ ∈ [0, 2π ), where � denotes a cut-off of the momentum. There are N = 2� + 1 functions
in total. Then an invariant tensor Q is constructed by

QSO(2)
abc (α) = const. e−α(p2

a+p2
b+p2

c )/�2
∫ 2π

0
dθ fa(θ ) fb(θ ) fc(θ ), (15)

where pa denotes the momentum of the function fa (i.e. pa for fa = cos (paθ ), sin (paθ )); const.
is a normalization factor for |QSO(2)(α)| = 1. The exponential factor introduces a smooth mo-
mentum cut-off, and larger α would effectively make S1 smaller, since the number of functions
is effectively reduced. A negative α would also be possible but a space represented by such an
α would be pathological.

4.2. SO(3) invariant Q
The harmonic functions on S2 are the spherical harmonics Y m

l (ω), where ω is a coordinate
system on S2. Similarly, we consider

{ fa} = {ReY m
l (ω), ImY m

l (ω) | l = 0, 1, . . . , �, m = −l, −l + 1, . . . , l}, (16)

where vanishing and degenerate functions are supposed to be discarded (e.g. Im Y 0
l = 0). There

are a total of N = (� + 1)2 independent functions. Then we define7

QSO(3)
abc (α) = const. e−α(l2

a +l2
b +l2

c )/�2
∫

S2
d2ω fa(ω) fb(ω) fc(ω), (17)

where const. is a normalization factor for |QSO(3)(α)| = 1.

4.3. SO(d + 1) invariant Q
The harmonic functions on Sd are Ym,l1,...,ld−1 (ω), where (ωi) = (ϕ, θ1, …, θd − 1) is a spherical
coordinate system on Sd. Similarly, we consider

{ fa} = {Ym,l1,...,ld−1 | m ∈ Z, li ∈ Z≥0, |m| ≤ l1 ≤ l2 ≤ · · · ≤ ld−1 ≤ �}. (18)

An iterative way of constructing Ym,l1,...,ld−1 (ω) is given as follows [44]: given the harmonic func-
tions Ym,l1,...,ld−2 (ϕ, θ1, . . . , θd−2) on Sd − 1, the harmonic functions on Sd are defined by

Ym,l1,...,ld−1 (ϕ, θ1, . . . , θd−1) = Bd
ld−1,ld−2

(θd−1)Ym,l1,...,ld−2 (ϕ, θ1, . . . , θd−2), (19)

where

Bd
ld−1,ld−2

(θ ) :=
((

ld−1 + d−1
2

)
(ld−1 + ld−2 + d − 2)!

(ld−1 − ld−2)!

) 1
2

(sin θ )1− d
2 P

−ld−2+1− d
2

ld−1−1+ d
2

(cos θ ), (20)

with the Legendre function P. The derivation is summarized in Ref. B. Since harmonic func-
tions satisfy the Helmholtz equation,

−�Ym,l1,...,ld−1 = ld−1(ld−1 + d − 1)Ym,l1,...,ld−1, (21)

7The l dependence of the regularization term can be taken differently, like using the eigenvalues of the
Laplacian instead. But such details would not affect the essential results as far as the regularization is
a smooth damping function invariant under the Lie group. Otherwise, the results cannot be considered
universal.
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Fig. 2. Histograms of |φj|2 for QSO(2) with N = 15 (� = 7) and α = 0.5. The data are the collection of
|φj|2 (j = 1, 2, …, R) over the sampled data of the Monte Carlo simulations. The values of λ are shown
over each figure. The classical phase can be found for λ � 106.

Fig. 3. Histograms for QSO(3) with N = 16 (� = 3) and α = 0.5, plotted as in Fig. 2. The classical phase
can be found for λ � 107.

Fig. 4. Histograms for QSO(4) with N = 30 (� = 3) and α = 0.5, plotted as in Fig. 2. The classical phase
can be found for λ � 106. On the other hand, the � = 2 case does not show the presence of the classical
phase up to λ ≤ 107.

with the Laplacian �, the eigenvalue associated with fa = Ym,l1,...,ld−1 is ea = ld − 1(ld − 1 + d −
1). The total number of independent functions is N = [�d̄ + (� + 1)d̄ ]/d !, where xn̄ = x(x +
1) · · · (x + n − 1) is the rising factorial.

Now let us look at the case where d = 3. Since Y m
l in the standard notation corresponds to

Ym, l in the case of d = 2, the subset of harmonic functions on S3 is

{ fa} = {B3
k,l (χ )Y m

l (ϕ, θ ) | m ∈ Z, l, k ∈ Z≥0, |m| ≤ l ≤ k ≤ �}. (22)

The cardinality of the set is N = (� + 1)(� + 2)(2� + 3)/6. Then we define

QSO(4)
abc (α) = const. e−α(ea+eb+ec )/e�

∫
S3

d3ω fa(ω) fb(ω) fc(ω), (23)

where const. is a normalization factor for |QSO(4)(α)| = 1. To do this calculation we used the
Mathematica package HFT11 [45]. This package can enumerate a system of orthogonal func-
tions on Sd as a function of a unit vector x̂ ∈ Rd+1, and can perform integration over Sd.

5. Presence of two phases
In this section we show that, for the Lie group invariant Qs given in Sect. 4, the system defined
by the partition function in Eq. (10) has two phases characterized by the topology of the dis-
tribution of |φj|2. The histograms of the distributions for QSO(2), QSO(3), and QSO(4) are shown
in Figs. 2, 3, and 4, respectively. Here we often take α = 0.5 from Sect. 4, because the classical
phase is most evident in the range 0 � α � 1, as will be explained more in Sect. 9. As can be seen
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Fig. 5. The values of λ, N are classified according to the phases for QSO(2) and QSO(3) with α = 0.5. The
classification here is qualitative and contains some ambiguities, since it is based on the appearance of
the histograms and not on a quantitative measure.

in the histograms, the two phases can be characterized by the number of connected regions of
the distributions, one for smaller λ and two for larger λ. An important property of the latter
phase is that the widths of each bunch of distributions are smaller than in the former. Because
of this suppression of the fluctuations, we call the former and the latter phases the quantum
and the classical phases, respectively, as we will see more evidence of the classical nature of the
latter phase. We also call the two bunches of distributions in the classical phase the center and
the outer bunches based on their distances from the origin.

