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We investigate the possible thermalization process of the highly occupied and weakly cou-
pled Yang–Mills fields expanding along the beam axis through an evaluation of the entropy,
particle number, and pressure anisotropy. The time evolution of the system is calculated by
solving the equation of motion for the Wigner function in the semiclassical approximation
with initial conditions mimicking the glasma. For the evaluation of the entropy, we adopt
Husimi–Wehrl (HW) entropy, which is obtained by using the Husimi function, a positive
semidefinite quantum distribution function given by smearing the Wigner function. By nu-
merical calculations at g = 0.1 and 0.2, the entropy production is found to occur together
with the particle creation in two distinct stages: In the first stage, the particle number and
entropy at low longitudinal momenta grow rapidly. In the second stage, the particle number
and entropy of higher longitudinal momentum modes show a slower increase. The pressure
anisotropy remains in our simulation and implies that the system is still out of equilibrium.
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1. Introduction
Experimental studies at RHIC and LHC have provided phenomenological evidence of the for-
mation of strongly coupled matter soon after the collisions of relativistic heavy ions, and its
evolution is well described by the hydrodynamics. The shear viscosity of the fluid in these suc-
cessful hydrodynamical models is so small [1–4] that the entropy produced in the hydrodynam-
ical stage is estimated to be about only 10% of the total entropy [5,6]. Thus most of the entropy
is expected to be created before the formation of the fluid [7]. We have, however, only a poor
grasp of the physical mechanism of such early entropy production within the underlying quan-
tum chromodynamics. Thus it is necessary to elucidate the entropy production mechanism in
the pre-hydrodynamic stage for a deeper understanding of the outstanding problem of why the
hydrodynamics becomes applicable a short time after the collisions, τ ∼ 0.6–1 fm/c, known as
the early thermalization puzzle [8].

Shortly after the contact between two nuclei, the matter produced is understood as a highly
occupied system consisting of weakly coupled but strongly interacting gluons [9–13]. Such glu-
onic matter, called a glasma, initially consists of approximately boost-invariant color electric
and color magnetic fields parallel to the collision axis. The fluctuations of these boost-invariant
fields grow exponentially due to instabilities of the Yang–Mills theory [14–36]. The exponential
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growth of fluctuations should play a role in the isotropization of pressure in the glasma [37,38],
and is also expected to drive entropy production in the glasma [39,40]. Eventually, the grown
Yang–Mills field is expected to decay into particles and to form a hydrodynamic fluid.

In order to investigate the real-time dynamics of the glasma, a semiclassical method is widely
used [29,32,38,40–43]. In this method, the classical field equation of motion is solved starting
from the initial conditions containing quantum fluctuations; this is implemented to evaluate
the real-time evolution of a Wigner function, a Wigner–Weyl transform of a density matrix
in terms of the field variables and their conjugate momenta. Such a semiclassical description
can be applied to the real-time evolution of highly occupied and weakly coupled systems [43],
where a quantum effect gives only a small contribution.

It should be noted that some kind of coarse-graining is necessary in order to discuss thermal-
ization in terms of the entropy based on the density matrix, the Wigner function or the classical
phase space distribution function defined microscopically. Exact quantum evolution of a den-
sity matrix ρ̂ is unitary, and thereby the von Neumann entropy S = −Trρln ρ stays constant.
Analogously, in classical systems, the phase space distribution function is constant along the
classical trajectory and the Boltzmann entropy, S = −∫

dxdp/(2π )Df ln f, with D and f being
the number of degrees of freedom and the classical distribution function, stays constant due to
Liouville’s theorem. One of the ways to perform coarse-graining is to use the entanglement en-
tropy [44,45], the von Neumann entropy defined by a partially traced density matrix. The time
evolution of the partially traced density matrix is non-unitary and then the entanglement en-
tropy can grow in time. However, it is difficult to perform a partial trace for many-body systems
such as field theory. Another way is to use the entropy defined by the smeared density matrix or
the Wigner function. The Husimi function, a smeared Wigner function within the allowance of
the uncertainty principle, is positive semidefinite and can be regarded as a probability density
function in the phase space, and thus we can define the entropy based on the Husimi function,
which we call the Husimi–Wehrl (HW) entropy [46–49]. The properties of the HW entropy both
in and out of equilibrium have been studied analytically in some simple models: For a harmonic
oscillator with a quantum �ω, the HW entropy for the Gibbs ensemble is larger than the von
Neumann entropy but tends to agree with that in the classical/high-temperature limit (�/T →
0) [49]. In an inverted harmonic oscillator, the growth rate of the HW entropy asymptotically
converges to the Kolmogorov–Sinai (KS) entropy, a sum of positive Lyapunov exponents [49],
which implies that the production of the HW entropy is related to the chaoticity and insta-
bilities in its classical counterpart. Both results suggest that the HW entropy can be a suitable
guide to investigate thermalization at least in classical or semiclassical systems.