Figure 5 classifies the values of λ and N according to the phases. In general, the classical phase
appears when λ and N are large. Note that this classification is merely qualitative, as it is based
on the appearance of the histograms, not on a quantitative measure. A possible quantitative
measure could be given by the method developed in Ref. [46]. Applications of such measures
to our setup are left for future study.

The transition resembles a matrix model counterpart, namely the transition between the one-
cut and the two-cut solutions of the matrix model in the large-N limit [24], or the Gross–Witten–
Wadia-type transition [25,26]. However, there is a difference in the mechanism of the distribu-
tion between our setup and the matrix model. When λ is large, the partition function in Eq. (10)
approximately imposes the relation

Qabc =
R∑

j=1

φ j
aφ

j
bφ

j
c . (24)

This is a decomposition of a tensor Q into a number of vectors φj, and is known as the tensor
rank decomposition (also often called CP decomposition) [47,48] in applied mathematics [49].
It is used for various purposes to extract information from tensors constructed from real-life
data [50]. Tensor rank decomposition can also be used to extract geometric information from
tensors [43]. The minimum value of R which realizes the decomposition in Eq. (24) for a given
Q is called the rank8of Q. The ranks of the Qs in the cases of Figs. 2, 3, and 4 are smaller than
the values of R in Eq. (5).9This generally means that there exist continuously infinite numbers
of solutions of φ for Eq. (24), and they appear as the distributions in the figures. On the other

8More precisely, in the current case of real symmetric Q and the real symmetric form of each summand
on the right-hand side of Eq. (24), the rank is called the real symmetric rank of Q.

9The ranks of the Qs in the cases of Figs. 2, 3, and 4 can be estimated as 22, 32, and 82, respectively.
These are obtained by counting the numbers of the φj in the outer bunches and can also be checked by
numerically performing the tensor rank decomposition by the program previously used in Ref. [43].
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Fig. 6. Left: The Monte Carlo sequence of one of the |φj|2s for QSO(2) with N = 15 (� = 7), λ = 104,
and α = 0.5. The vertical axis represents |φj|2 and the horizontal the sequence. The fluctuation of |φj|2
is wide. Middle: Two |φj|2s are plotted for λ = 107, one in the center bunch and the other in the outer
bunch. The fluctuations around each center are strongly suppressed. However, an exchange occurs where
one, say φ1 colored blue, moves from the outer bunch to the center, while the other, say φ2 colored red,
moves in the opposite direction at the same time. They inherit each other’s role. Right: At the exchange
φ1↔φ2, the inner products, φ1

aφ
3
a and φ2

aφ
3
a , are exchanged, where φ3 is in the outer bunch, but there are

no net changes of the set of values.

Fig. 7. Illustration of an exchange of φjs between the center and the outer bunches. Such exchanges do
not occur (or seem to be strongly suppressed) between φjs in the outer bunch. As λ becomes larger, the
exchanges are more suppressed.

hand, in the matrix model the eigenvalue distribution comes from the distribution of the matrix
itself, while the tensor Q is an external parameter in our setup.

It is interesting to look at the actual Monte Carlo sequences. Figure 6 shows a few examples
of the sequences of |φj|2 and φi

aφ
j
a (i �= j) in the two phases. The left panel corresponds to the

quantum phase, and the middle and the right panels the classical. In the quantum phase, |φj|2
fluctuates over a wider region. On the other hand, in the classical phase the fluctuations are
confined around the centers of the two bunches, being strongly suppressed in the examples
(how strongly depends on each case). Interestingly, as shown in the middle and right panels, we
still observe exchanges of φj between the two bunches in our Monte Carlo sequences: one φj

in the center bunch moves into the outer bunch, and at the same time one in the outer bunch
moves into the center bunch (see Fig. 7 for an illustration). However, the exchange is just a
replacement of the roles: there are no net changes of the values of |φj|2 and φi

aφ
j
a as a whole in

the outer bunch. Such an exchange does not seem to occur (or is strongly suppressed) between
φjs in the outer bunch. We also observe that, as the parameter λ becomes larger, the exchanges
of any of these kinds are more suppressed, and the separation between the center and outer
bunches becomes more strict.
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This observation suggests the following picture of the classical phase. Suppose that it has
been confirmed that the distributions, namely the center and outer bunches, are completely
separated in a certain thermodynamic limit, as in the two-cut solutions of the matrix model
in the large-N limit. More explicitly, the tensor rank decomposition in Eq. (24) splits into two
parts,

Qabc =
∑

φ j∈{outer}
φ j

aφ
j
bφ

j
c +

∑
φ j∈{center}

φ j
aφ

j
bφ

j
c , (25)

where the first part actually dominates,

Qabc ∼
∑

φ j∈{outer}
φ j

aφ
j
bφ

j
c , (26)

since φj ∼ 0 for φj ∈ {center}. It turns out that, in our examples, the decomposition in Eq. (26)
is actually the one with the minimum number of vectors: the tensor rank decomposition of
Q with the rank of Q is dynamically performed. This should be taken as a surprise, because
obtaining the rank of a tensor is known to be NP-hard [51]. In other words, the dynamics of
the system solves this hard problem.

Since, as mentioned above, the φj in the outer bunch will not be exchanged with each other
in such a thermodynamic limit,{

φi
aφ

j
a | ∀φi, φ j ∈ Outer bunch

}
(27)

will provide a set of semi-classical order parameters characterizing the classical phase. The inner
products φi

aφ
j
a are called overlaps and are used for order parameters in the replica method in

the spin-glass theory [52]. Since the splitting of the center and outer bunches of the φj and the
pattern in Eq. (27) generally breaks the replica symmetry, the transition to the classical phase
can be regarded as a replica symmetry breaking. In Sect. 7 we associate the pattern of the set
of order parameters in Eq. (27) with classical geometric structure of emergent spaces.

6. Tensor rank decomposition and geometry
6.1. Integral representation of Q
In CTM, the dynamical variable Qabc is interpreted as a data set representing the geometry of
a Cauchy hypersurface Σ . A procedure to obtain Q corresponding to a given d-dimensional
compact Riemannian manifold (Σ, γ ) was given in Ref. [43]. What is done in Sect. 4 can be
regarded as some special cases of the general procedure. This is briefly summarized below.

1. Let i run from 1 to d, and let (xi) be the local coordinate on Σ . The Laplace–Beltrami
operator � is defined by

� = 1√
γ

∂i
(√

γ γ i j∂ j
)

from the metric tensor γ ij on Σ and its determinant γ = det(γi j ).
2. Since Σ is a compact manifold, −� on Σ has a discrete spectrum, and we take N of

its eigenvalues, starting with the smallest, and index them so that 0 ≤ e1 ≤ ··· ≤ eN is
satisfied. Furthermore, let fa be the eigenfunction belonging to the eigenvalue ea and be
orthonormalized like

δab =
∫

Σ

fa(x) fb(x)
√

γ dd x. (28)
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When Σ is a closed manifold, or when it has boundaries with the Neumann boundary
condition on fa, the smallest eigenvalue e1 is zero and f1(x) is a constant function. By the
normalization condition, f1(x) is given by V−1/2, where V is the volume, V = ∫

Σ

√
γ dd x.

3. The eigenfunctions f̃a with a damping factor are defined by e−αea fa(x), and

Qabc(α) = A
∫

Σ

f̃a(x) f̃b(x) f̃c(x)
√

γ dd x

= Ae−α(ea+eb+ec )
∫

Σ

fa(x) fb(x) fc(x)
√

γ dd x.

The real constant A can be taken freely, but in this section we assume A = 1.

Since the constancy of f1 is very useful in the analysis, in the following discussion we con-
sider the case where (Σ, γ ) is either a closed manifold or has boundaries with the Neumann
boundary condition on fa. Note also that e1 = 0 follows in such cases.

6.2. Discretization of integration
In this subsection we consider discretizing the integration on Σ and its expression by summa-
tion. Let us consider a set {pi ∈ Σ | i = 1, 2, . . . , R} of R points which are more or less uni-
formly distributed on Σ . The Voronoi cell of pi is defined by

σi = {p ∈ Σ | �(p, pi) ≤ �(p, p j ) for all j},
where �(p, q) is the geodesic distance between p and q. By this definition, the points equidistant
from pi and pj are included in both σ i and σ j. Since

⋃
i σi = Σ holds, the full volume V of Σ is

the sum of the volumes Vi of the σ i. With the preparations above, we consider the integration
of a scalar function φ(x) over Σ . We assume that φ(x) does not fluctuate violently and that the
Voronoi cells are sufficiently small (i.e. R is large). Then the integration can be asymptotically
approximated by∫

Σ

φ(x)
√

γ dd x =
R∑

i=1

∫
σi

φ(x)
√

γ dd x �
R∑

i=1

φ(pi)
∫

σi

√
γ dd x =

R∑
i=1

φ(pi)Vi,

where the average value of φ(x) on σ i has been approximated by φ(pi), the value at a repre-
sentative point pi. This approximation transforms the integration into the summation and vice
versa.

6.3. Tensor rank decomposition and Laplacian
As discussed in Sect. 6.1, the tensor Q is defined by the integration over a Cauchy hypersurface
Σ . By using the discussion in Ref. 6.2, Q can be approximated by a sum,

Qabc =
∫

Σ

f̃a(x) f̃b(x) f̃c(x)
√

γ dd x �
R∑

i=1

f̃a(pi) f̃b(pi) f̃c(pi)Vi.

Then, by defining φi
a = f̃a(pi)V

1/3
i , we get an expression which has the form of the tensor rank

decomposition:

Qabc �
R∑

i=1

φi
aφ

i
bφ

i
c. (29)

This means that the discretization of the integral representation of Q corresponds to the tensor
rank decomposition of Q.
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Finally, we explain the method for getting the geometric information from φi
a. Let us define

Ki j = φi
aφ

j
a. The following approximation shows that this quantity is related to the “fuzzy” heat

kernel ZN(p, q; α):

Ki j = f̃a(pi) f̃a(p j )V
1/3

i V 1/3
j =

N∑
a=1

e−2αea fa(pi) fa(p j )V
1/3

i V 1/3
j

= ZN (pi, p j; 2α)V 1/3
i V 1/3

j , (30)

where ZN(p, q; α) is defined by

ZN (p, q; α) =
N∑

a=1

e−αea fa(p) fa(q). (31)

The limit N → ∞ of ZN(p, q; α) agrees with the standard heat kernel. We note that ZN satisfies
the heat equation

∂

∂α
ZN (x, y; α) = �xZN (x, y; α).

From the normalization in Eq. (28), the eigenvalues of ZN(p, q; α) are given by e−αea (a =
1, 2, …, N), and therefore solving the eigenproblem of ZN(p, q; α) essentially determines the
Laplacian (see Sect. 7.2 for details). This can be approximated by solving the eigenproblem of
ZN(pi, pj; α). Therefore, the result in Eq. (30) implies that the Laplacian can be determined from
Kij, if we determine Vi.

So, the next question is how Vi can be calculated. To answer this, let us first consider
R∑

j=1

Ki jV 2/3
j =

N∑
a=1

e−2αea fa(pi)V
1/3

i

R∑
j=1

fa(p j )Vj

�
N∑

a=1

e−2αea fa(pi)V
1/3

i

∫
Σ

fa(x)
√

γ dd x

=
N∑

a=1

e−2αea fa(pi)V
1/3

i δa,1V 1/2 = V 1/3
i .

This means that Vi can be identified as one of the solutions of
R∑

j=1

Ki jX 2/3
j = X 1/3

i , (32)

with all Xi ≥ 0. At this stage, since Eq. (32) has been derived with approximations, it is not
clear whether Eq. (32) always has a solution for a given φi

a, or, if so, whether a solution can be
uniquely identified with Vi. These questions will be discussed in the following subsection.

6.4. Tensor eigensystems
The tensor eigenvector (va) ∈ CN \ {0} and the associated eigenvalue e ∈ C of a symmetric ten-
sor Qabc are defined by [53–55]

Qabcvbvc = e va. (33)

If (v, e) is an eigensystem, its scaled pair (tv, te) with any t ∈ C \ {0} is also an eigensystem. This
property introduces the natural identification (v, e) ∼ (tv, te). The total number of complex
eigenvectors of Eq. (33) under this equivalence class has been shown to be 2N − 1, if it is finite
[55].
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We are interested in real solutions for real Q. Let us first point out that there always exists
at least one real solution. The proof is as follows. Unless Q = 0, Qabcvavbvc has a maximum
positive value on the sphere |v| = 1. By applying the method of the Lagrange multiplier, the
equation for the maximum leads to the same equation as Eq. (33), where e > 0 for a positive
maximal value.