In this article, we evaluate the evolution of the Wigner function of the highly occupied and
weakly coupled Yang–Mills fields with initial conditions mimicking the glasma in the semiclas-
sical approximation, and analyze its thermalization in terms of the HW entropy that is obtained
from the evaluated Wigner function. The semiclassical approximation method adopted here is
essentially the same as the so-called classical statistical approximation [29,32,38,40–43] in the
sense that the initial conditions are sampled by a Monte Carlo method and the classical equa-
tions of motion are solved. Our simulation is performed in the τ–η coordinate system, which
represents a system expanding along the beam axis at the speed of light. In Refs. [39,40], the
authors numerically showed that the HW entropy definitely grows by the classical dynamics
of the Yang–Mills field, and that the growth rate of the HW entropy is related to the intrinsic
dynamics of the Yang–Mills theory, such as the chaoticity and instabilities. It should be noted,
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however, that the previous studies were only done in a static geometry with a focus on the ther-
malization by the intrinsic dynamics of the Yang–Mills field. Thus it would be intriguing to
examine whether their findings are robust enough that they persist in an expanding geometry.
The present work is an extension of the previous analysis to the expanding system with some
technical improvements: We give an improved definition of the HW entropy in field theories
that resolves two problems left unsolved in Refs. [39,40], over-counting gauge degrees of free-
dom and an ambiguity in the choice of smearing parameters. Another important development
in this article is the evaluation of the particle number and its relevance to the entropy pro-
duction. The initial condition, given as a glasma-like one with quantum fluctuations, may be
described as a coherent state. Then the deviation from the coherent state is realized in the sub-
sequent time evolution. We give an operator representation of the particle number created due
to this deviation, and investigate the relation of the entropy and particle number production.
Moreover we provide a theoretical basis of the numerical method for a precise evaluation of
the HW entropy by the test particle method, which was proposed in Ref. [39].

This article is organized as follows. In Sect. 2, we introduce the semiclassical description of the
real-time evolution of quantum systems based on the Wigner function, and give the definition
of the HW entropy using a simple example: 1D quantum mechanics. In Sect. 3, we show how
to numerically evaluate the HW entropy of a semiclassical field, using the scalar theory in the
Minkowski spacetime. In Sect. 4, we investigate the dynamical production of the HW entropy
in the semiclassical evolution of the SU(2) Yang–Mills field in the expanding geometry. We
also study other observables, pressure, and particle number, and discuss the relation between
the HW entropy and them. In Sect. 5, we summarize this article.

2. Formalism
In this section, we introduce the semiclassical description of the real-time evolution of quantum
systems based on the Wigner function, and give the definition of the HW entropy, using a 1D
harmonic oscillator whose Hamiltonian reads H = p̂2/2 + ω2x̂2/2 = ω(â†â + 1/2) with â =
(ωx̂ + i p̂)/

√
2ω.

2.1 Semiclassical description of the Wigner function
The Wigner function is defined as the Wigner–Weyl transform of the density matrix ρ̂(t),

fW(x, p) ≡
∫

dy
〈
x + y

2
| ρ̂(t) | x − y

2

〉
e−ipy. (1)

To describe the semiclassical evolution of the Wigner function, we use the classical limit of the
von Neumann equation,

∂

∂t
fW(x, p) = lim

�→0
{{H, fW(x, p)}}, (2)

where {{, }} denotes the Moyal bracket. The Moyal bracket can be written as a power series of
�

2,

{{H, fW(x, p)}} = {H, fW(x, p)} + O(�2), (3)

where {, } denotes the Poisson bracket. In the classical limit (� → 0), therefore, Eq. (2) has the
same form as the Liouville equation, which is an evolution equation of a classical distribution
function:

∂

∂t
fW(x, p) = {H, fW(x, p)}. (4)
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By combining the classical evolution equation given by Eq. (4) with the semiclassical initial
condition given later in Eq. (7), we can describe the time-dependent Wigner function within
the semiclassical approximation, where quantum fluctuation effects up to O(�1) are included.

We calculate an expectation value of the given observable Ô(x̂, p̂) through the following re-
lation: 〈

Ô(x̂, p̂)
〉
= Tr

(
Ô(x̂, p̂)ρ̂

)
=

∫
d	 OW(x, p) fW(x, p), (5)

where d	 = dxdp/(2π ) is the integration measure and OW(x, p) is the Wigner–Weyl transform
of Ô(x̂, p̂),

OW(x, p) =
∫

dy
〈
x + y

2
|Ô(x̂, p̂)|x − y

2

〉
e−ipy. (6)

In actual calculations in field theories, we may need to subtract the vacuum expectation value
and others to obtain the well-defined observables as discussed later.

2.2 Wigner function of a coherent state
We use a coherent state for the initial condition in actual calculations discussed later, since a de-
scription with the use of a coherent state is useful when the semiclassical approximation is valid.
A coherent state is an eigenstate of the annihilation operator â|α〉 = α|α〉, and is represented
as |α〉 = e−|α|2/2eαâ† |0〉 with |0〉 being the perturbative vacuum state: â|0〉 = 0. The coherent
state satisfies the minimum uncertainty relation, �x�p = 1

2 . With the use of the density matrix
ρ̂ := |α〉〈α|, the Wigner function of the coherent state |α〉 is given by

fW(x, p) =
∫

dy
〈
x + y

2
| α

〉 〈
α | x − y

2

〉
e−ipy = 2 exp

[
− (x − x̄)2

2(�x)2
− (p − p̄)2

2(�p)2

]
, (7)

where x̄ and p̄ are the expectation values of the position and momentum, respectively, and are
related to the eigenvalue as α = (ωx̄ + i p̄)/

√
2ω. The variances are given by (�x)2 := 〈α|(x̂ −

x̄)2|α〉 = 1/(2ω) and (�p)2 := 〈α|( p̂ − p̄)2|α〉 = ω/2.