Now, to discuss the relation between Eqs. (33) and (32), let us consider a solution of Eq. (33)
with e �= 0. One can always take (v, e) ∼ (v

′
, 1) by taking t = 1/e, and can put Eq. (33) into the

form

Qabcvbvc = va. (34)

By putting the tensor rank decomposed form of the tensor Q in Eq. (29) into Eq. (34), we
obtain

R∑
j=1

φ j
a (v j )2 = va, (35)

where v j = φ
j
ava. By multiplying both sides of Eq. (35) by φi

a and taking the contraction, we
get

R∑
j=1

Ki j (v j )2 = vi. (36)

If all the vi ≥ 0, one can obtain the solution to Eq. (32) by identifying Xi = (vi)3. In other words,
there are as many solutions to Eq. (32) as eigenvectors of Q satisfying ∀vi ≥ 0.

It does not seem to be an easy problem to find the general conditions under which we can find
the eigenvectors satisfying ∀vi ≥ 0 and can uniquely identify Vi. Therefore, we restrict ourselves
to just explicitly showing that, when R is large enough and α is large enough, the eigensystem
equation in Eq. (34) has a solution Xi � Vi.

From f̃1(x) = V −1/2 and e1 = 0, we get a formula for Q1ab:

Q1ab = e−α(ea+eb)V −1/2
∫

Σ

fa(x) fb(x)
√

γ dd x = V −1/2e−2αeaδab. (37)

By using this, we can find

Q1abvavb = V −1/2
∑
a≥1

e−2αeav2
a = V −1/2v2

1 + V −1/2
∑
a≥2

e−2αeav2
a.

Therefore, by using Eq. (34), the a = 1 component of Eq. (34) can be rewritten as∑
a≥2

e−2αeav2
a = v1(V 1/2 − v1). (38)

For any real vector va, the left-hand side of Eq. (38) cannot be negative. This implies 0 ≤ v1 ≤
V1/2, and in particular, if v1 = 0 or v1 = V1/2, we have va = 0 for all a ≥ 2. In fact, (va) = (V1/2,
0, 0, …) is a solution to Eq. (34), because

Qabcvbvc = Qa11v1v1 = 0 (for a ≥ 2), (39)

from Eq. (37). We note that the inner product of f̃a(x) and the non-zero solution (va) = (V1/2, 0,
0, …) is equal to 1. Correspondingly, vi = φi

ava � V 1/3
i f̃a(pi)va = V 1/3

i , meaning Xi � Vi. This
implies that, if R is sufficiently large, there will always be such a solution to Eq. (36).
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Furthermore, if we also assume α � 1/e2, any eigenvector of Q gives Xi � Vi. This can be
shown in the following way. First of all, we know that

Qabcvbvc = 2Qab1vbv1 +
∑
b,c≥2

Qabcvbvc = 2V −1/2e−2αeavav1 +
∑
b,c≥2

Qabcvbvc

for a ≥ 2. So the a ≥ 2 components of Eq. (34) can be rewritten as∑
b,c≥2

Qabcvbvc = va(1 − 2V −1/2e−2αeav1). (40)

Since the right-hand side of Eq. (38) is less than or equal to V/4, we can see that |va| ≤ eαeaV 1/2/2
for all a ≥ 2. Based on this, the absolute value of the left-hand side of Eq. (40) can be bounded
from above in the following way:∣∣∣∣∣∣

∑
b,c≥2

Qabcvbvc

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
b,c≥2

Q(α=0)
abc e−α(ea+eb+ec )vbvc

∣∣∣∣∣∣
≤ e−αea

∑
b,c≥2

∣∣∣Q(α=0)
abc

∣∣∣ ∣∣e−αebvb
∣∣ ∣∣e−αecvc

∣∣
≤ e−αea

∑
b,c≥2

V
4

∣∣∣Q(α=0)
abc

∣∣∣ .
Clearly, this asymptotically approaches zero for α � 1/e2. On the other hand, the absolute value
of the right-hand side of Eq. (40) is asymptotically equal to |va|. Combining the above results,
we find that va approaches zero for all a ≥ 2 and, by Eq. (38), v1 must be equal to V1/2. This
means that the solution approaches the above solution (va) = (V1/2, 0, 0, …) or it is the above
solution itself. By the same argument as above, the solution gives vi � V 1/3

i , meaning Xi � Vi.

7. Geometric properties of the outer bunch
In this section we show that, in the classical phase, the pattern of the set of order parameters
in Eq. (27) forms an object which has the geometry expected from the Lie group invariance of
Q. We will demonstrate this for the Qs constructed in Sect. 4.

7.1. Topology
Let us first consider QSO(2). As shown in Sect. 5, the inner products φi

aφ
j
a within the outer bunch

almost take constant values in a Monte Carlo sequence in the classical phase. Therefore, we do
not lose generality by picking up one arbitrary sample of φ from a Monte Carlo sequence as a
representative. Then we take all the φi in the outer bunch, based on their sizes (φi)2 separating
them from those in the center bunch. For the case in Fig. 8, the number of φi in the outer bunch
is 22 out of the total number R = 76 (namely, the replica number in Eq. (5) for N = 15). Then,
as shown in the left panel of Fig. 8, we compute all the mutual distances between the φi in the
outer bunch, identify the nearest neighbor pairs of φi, and connect them with lines. After the
process we find a lattice S1, as in the right panel.

This can be done for QSO(3) as well, and we find a lattice S2 as in Fig. 9. The same thing can
also be done for QSO(4), but the corresponding figure is not shown, since it is difficult to see the
topology of S3 on a two-dimensional sheet.
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Fig. 8. Left: Histogram of the distances between all the pairs of φj in the outer bunch. The leftmost
peak represents zero distance between φj themselves, and the peak around 0.55 represents the distances
between the nearest neighbors. The parameters are N = 15 (� = 7), λ = 107, and α = 0.5. Right: The
nearest neighbor pairs of φj, which can be read from the bunch around 0.55 in the left histogram, are
connected. In the figure, points represent each φj. Then, its topology is S1.

Fig. 9. Left: Histogram made as in Fig. 8 for QSO(3) with N = 16 (� = 3), λ = 107, and α = 0.5. Right: The
nearest neighbor pairs of φjs, which can be read from the bunch around 0.52 in the left histogram, are
connected. Then, its topology is S2.

7.2. Spectra of Laplacian: Geometry
An efficient way of detecting the geometry of an emergent space is to define a Laplacian on
it and study the spectra. We will give two definitions and apply them to the configurations of
the outer bunches obtained for QSO(n + 1). In both cases we obtain spectra consistent with the
Laplacian on Sn, supporting the topological study in Sect. 7.1.

The first definition comes from Sect. 6. Since the construction of QSO(n + 1) is based on the
method described there, it would be reasonable to employ the spectra of the Laplacian derived
from the discussions there. The quantity defined in Eq. (31) can be regarded as an operator
with eigenvalues e−2αea , where the ea are the spectra of a Laplacian, in the following sense:

∫
Σ

dd q
√

γ ZN (p, q; 2α) fb(q) =
∫

Σ

dd q
√

γ

N∑
a=1

e−2αea fa(p) fa(q) fb(q) = e−2αeb fb(p), (41)

where we have used the orthonormal condition in Eq. (28). After discretization, this operation
can be expressed by a matrix,

ZN (pi, p j; 2α)Vj � V −1/3
i Ki jV 2/3

j , (42)

16/27

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2022/4/043A01/6547023 by Kyoto D

aigaku N
ogaku-bu Toshoshitsu user on 23 January 2023



PTEP 2022, 043A01 T. Kawano and N. Sasakura

Fig. 10. The minus of the logarithm of the eigenvalues of L in Eq. (44) are plotted in order along the
horizontal axis. The values are shifted vertically so that the smallest values are zero. QSO(n + 1) (n = 1,
2, 3) from left to right. The parameters are the same as in Figs. 2–4, with λ = 10−7. R̃ = 22, 32, and 82
respectively from left right. 500 samples from the sequences were statistically analyzed for each case.

where we have used Eq. (30). The expression on the right-hand side is inconvenient, because
the matrix is not symmetric. By performing a similarity transformation by V 1/2

i and V −1/2
j to

Eq. (42) respectively from the left and the right, we obtain an equivalent eigenvalue problem
with a symmetric matrix,

V 1/6
i Ki jV 1/6

j . (43)

For convenience, let us relabel the φi in the outer bunch as φi (i = 1, 2, . . . , R̃) without loss
of generality, where R̃ is the total number of φj in the outer bunch. When R̃ > N, which turns
out to be our case, the matrix in Eq. (43) has at least R̃ − N zero eigenvalues, because Eq. (43)
has the form of a product of two matrices, (V 1/6

i φi
a)(φ j

aV 1/6
j ), where the vector space associated

with the lower index in the middle has the dimension N. Since we are only interested in the
positive eigenvalues e−2αea , a convenient way to extract these positive eigenvalues is to consider
the other way for the product of the two matrices,

Lab :=
R̃∑

i=1

φi
aV

1/6
i V 1/6

i φi
b =

R̃∑
i=1

φi
aV

1/3
i φi

b. (44)

The eigenvalues of the matrix L give the spectra e−2αea . Here, the values of Vi are determined
by solving Eq. (32).

We performed the above procedure for QSO(n + 1) (n = 1, 2, 3). In Fig. 10, the minus of the
logarithm of the eigenvalues of L are plotted. The degeneracies and the values are consistent
with what is expected for Sn. A curious matter is that the fifth and sixth eigenvalues in the S1

case (the left panel) look deviated compared to the others. We have taken data from a few other
Monte Carlo runs, but this seems to be universal for all the data of this S1 case. This may imply
an instability of S1, but we do not currently have a good explanation.

Another definition of the Laplacian is to skip the procedure to determine Vi:

L̃ab =
R̃∑

i=1

φi
aφ

i
b. (45)

This definition more directly incorporates the replica symmetry of the system. Since this defi-
nition does not require positive solutions for Vi, it can be used for any circumstances, even in
the quantum phase, where there would be quite a small chance of getting positive solutions
for Vi. On the other hand, this definition relies on the assumption that the φi take reasonable
values from the dynamics, while the former definition can absorb the ambiguities related to the
discretization discussed in Sect. 6. We are not currently sure which one is better and must wait
for future study, but we would expect that these two definitions would produce more or less
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Fig. 11. As Fig. 10 for L̃ in Eq. (45).

Fig. 12. Dependence of phases on representations. The examples are for QSO(2) with � = 7, λ = 107, and
α = 0.5. Left: Histogram of |φj|2 when p = 0 is dropped. Right: p = 0, 1 are dropped.

identical results in the large-N limit in the classical phase. Figure 11 shows the spectra obtained
from L̃, supporting the expectation.

8. Deformations of Q
In this section we study two kinds of deformations of Q from those given in Sect. 4.

8.1. Dependence on representations
In the construction of Lie group invariant Qs in Sect. 4, the vector spaces associated to the
indices of Q are given by direct sums of some irreducible representation spaces of the Lie
groups. The sets of irreducible representations considered there are taken successively from
the trivial representation to the one indexed by a cut-off �. This is a natural choice from the
physical point of view, since � can naturally be related to a short-distance cut-off in a space.
In this section we consider some unnatural choices by dropping a few of the intermediate
representations.

In Fig. 12 we consider QSO(2) with � = 7, λ = 107, and α = 0.5. As shown in Fig. 5, this case is
in the classical phase, if we consider the full representations, p = 0, 1, …, � = 7, namely N = 15.
The left panel of Fig. 12 shows the histogram of |φj|2 when we drop the p = 0 representation.
This is still in the classical phase. However, when we drop p = 0, 1, the phase becomes quantum,
as shown in the right panel. In Fig. 13 we consider QSO(3). Even dropping l = 0 changes the phase
to quantum.

One would suspect that the change to the quantum phase is merely caused by the reduction
of N due to dropping. However, dropping p = 0, 1 for QSO(2) above corresponds to N = 12.
According to Fig. 5, the case with N = 12 and λ = 107 is in between the quantum and classical
phases, but the histogram on the right of Fig. 12 shows the clear characteristic of the quantum
phase. Therefore, we see that dropping intermediate representations makes the classical phase

18/27

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2022/4/043A01/6547023 by Kyoto D

aigaku N
ogaku-bu Toshoshitsu user on 23 January 2023



PTEP 2022, 043A01 T. Kawano and N. Sasakura

Fig. 13. Dependence of phases on representations. The examples are for QSO(3) with � = 3, λ = 107, and
α = 0.5. Left: l = 0 is dropped. Right: l = 0, 1 are dropped.