2.3 Husimi–Wehrl entropy
The Husimi function is obtained by smearing the Wigner function in the phase space within
the allowance of the uncertainty principle,

fH(x, p, σ ) ≡
∫

d	′ fW(x′, p′)G(x − x′, p − p′, σ ), (8)

where G(x, p, σ ) is the Gaussian smearing function,

G(x, p, σ ) = 2e−σx2−p2/σ , (9)

where σ is the smearing parameter. The Husimi function is normalized in the phase space as∫
d	fH(x, p, σ ) = 1. In addition, it is given as the expectation value of the density matrix in a

coherent state |α; σ 〉 defined as the eigenstate of the annihilation operator â = (σ x̂ + i p̂)/
√

2σ ,
fH(x, p, σ ) = 〈α; σ | ρ̂ |α; σ 〉, and is positive semidefinite unlike the Wigner function. Therefore,
the Husimi function can be regarded as a probability distribution function in the phase space.
Then, we can define the Husimi–Wehrl entropy as

SHW(σ ) ≡ −
∫

d	 fH(x, p, σ ) ln fH(x, p, σ ). (10)

While there exists an ambiguity of the choice of the smearing parameter σ in the Husimi func-
tion, we unambiguously fix σ by imposing a physically natural requirement in the later section.
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3. Husimi–Wehrl entropy of a scalar field in a non-expanding geometry
Before proceeding with the study of the Yang–Mills field in the expanding geometry, we show
how to numerically evaluate the HW entropy of a semiclassical field, using the scalar theory in
Minkowski spacetime as an example. All quantities in this section are normalized by a spatial
lattice spacing a.

3.1 Scalar field theory on a lattice
We consider the massless φ4 theory on a L3 lattice whose Hamiltonian is given by

H =
∑

x

[
1
2
π̂ (x)2 − 1

2

(∇Fφ̂(x)
)2 + λ

4!
φ̂4(x)

]
, (11)

where ∇F = (∂F
1 , ∂F

2 , ∂F
3 ) denotes a forward difference operator, and π̂ = ˙̂φ is the canonical

conjugate variable of φ̂. Then, field variables for the free scalar field (λ = 0) on the lattice after
the second quantization are given by

φ̂(x) = 1√
L3

∑
k

φ̂keik·x = 1√
L3

∑
k

1√
2ωk

(
âke−iωkt + â†

−keiωkt
)

eik·x, (12)

π̂ (x) = 1√
L3

∑
k

π̂keik·x = −i√
L3

∑
k

√
ωk

2

(
âke−iωkt − â†

−keiωkt
)

eik·x, (13)

where (φ̂k, π̂k) are the Fourier transform of (φ̂(x), π̂ (x)), âk(â†
k) is the annihila-

tion (creation) operator for the free scalar field satisfying
[
âk, â†

k′

]
= δk,k′ , and ωk =

2
√

sin2(k1/2) + sin2(k2/2) + sin2(k3/2) is the eigenfrequency of the free field mode with
momentum k on the lattice.

The free part of the scalar theory can be interpreted as a set of harmonic oscillators, whose
Hamiltonian is given by

Hfree =
∑

k

ωk

(
â†

kâk + 1
2

)
=

∑
k

Hh.o.
k , Hh.o.

k = 1
2
�̂2

k + 1
2
ω2

k�̂
2
k, (14)

where we have introduced new canonical variables for each momentum mode, (�̂k, �̂k), utiliz-
ing the annihilation and creation operators as

�̂k ≡ 1√
2ωk

[
âk + â†

k

]
, �̂k ≡ −i

√
ωk

2

[
âk − â†

k

]
, (15)

or, accordingly,

âk = (ωk�̂k + i�̂k)/
√

2ωk. (16)

Now we can consider the Winger function fW({�, �}) expressed in terms of �k and �k. As
the initial condition, we adopt the coherent state |{αk}〉 that is the eigenstate of annihilation
operators for the free scalar field, {âk} and is given by the product of coherent states of each
mode, |{αk}〉 = ∏

k |αk〉. Accordingly, the density matrix is expressed as ρ̂(t) = |{αk}〉〈{αk}| =∏
k |αk〉

∏
k′ 〈αk′ |. Then, as shown in Eq. (7), the Wigner function at the initial time is given by

the Gaussian function,

fW({�, �}) =
∏

k

∫
d�′

k

〈
�k + �′

k

2

∣∣∣αk

〉 〈
αk

∣∣∣�k − �′
k

2

〉
e−i�k�

′
k

=
∏

k

2 exp
[
− (�k − �̄k)2

2(��k)2
− (�k − �̄k)2

2(��k)2

]
, (17)
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where the expectation values �̄k and �̄k are the real and imaginary parts of the coherent state
eigenvalue αk = (ωk�̄k + i�̄k)/

√
2ωk and the variances (��k)2 and (��k)2 are determined

by the eigenfrequency ωk as ωk = 1/[2(��k)2] = 2(��k)2. It is noted that the spread of the
initial Wigner function characterized by the widths ��k and ��k corresponds to the zero-
point oscillation of the vacuum if fluctuations of fields are regarded as particles.

We further define a Husimi function fH as a smeared Wigner function with the smearing
parameters {σk} set to eigenfrequencies {ωk},

fH({�, �, ω}) =
∫

D	′ fW({�′, �′})G({� − �′, � − �′, ω}), (18)

where D	 = ∏
k d�kd�k/(2π ) is an integration measure and G({�, �, ω}) is the smearing

function defined as the product of single Gaussian smearing functions given in Eq. (9),

G({�, �, ω}) =
∏

k

G(�k, �k, ωk). (19)

The HW entropy is finally given by

SHW({ω}) = −
∫

D	 fH({�, �, ω}) ln fH({�, �, ω}). (20)

We here comment on the smearing parameter choice shown above. The HW entropy SHW({ω})
defined with the smearing parameter {ω} exhibits two remarkable and physically natural fea-
tures, as shown in Appendix D, at λ = 0: The HW entropy SHW({ω}) agrees with the von Neu-
mann entropy SvN = −Tr(ρln ρ) in the high-temperature limit, and the HW entropy SHW({ω})
per degrees of freedom in vacuum is unity, the minimum of the HW entropy. These two features
may justify the adoption of the definition in weak-coupling calculations. In the later discussion
of this section, we omit {ω} in the expression of the HW entropy of the scalar field: SHW.

3.2 Numerical method
3.2.1 Evaluation of the Wigner function using the test particle method. In the actual evaluation
of the Wigner function, we use the test particle (TP) method in which the Wigner function is
approximated by a sum of the delta functions,

f TP
W ({�, �}) = 1

NTP

∑
i

∏
k

(2π )δ(�k − �k,i(t))δ(�k − �k,i(t)), (21)

where each delta function specifies the coordinate of an independent particle (�k,i, �k,i), which
is generated so as to sample the classical field configurations (test particle configurations) ac-
cording to the distribution of the Wigner function. The test particle method assumes the posi-
tive semidefiniteness of the Wigner function, which is certainly true in the time evolution of the
Wigner function according to the Liouville equation shown in Eq. (4) starting from a positive
definite initial condition like Eq. (17). The Winger function given in Eq. (21) should give an
accurate sampling of the original Wigner function in the large-NTP limit.

The test particles at the initial time are generated according to the initial Wigner function
given in Eq. (17),

�k,i = �̄k +
√

1
2ωk

ξR
k,i, �k,i = �̄k +

√
ωk

2
ξ I

k,i, (22)

where ξR,I
k,i are the random numbers obeying the normal Gaussian distribution. The time

evolution of each test particle is obtained by the classical equation of motion, φ̇(x) =
∂H/∂π (x), π̇ (x) = −∂H/∂φ(x). Later, we calculate the expectation value of a given observable
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Ô({�̂, �̂}), such as pressure and particle number, by using the test particle expression of the
Wigner function given in Eq. (5),〈

Ô({�̂, �̂})
〉
= 1

NTP

∑
i

O({�i, �i}). (23)

3.2.2 Husimi–Wehrl entropy in the test particle method. By substituting the Wigner function
given in Eq. (21) into Eq. (18), we obtain the Husimi function in the test particle method,

f TP
H ({�, �}) = 1

NTP

∑
i

∏
k

Gk,i(�k, �k), (24)

Gk,i(�k, �k) = G(�k − �k,i(t), �k − �k,i(t), ωk). (25)

Then the HW entropy in the test particle method is given by

STP
HW = −

∫
D	

[
1

NTP

∑
i

∏
k

Gk,i(�k, �k)

]
ln

⎡
⎣ 1

NTP

∑
j

∏
k′

Gk′, j (�k′, �k′ )

⎤
⎦. (26)

The HW entropy is evaluated in the following three steps in our test particle method, which is
elaborated from that adopted in the previous works [39,40]. In the first step, we apply identical
test particle sets to functions both inside and outside the logarithmic function in Eq. (26), and
evaluate the HW entropy. We call this prescription the “single test particle method (sTP)”, and
denote the HW entropy obtained by the sTP method as SsTP

HW. In the second step, we compute
the HW entropy using two different test particle sets for functions inside and outside the loga-
rithmic function in Eq. (26). We call the second prescription the “parallel test particle method
(pTP)”, and denote the HW entropy obtained by the pTP method as SpTP

HW. Finally, we esti-
mate the HW entropy by averaging SsTP

HW and SpTP
HW, SaTP

HW ≡ (SsTP
HW + SpTP

HW )/2. As proven in Ap-
pendix C, we obtain the following inequality:

SsTP
HW < SHW < SpTP

HW (27)

by assuming that the numerical errors of the Husimi function, �TP = f TP
H − fH ∝ 1/

√
NTP, are

sufficiently small due to the large value of NTP, and that the odd-order contributions of �TP to
SsTP

HW and SpTP
HW disappear due to the numerical error cancellation, Moreover, it is also shown in

Appendix C that the numerical errors proportional to N−1
TP cancel each other out in SaTP

HW, and
SaTP

HW only contains O(N−2
TP ) errors. Thus, for sufficiently large NTP, the following nice equality

holds:

SaTP
HW = SHW + O(N−2

TP ). (28)

In the next section, we numerically calculate SsTP
HW, SpTP

HW, and SaTP
HW at different numbers of test

particles, and discuss the validity of Eqs. (27) and (28).