Fig. 14. Histograms of |φj|2 for z = −24/85, 0, 24/85 from left to right, respectively. The setting is QSO(2)

with N = 15 (� = 7), λ = 107, and α = 0.5.

less likely. It is interesting that the most physically natural set of representations, i.e. successively
taken from the trivial representation to a cut-off, makes the classical phase most likely.

8.2. Breaking the Lie group invariance of Q
In this subsection we break the Lie group invariance of Q by

Q = (QSO(n) + z QB)/
√

1 + z2, (46)

where z is a deformation parameter, QSO(n) is given in Sect. 4, and QB (|QB| = 1) is a tensor
which breaks the Lie group invariance.

There are many possible such QBs, and it is not feasible to study all of them. We therefore
consider merely one such QB, which seems meaningless enough to consider it as reflecting the
general effect. One way to give QB is to assign random values, but this would have the problem
of reproducing the result. So, we rather consider a meaningless function to generate QB. More
precisely, we consider

QB
abc = const. ×

{
cos [0.1(a + b + c)] if QSO(n)

abc = 0,

0 otherwise,
(47)

with the normalization const. for |QB| = 1. This also satisfies the transversality, QSO(n)
abc QB

abc = 0.
The result is shown in Fig. 14 for QSO(2). Non-zero z makes the classical phase less likely.
We also observed a similar effect for QSO(3) under the same perturbation, Eq. (47), which

totally breaks the SO(3) symmetry. We conclude that breaking Lie group invariance makes the
classical phase less likely.
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Fig. 15. Contour plots of log |〈∏Airy〉|, the logarithm of the modulus of the expectation value. Left: A
symmetry-breaking case from Sect. 8.2 with QSO(2), N = 15 (� = 7), λ = 107, and α = 0.5. The hori-
zontal axis represents the breaking parameter z, and the vertical one |Q|. Right: An invariant case with
QSO(2)(α); α varies along the horizontal axis. The other parameters are the same as in the left panel.

9. Behavior of the oscillatory part
In this section we discuss the oscillatory part,〈

R∏
i=1

Airy
(−|Q|2/3(φi)2)〉

Q̃,λ

, (48)

in Eq. (11), where Q̃ = Q/|Q|. Here note that we have dropped the dependence of the coupling
parameter on |Q|2 compared to Eq. (11). The reason for this simplification is that changing the
coupling parameter requires repeating Monte Carlo simulations with different couplings, and
it would not be feasible to obtain results for many |Q|s. On the other hand, Eq. (48) for different
|Q|s can be computed by using the same sampling data of φ from the Monte Carlo simulation.
At the end of this section we speculate on the effect of re-including the dependence on |Q|2.

The fluctuations of |φj|2 are larger in the quantum phase than in the classical phase. Since
the Airy function, Eq. (13), in Eq. (48) is an oscillatory function, larger fluctuations make the
expectation values smaller, because there are more cancellations. Therefore, Eq. (48) generally
takes smaller values in the quantum phase than in the classical phase. In particular, there are
more cancellations as |Q| becomes larger, because of the |Q| dependence in the argument of
Eq. (48).

Figure 15 shows the results for the expectation values from the Monte Carlo simulations. In
the left panel, a symmetry-breaking case in Sect. 8.2 is studied. As can be seen in the figure,
the expectation value is strongly peaked around z = 0. This can be understood by the fact that
the classical phase around z = 0 is surrounded by the quantum phase, as shown in Sect. 8.2.
In the right panel, the dependence of the expectation value on α is studied for QSO(2)(α). The
expectation value depends moderately on α. As is shown in the histograms in Fig. 16, the system
is in the classical phase throughout the region of α in the figure, but the widths of the bunches
depend on α. The widths become smallest in the middle case. This explains why there is a mild
peak around α ∼ 0.4 in the right panel of Fig. 15.
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Fig. 16. Histograms of |φj|2 for QSO(2)(α) with N = 15 (� = 7), λ = 107, and α = −1 (left), 19/35 (middle),
and 2 (right).

Fig. 17. Three possible behavior profiles of the expectation value. |Q|c denotes the transition point be-
tween the quantum phase (|Q| < |Q|c) and the classical (|Q| > |Q|c). |Q|c is smaller in the left panel than
in the middle, where the former is expected for Lie group invariant Q̃ and the latter for non-invariant. It
is even possible that there are no transitions at all, as in the right panel.

It is worth stressing here the importance of taking the cosmological constant of CTM to be
positive in the discussions of this section. As explained in the last paragraph of Sect. 3, the Airy
function part becomes oscillatory in the positive case, and the discussions above can be applied.
On the other hand, when it is negative, the Airy function part becomes an exponentially damp-
ing function (see the last paragraph of Sect. 3) and the results will be different. In particular,
we cannot expect the suppression of the configurations in the quantum phase discussed above,
which will highlight those in the classical phase.

Lastly let us speculate on what happens when we reintroduce the dependence of the coupling
on |Q|2, i.e. λ → λ|Q|2 as in Eq. (11). Now λ|Q|2 serves as an effective coupling. Then, the
results from the previous sections tell us that when |Q| is small the system is in the quantum
phase. By increasing |Q|, the effective coupling becomes larger and the system will eventually
undergo the transition to the classical phase at some value of |Q|, say |Q|c, which generally
depends on Q̃. Note, however, that there is also the possibility that there are no transitions to
the classical phase at all for some Q̃. For Lie group invariant Q̃, |Q|c will be relatively smaller,
while |Q|c will be larger for non-invariant Q̃. Since the expectation value decays more quickly in
the quantum phase as |Q| becomes larger, we would expect the three types of behavior shown
in Fig. 17. In particular, larger expectation values are expected for Lie group invariant Q̃ in the
large-|Q| region.