3.2.3 Product ansatz. We need to make a further approximation, assuming the product
ansatz for the Wigner function in order to obtain the HW entropy in Eq. (26) in the test particle
method. While the Husimi function is equivalent to the expectation value of the density ma-
trix in the coherent state and takes a value 0 ≤ fH ≤ 1, the Husimi function in the test particle
method, Eq. (24), takes a value fH ≥ 2ND/NTP at one of the test particle phase space coordi-
nates, (�k, �k) = (�k,i, �k,i), with ND = L3 being the number of degrees of freedom. Then
the required number of test particles is NTP > 2ND in order to respect the fH range. As in this
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example, in order to cover the 2ND-dimensional phase space, we need a huge number of test
particles. We cannot prepare such sufficiently large numbers of test particle configurations for
large L.

To circumvent this practical problem, we assume the product ansatz for the Wigner function,
à la the Hartree–Fock approach,

fW({�, �}) =
∏

k

f k
W(�k, �k), f k

W(�k, �k) = 1
NTP

∑
i

(2π )δ(�k − �k,i)δ(�k − �k,i),(29)

which means that there is no correlation between the wave functions of different momentum
modes. Under the product ansatz, the Husimi function is also nicely expressed as the product
of that of the single momentum mode,

fH({�, �}) =
∏

k

f k
H(�k, �k), f k

H(�k, �k) = 1
NTP

∑
i

Gk,i(�k, �k), (30)

which allows us to treat the multiple integration in Eq. (26) as the sum of double integrations,

SHW =
∑

k

Sk
HW, Sk

HW = −
∫

d�kd�k

(2π )3
f k

H(�k, �k) ln f k
H(�k, �k). (31)

The product ansatz does not necessarily hold in interacting systems, since the interaction
generates correlations between different modes. The product ansatz for fH in Eq. (30) tells us
that f k

H is a partially traced distribution function,

f k
H(�k, �k) =

∫ ∏
k′ =k

d�k′d�k′

2π
fH({�, �}). (32)

Thus, while we aim at calculating the entropy from the coarse-graining, the HW entropy with
the product ansatz given in Eq. (31) is found to overestimate it by the amount of the entropy
resulting from the loss of the correlation caused by the partial trace of fH. So far, the entropy
increase caused by the use of the product ansatz has been tested only for a few-dimensional
quantum system [39], and the entropy increase in such a case is found to be around 20% of
that from only the coarse-graining. However, the product ansatz is a kind of a mean-field ap-
proximation like the Hartree(–Fock) approximation and is expected to provide a good approx-
imation for a system with large degrees of freedom, such as a highly occupied system, where
fluctuations should be small.

3.3 Numerical results
Here we show the numerical results of the time evolution of the HW entropy of the scalar field
theory using the product ansatz with a coupling constant λ = 1 on a 163 lattice with a periodic
boundary condition. The initial positions of test particles in the phase space are generated
according to the initial Wigner function given in Eq. (17), where the initial macroscopic fields
(�̄k, �̄k) are given so as to satisfy the following simple initial condition:

�̄(x) = 5 sin
(π

4
(x + y)

)
, �̄(x) = 0. (33)

The classical equation of motion for each test particle is solved by leapfrog integration. The
number of test particles is taken as NTP = 160, 240, and 320.

Figure 1 shows the evolution of SsTP
HW, SpTP

HW, and SaTP
HW per degrees of freedom at NTP =

160, 240, and 320. It is found that SsTP
HW < SpTP

HW always holds and the difference between SsTP
HW

and SpTP
HW becomes smaller as NTP increases, which is consistent with the inequality shown in

Eq. (27). Moreover, the NTP dependence of SaTP
HW at NTP = 160, 240, and 320 is much smaller
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Fig. 1. The time evolution of the HW entropy of a scalar field with λ = 1 on a 163 lattice. The red, blue,
and green lines show the results for NTP = 160, 240, and 320, respectively. The lines with circles, triangles,
and no symbols show the HW entropy evaluated by the sTP method (SsTP

HW), the pTP method (SpTP
HW), and

their average (SaTP
HW), respectively.

than those for SsTP
HW and SpTP

HW, and is only less than 2%, which indicates that the equality shown
in Eq. (28) holds. In what follows, we adopt SaTP

HW as the estimation of SHW, SHW = SaTP
HW.

The time evolution of the HW entropy shows the relaxation processes from a coherent state
to thermal equilibrium. At the initial time t = 0, SHW starts from unity, which reflects that the
initial system is given by a coherent state. One sees that SHW first increases rapidly, then shows
only a gradual increase, and finally reaches some value and hardly changes. The saturation of
SHW indicates that the system reaches thermal equilibrium. The final value of SHW may be the
HW entropy in the thermal equilibrium in the classical limit, which is estimated as

Scl.eq.

HW ∼ 3.1. (34)

To compare with the thermal HW entropy shown in Eq. (34), we consider the classical Gibbs
ensemble of the free field,

f cl.eq.

W ({�, �})|λ=0 ∝ e−Hfree/T =
∏

k

exp
[
−ω2

k�
2
k + �2

k

2T

]
, (35)

which gives thermal expectation values of observables in the classical limit at λ = 0. Then, we
get the Husimi function,

f cl.eq.

H ({�, �, ω})|λ=0 ∝
∏

k

exp
[
− ω2

k�
2
k + �2

k

2(T + ωk/2)

]
, (36)

and the HW entropy,

Scl.eq.

HW |λ=0 =
∑

k

[
1 + ln

(
T + ωk/2

ωk

)]
. (37)

Assuming that the system is in thermal equilibrium after the HW entropy stops increasing,
we extract the temperature of the system through the equipartition relation 〈π (x)2〉 = T
that holds in thermal equilibrium in the classical limit. By substituting the numerically ex-
tracted temperature T = 20 into Eq. (37), we obtain Scl.eq.

HW |λ=0 at the same temperature as

our simulation, Scl.eq.

HW

∣∣∣
λ=0,T=20

∼ 3.2. This theoretical estimate and our numerical estimation

Scl.eq.

HW

∣∣∣
λ=1,T=20

∼ 3.1 in Eq. (34) agree well with each other, and this indicates that our simula-

tion parameter at λ = 1 describes the relaxation to thermal equilibrium in the weak-coupling
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region of the theory. Note that since the HW entropy shown in Eq. (37) is based on the clas-
sical thermal equilibrium distribution, its entropy density has UV divergence in the contin-
uum limit. To circumvent this problem, it is useful to use a framework that can perturbatively
take account of higher-order quantum effects, including quantum statistical properties, such
as the kinetic theory [50] and the two-particle irreducible (2PI) effective action approach [51–
53]. Aside from these descriptions, several improved classical field methods have been proposed
to manage the UV divergence: introducing counterterms [54–56], integrating high-momentum
modes assumed to be a heat bath [57,58], taking account of the explicit coupling of fields and
particles [59,60], and considering a classical field theory with a quantum statistical nature [61].

4. Husimi–Wehrl entropy of the Yang–Mills field in an expanding geometry
Here we investigate the dynamical production of the HW entropy in the semiclassical time evo-
lution of the SU(2) Yang–Mills field in the expanding geometry. We also compute the pressure
and particle number, and discuss the relation between the HW entropy and them. We make all
the quantities dimensionless normalizing with the transverse spatial lattice spacing a, and the
η-direction gauge field Aη is normalized by the spatial lattice spacing aη in the η-direction.

4.1 Formulation
The evolution of the longitudinally expanding system is discussed using the τ–η coordinate(
xτ , x1, x2, xη

) =
(
τ = √

t2 − z2, x, y, η = 1
2 ln t+z

t−z

)
with the metric gμν = diag(1, −1, −1,

−τ 2). We consider a non-compact Hamiltonian in the Fock–Schwinger gauge Aτ = 0 on an
L2

⊥ × Lη lattice,

H = 1
2aητ

∑
a,x

[(
Êa1(x)2 + Êa2(x)2 + B̂a1(x)2 + B̂a2(x)2) + (aητ )2 (

Êaη(x)2 + B̂aη(x)2)] .

(38)

The color electric and color magnetic fields are defined as

Êai(x) = aητ∂τ Âa
i (x) (i = 1, 2), Êaη(x) = 1

aητ
∂τ Âa

η(x), (39)

B̂ai(x) = 1
2
εi jk

[
∂F

j Âa
k(x) − ∂F

k Âa
j (x) − g2

4
f abc

(
Âb

j (x) + Âb
j (x + k̂)

) (
Âc

k(x) + Âc
k(x + ĵ)

)]
× (i = 1, 2, η), (40)

where î is the unit vector in the i-direction on the lattice. Here we show the expression of
the gauge field in terms of the annihilation and creation operators for the free Yang–Mills
field [42,62], which is shown in Appendix A,

Âa
μ(x) = 1√

L2
⊥Lη

∑
λ,k

(
âaλ

k Ãλ
μ,k(τ )ei(k⊥·x⊥+νη) + h.c.