10. Summary and future prospects
We have studied the wave function of the canonical tensor model [15] in the Q-representation,
when the argument Q takes Lie group invariant or nearby values. Using the Monte Carlo
method we found two phases, which we call the quantum and classical phases, where the fluctu-
ations of the variables are suppressed in the latter phase relative to the former. In the classical
phase, configurations emerge which are discretizations of classical geometric spaces invariant
under the Lie group symmetries. More precisely, we demonstrated the emergence of configura-
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tions corresponding to discretized Sn (n = 1, 2, 3) for SO(n + 1) invariant Q. The transition re-
sembles a matrix model counterpart, namely the transition between the one-cut and the two-cut
solutions in the matrix model [24], or the Gross–Witten–Wadia-type transition [25,26]. How-
ever, this resemblance is obscured by a difference: in our setup, the tensor is a given variable for
each case and the distributions come from the abundance of tensor rank decompositions of the
tensor, while in the matrix model, the matrix itself has distributions. We argue that complete
splitting of the distributions in the classical phase will imply a replica symmetry breaking.

We also performed some preliminary studies on the phases and the transition. For larger N,
the transition occurs for smaller λ, meaning that the classical phase is more favored for larger N.
This implies that the emergence of classical spaces is more likely for larger N. We also presented
some evidence for the importance of Lie group invariance and proper choices of representations
for the appearance of the classical phase.

The main difference of the present work from Ref. [23] is the discovery of the classical phase.
The previous work was not aware of the classical phase, and discussed only the quantum phase,
and a fluid picture was argued to be useful for an approximate analytical treatment for Lie group
invariant values of Q. On the other hand, in the classical phase found in this paper, the inner
products φi

aφ
j
a within the outer bunch take almost constant values with small fluctuations. This

suggests that a more solid picture than a fluid is appropriate to describe the classical phase. In
terms of this aspect, it would be an intriguing coincidence that the form of the real part ZQ, λ

is similar to that of the p-spin spherical model for the spin glass [52,56]. This suggests that,
recalling that the classical phase is accompanied with a replica symmetry breaking, the classical
phase would actually be a glassy phase, meaning spacetime in CTM would have similarities with
glass. It is an interesting future direction to pursue an approximate analytical method for the
classical phase based on the picture obtained in this paper.

The results of this paper suggest the interesting possibility of applying CTM as a model for
the evolution of the universe. As discussed in Sect. 9, the system is in the quantum phase when
|Q| is small, but will eventually undergo the transition to the classical phase when |Q| grows and
reaches a critical value depending on Q/|Q|, or it never will. This implies the scenario that the
universe starts with the quantum phase with no definite geometry and then enters the classical
phase with the emergence of a space with classical geometry, under the assumption that time
is correlated with |Q|.5 It would be a challenging and interesting direction of study to compute
observable signals, such as primordial fluctuations, from the perspective of CTM, and check
its significance by comparing with the actual observational data.

Another interesting direction for the application of CTM would be to consider more general
values of Q than the Lie group invariant ones. The procedure developed in Sect. 6 to construct
Q from geometric data can generally be applied to a wide range of curved geometries, such as
ones with horizons, singularities, and so on. Putting these more general values of Q into the
argument of the wave function and studying the properties of the system, such as its phase,
would provide general ideas about how spacetime geometries are described in CTM. In partic-
ular, it would be worth studying black hole geometries from the perspective of CTM to shed
new light on the long-standing paradox of information loss.

Many questions remain which must be answered in future studies. We have only studied the
wave function for very particular values of the argument, namely Lie group invariant or nearby
ones, but these particular choices cannot be well justified without a global view of the wave
function profile. We have introduced the parameter λ for analytical convenience, but the removal
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limit of taking it infinite has not been studied. We have computed 〈∏Airy〉Q, λ but not the
Q dependence of ZQ, λ, which is also needed to understand the whole profile of �(Q, λ). To
answer these questions we would need analytical methods, rather than just relying on numerical
computations. The pictures we have obtained so far provide hints toward them.

Last, but not least, the discovery of the classical phase of this paper suggests a new method
of tensor rank decomposition [47,48]. Tensor rank decomposition is a useful method for ex-
tracting information from a tensor of real-life data [50], but there is no assurance of getting a
good decomposition due to some fundamental problems, such as the ill-posedness [50] of the
approximation problem and the difficulty [50,51] of computing the rank of a tensor. On the
other hand, what happens in the classical phase is that, as in Eqs. (25) and (26), the φi are dy-
namically divided into two bunches, of which the outer bunch serves as a good approximation
of the tensor rank decomposition of Q, while the center bunch is a small correction, which can
be ignored practically. In other words, when we find a classical phase for a tensor Q by taking λ

large, we can obtain an approximate tensor rank decomposition of Q. What seems interesting
and useful here is that the rank, namely the number of φi in the outer bunch, is automatically
determined by the dynamics of the Monte Carlo simulation, and we do not need to know the
rank of Q in advance. This would be an advantage considering the difficulty of the rank deter-
mination, though the Monte Carlo simulation is costly. It would be interesting to clarify how
useful this method is in practice for various cases of Q.

Acknowledgments
The work of N. S. is supported in part by JSPS KAKENHI Grant No. 19K03825.

Funding
Open Access funding: SCOAP3.

Appendix A. A minimal explanation of CTM
This appendix gives a minimal explanation of the canonical tensor model (CTM) to understand
the origin of the wave function discussed in this paper. A longer but still concise summary can
be found in Ref. [21, Sect. 2] with slightly different normalizations.

The dynamical variables of CTM are a canonical conjugate pair of real symmetric three-index
tensors, Qabc and Pabc (a, b, c = 1, 2, …, N). The quantized variables satisfy

[Q̂abc, P̂de f ] = i
∑

σ

δaσd δbσeδcσ f ,

[Q̂abc, Q̂de f ] = [P̂abc, P̂de f ] = 0, (A1)

where the sum is over all the permutations of d, e, f. The expressions of the constraints are
given by [31]

Ĥa = 1
2

(
P̂abcP̂bdeQ̂cde + 2iRP̂abb − �c Q̂abb

)
,

Ĵ[ab] = 1
4

(
P̂acd Q̂bcd − P̂bcd Q̂acd

)
, (A2)

where the value of R is determined to be R = (N + 2)(N + 3)/4 by requiring the hermiticity of
Ĥa [31]. The square bracket in Ĵ[ab] is to represent the antisymmetry Ĵ[ab] = −Ĵ[ba]. �c is a real
parameter, which will be explained more below.
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The commutation algebra among the above constraints is given by [31,33]

[Ĥξ 1, Ĥξ 2] = i Ĵ([P̂ξ 1, P̂ξ 2] + 2�c[ξ 1, ξ 2]),

[Ĵη, Ĥξ ] = i Ĥ (ηξ ),

[Ĵη1, Ĵη2] = i Ĵ([η1, η2]), (A3)

where we have introduced auxiliary c-number variables ξ a, η[ab] and

Ĥξ := Ĥaξa, Ĵη := Ĵ[ab]η[ab], (P̂ξ )ab := P̂abcξc,

[ξ 1, ξ 2]ab := ξ 1
a ξ 2

b − ξ 1
b ξ 2

a , (ηξ )a := η[ab]ξb, (A4)

to simplify the expressions. The algebraic structure in Eq. (A3) of the constraints resembles
that of ADM [19], and in particular there exist variable-dependent structure coefficients on the
right-hand side of the first line, which is also similar to ADM.