)
, (41)

Ã1
μ,k(τ ) = i

ωk⊥

√
π

4aη

e
π |ν̃|
2aη (0, k̃2, k̃1, 0)H (2)

i|ν̃|/aη
(ωk⊥τ ), (42)

Ã2
μ,k(τ ) = − ν̃∗

aηωk⊥

√
π

4aη

e
π |ν̃|
2aη

(
0, k̃1α

(2)
i|ν̃|/aη

(ωk⊥τ ), k̃2α
(2)
i|ν̃|/aη

(ωk⊥τ ), −a2
η

ν̃∗ β
(2)
i|ν̃|/aη

(ωk⊥τ )

)
, (43)

α
(2)
i|ν̃|/aη

(ωk⊥τ ) =
∫ ωk⊥ τ

ωk⊥ τ0

dz
1
z

H (2)
i|ν̃|/aη

(z) − ωk⊥τ0

(|ν̃|/aη )2 + (ωk⊥τ0)2
Ḣ (2)

i|ν̃|/aη
(ωk⊥τ0), (44)
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β
(2)
i|ν̃|/aη

(ωk⊥τ ) =
∫ ωk⊥ τ

ωk⊥τ0

dzzH (2)
i|ν̃|/aη

(z) − (ωk⊥τ0)3

(|ν̃|/aη )2 + (ωk⊥τ0)2
Ḣ (2)

i|ν̃|/aη
(ωk⊥τ0), (45)

where ωk⊥ = 2
√

sin2 ( k1
2 ) + sin2 ( k2

2 ) is a transverse frequency on the lattice; k̃i = 2ei ki
2 sin ki

2 (i =
1, 2) and ν̃ = 2ei ν

2 sin ν
2 are the discrete Fourier transforms of the forward difference operators

in the i-direction and η-direction, ∂F
i and ∂F

η , on the lattice; H(2) is the Hankel function of the
second kind; and τ 0 is the initial proper time in our simulations. Here the residual gauge degrees
of freedom are fixed by the Coulomb type gauge condition,

(
∂1A1 + ∂2A2 + τ−2∂ηAη

) ∣∣∣
τ=τ0

=
0 [42]. Then the electric field, Ê , and the free part of the magnetic field, B̂0, can also be expressed
in terms of âaλ

k ,

Êai(x) = 1√
L2

⊥Lη

∑
λ,k

(
âaλ

k Eλ,i
k (τ )ei(k⊥·x⊥+νη) + h.c.

)
, (46)

B̂ai
0 (x) = εi jk∂F

j Ak(x) = 1√
L2

⊥Lη

∑
λ,k

(
âaλ

k Bλ,i
k (τ )ei(k⊥·x⊥+νη) + h.c.

)
, (47)

E1,i
k (τ ) = Ḣ (2)

i|ν̃|/aη
(ωk⊥τ )ε1,i

k , E2,i
k (τ ) = H (2)

i|ν̃|/aη
(ωk⊥τ )ε2,i

k , (48)

B1,i
k (τ ) = H (2)

i|ν̃|/aη
(ωk⊥τ )ε2,i∗

k , B2,i
k (τ ) = Ḣ (2)

i|ν̃|/aη
(ωk⊥τ )ε1,i∗

k , (49)

ε1,i
k = iaητ

√
π

4aη

e
π |ν̃|
2aη (k̃∗

2, −k̃∗
1, 0), ε2,i

k = − ν̃∗

ωk⊥

√
π

4aη

e
π |ν̃|
2aη

(
k̃1, k̃2, −

ω2
k⊥

ν̃∗

)
. (50)

By substituting Eqs. (46) and (47) for the electric field and magnetic field in Eq. (38) respec-
tively, we can obtain the free part of the Hamiltonian as

Hfree =
∑
a,λ,k

|�k|
(

âaλ†
k âaλ

k + 1
2

)
+ 1

2

∑
a,λ,k

(
�kâaλ

k âaλ
−k + �∗

kâaλ†
k âaλ†

−k

)
, (51)

�k = πτ

4
e

π |ν̃|
aη

(
(ω2

k⊥ + |ν̃/(τaη )|2)
{

H (2)
i|ν̃|/aη

(ωk⊥τ )
}2

+ (ωk⊥ )2
{

Ḣ (2)
i|ν̃|/aη

(ωk⊥τ )
}2

)
. (52)

The first term of Eq. (51) is asymptotically regarded as a set of harmonic oscillators,∑
a,λ,k

|�k|âaλ†
k âaλ

k −→
∑
a,λ,k

ωk⊥ âaλ†
k âaλ

k , (53)

and thus we can define canonical variables that are asymptotically regarded as harmonic oscil-
lators,

�̂aλ
k ≡ 1√

2ωk⊥

[
âaλ

k + âaλ†
k

]
, (54)

�̂aλ
k ≡ −i

√
ωk⊥

2

[
âaλ

k − âaλ†
k

]
. (55)

In the same way as the scalar field, we consider the Wigner function for newly defined canon-
ical variables {�̂, �̂}, whose initial condition is given by the product of coherent states of each
mode, |{αa,λ

k }〉 = ∏
a,λ,k |αa,λ

k 〉,

fW({�, �}) =
∏
a,λ,k

∫
d�′aλ

k

〈
�aλ

k + �′aλ
k

2

∣∣∣αaλ
k

〉 〈
αaλ

k

∣∣∣�aλ
k − �′aλ

k

2

〉
e−i�aλ

k �′aλ
k . (56)

We also consider the Husimi function and HW entropy for {�̂, �̂} with smearing parameters
that are taken as the same values as the asymptotic eigenfrequencies {ωk⊥}, fH({�, �, ω⊥}) and
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SHW({ω⊥}). Later, we omit {ω⊥} in the expression of the HW entropy of the Yang–Mills field:
SHW.