The physical state conditions are given by

Ĥa|�〉 = Ĵ[ab]|�〉 = 0. (A5)

A systematic solution to the above conditions valid for general N was found in Ref. [33], and is
given by

〈P|�〉 =
∫
C

dφ d φ̃ exp

⎡
⎣i

R∑
j=1

(
Pabcφ

j
aφ

j
bφ

j
c − φ j

aφ
j
aφ̃

j + 4
27�c

(φ̃ j )3
)⎤

⎦ (A6)

in the P-representation. This integral can be regarded as a holomorphic integration on an (N
+ 1)R-dimensional curve C, and the curve is supposed to be taken so that the integration is
convergent. The choice of C can in principle be rigorously made explicit by applying Picard–
Lefschetz theory [34].

It has been shown [30] that the N = 1 case of CTM is equivalent to the mini-superspace ap-
proximation of general relativity, where �c corresponds to the cosmological constant. From
this fact, �c is called the cosmological constant of CTM in the text. The positivity of �c is
essential for the appearance of the peak Lie group relation [21,22] mentioned in Sect. 1. As can
be checked in Eq. (A2) and the other equations, the size of �c can be changed freely by per-
forming (Q, P) → (x Q, P/x) with real x without changing the above commutation relations.
This means that the size is physically irrelevant and there are only discrete choices, say �c =
0, ±1. The expression of the wave function in Eq. (3) in the text corresponds to �c = 4/9 in
Eq. (A6), which is convenient because then the φ̃ integration in the wave function can be related
to the Airy function, Eq. (12), with no extra numerical coefficients.

Appendix B. Spherical harmonics on Sd

Let us take a spherical coordinate system (ϕ, θ1, …, θd − 1) on Sd with ϕ ∈ [ − π , π ), θ i ∈ [0, π ].
If we write dsd as the line element on Sd, ds2

d can be determined inductively as follows:

ds2
1 = dϕ2,

ds2
d+1 = sin2

θd ds2
d + dθ2

d .
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By these relations, the Laplace–Beltrami operator �d on Sd is also determined inductively as
follows:

�1 = ∂2

∂ϕ2
,

�d+1 = 1

sind
θd

∂

∂θd

(
sind

θd
∂

∂θd

)
+ �d

sin2
θd

.

The d-dimensional harmonic function on Sd is specified by an array of d integers Ld = (m, l1,
…, ld − 1) with |m| ≤ l1 ≤ ··· ≤ ld − 1, and is written as Yd;Ld (ϕ, θ1, . . . , θd−1). This satisfies the
Helmholtz equation,

�dYd;Ld = −ld−1(ld−1 + d − 1)Yd;Ld .

If we assume Yd+1;Ld+1 (ϕ, θ1, . . . , θd ) = Yd;Ld (ϕ, θ1, . . . , θd−1) Θ (θd ), Θ (θd ) must be a solution
of the equation

1

sind
θd

d
dθd

(
sind

θd
d�

dθd

)
− ld−1(ld−1 + d − 1)

sin2
θd

Θ = −ld (ld + d )Θ. (B1)

The non-singular solutions of Eq. (B1) can be written as [44]

Θ (θd ) ∝ 1

sin(d−1)/2
θd

P
−(ld−1+ d−1

2 )

ld + d−1
2

(cos θd ) ∝ sinld−1 θd C
ld−1+ d

2
ld −ld−1

(cos θd ),

where Pμ
ν (x) is the Ferrers function (or Legendre function) of the first kind and Cλ

n (x) is the
Gegenbauer polynomial. They have the relation

Cλ
n (cos θ ) =

√
π �(n + 2λ)

2λ− 1
2 n!�(λ)

(sin θ )
1
2 −λP

1
2 −λ

n+λ− 1
2
(cos θ ). (B2)

This result gives a way of defining the spherical harmonics inductively as follows:

Yd+1;Ld+1 (ϕ, θ1, . . . , θd ) = Ad+1;Ld+1 sinld−1 θd C
ld−1+ d

2
ld −ld−1

(cos θd ) · Yd;Ld (ϕ, θ1, . . . , θd−1),

with a normalization factor Ad+1;Ld+1 . Since the Gegenbauer polynomials satisfy the orthogo-
nality relation [57]∫ 1

−1
Cλ

n (x)Cλ
m(x)(1 − x2)λ− 1

2 dx =
∫ π

0
Cλ

n (cos θ )Cλ
m(cos θ ) sin2λ

θdθ = 21−2λπ�(n + 2λ)
(n + λ)�(λ)2n!

δn,m,

the orthogonality of Yd+1;Ld+1 is also guaranteed. Furthermore, the normalization factor
Ad+1;Ld+1 is determined by

1 =
∫

Sd+1
Yd+1;Ld+1 (ϕ, θ1, . . . , θd )2dd+1�

= A2
d+1;Ld+1

∫ π

0
C

ld−1+ d
2

ld −ld−1
(cos θd )2 sin2ld−1+d

θd dθd

= A2
d+1;Ld+1

2−(2ld−1+d−1)π (ld + ld−1 + d − 1)!(
ld + d

2

)
�

(
ld−1 + d

2

)2
(ld − ld−1)!

.

This shows the specific value of Ad+1;Ld+1 :

Ad+1;Ld+1 =
( (

ld + d
2

)
�

(
ld−1 + d

2

)2
(ld − ld−1)!

2−(2ld−1+d−1)π (ld + ld−1 + d − 1)!

)1/2

.

Collecting the results above, we obtain Eq. (19).
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