4.2 Numerical results
Here we investigate the semiclassical evolution of the pressure, the HW entropy, and the dis-
tribution function of particles in the Yang–Mills theory on a 322 × 420 lattice with a periodic
boundary condition. The coupling constant is taken as g = 0.1 and 0.2 and the longitudinal size
of the system is taken as Vη( = Lη × aη) = 2. The test particle positions in the phase space at τ

= τ 0 are generated randomly according to the initial Wigner function shown in Eq. (56). It is
shown in the next paragraph how to give the initial macroscopic fields (�̄aλ

k , �̄aλ
k ). The classical

equation of motion for each test particle is solved by leapfrog integration. The number of test
particles is taken as NTP = 96.

We prepare the initial macroscopic fields so as to mimic the glasma initial condition [9–13]
as follows: the color electric and color magnetic fields are boost invariant and parallel to the
collision axis as ∣∣〈âaλ

k

〉∣∣2
∣∣∣
τ=τ0

= δa,1

(
Vη

2π
δν,0

)
�

αs
· ∣∣ f (ωk⊥ )

∣∣2
, (57)

〈
âaλ

k

〉 ∣∣∣
τ=τ0

=
〈
âaλ†

−k

〉 ∣∣∣
τ=τ0

, (58)

where � is an arbitrary free parameter and f (ωk⊥ ) is the transverse momentum distribution.
The boost invariance is guaranteed by Vη

2π
δν,0, which is the lattice representation of the delta

function δ(ν). The phase of
〈
âaλ

k

〉
varies randomly. Since the direction of

〈
âaλ

k

〉
in the color space

is toward the 1-direction, the gauge field is also directed toward the 1-direction in the color
space,

〈
Âλ

k

〉 ∝ δa,1. Thus, the initial macroscopic magnetic field turns out to be equal to its free

part shown in Eq. (47),
〈
B̂
〉 ∣∣∣

τ=τ0

= 〈
B̂0

〉 ∣∣∣
τ=τ0

. Here, we assume that all the contributions of fluc-

tuations in
〈
B̂
〉 ∣∣∣

τ=τ0

are subtracted as the vacuum contribution or other divergences. Then, by

substituting Eq. (57) into Eqs. (47) and (46) and utilizing Eq. (58), we obtain the analytic ex-
pression of nonzero parts of

〈
B̂k

〉
and

〈
Êk

〉
as

〈
Êa1

k

〉 ∣∣∣
a=1,ν=0

= 〈
â1λ

k

〉 ∣∣∣
τ=τ0

·
(

iaητ0k̃∗
2

)√
π

4aη

Re
(

Ḣ (2)
0 (ωk⊥τ0)

)
, (59)

〈
Êa2

k

〉 ∣∣∣
a=1,ν=0

= 〈
â1λ

k

〉 ∣∣∣
τ=τ0

·
(

iaητ0k̃∗
1

)√
π

4aη

Re
(

Ḣ (2)
0 (ωk⊥τ0)

)
, (60)

〈
Êaη

k

〉 ∣∣∣
a=1,ν=0

= 〈
â2λ

k

〉 ∣∣∣
τ=τ0

· ωk⊥

√
π

4aη

Re
(

H (2)
0 (ωk⊥τ0)

)
, (61)

〈
B̂a1

k

〉 ∣∣∣
a=1,ν=0

= 〈
â2λ

k

〉 ∣∣∣
τ=τ0

·
(

iaητ0k̃∗
2

)∗ √
π

4aη

Re
(

Ḣ (2)
0 (ωk⊥τ0)

)
, (62)

〈
B̂a2

k

〉 ∣∣∣
a=1,ν=0

= 〈
â2λ

k

〉 ∣∣∣
τ=τ0

·
(

iaητ0k̃∗
1

)∗ √
π

4aη

Re
(

Ḣ (2)
0 (ωk⊥τ0)

)
, (63)

〈
B̂aη

k

〉 ∣∣∣
a=1,ν=0

= 〈
â1λ

k

〉 ∣∣∣
τ=τ0

· ωk⊥

√
π

4aη

Re
(

H (2)
0 (ωk⊥τ0)

)
. (64)

On account of the formula

ReH (2)
0 (z) = 1 − z2

4
+ O(z3),
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the transverse components of
〈
B̂k

〉
and

〈
Êk

〉
are proportional to (ωk⊥τ0)2 when ωk⊥τ0 � 1, while

the longitudinal components of
〈
B̂k

〉
and

〈
Êk

〉
are independent of ωk⊥τ0 in this limit. Therefore,

when ωk⊥τ0 � 1, the transverse components are much smaller than the longitudinal compo-
nents.

We consider two different profiles of the initial macroscopic fields, which are distinguished
from each other by different momentum distributions f (ωk⊥ ): One f (ωk⊥ ) is given by a step
function, while the other is given by a difference of Gaussians as adopted in Ref. [63],

Type 1 | f1(ωk⊥ )|2 = �(Qs − ωk⊥ ), (65)

Type 2 | f2(ωk⊥ )|2 = Q2
s

2ω2
k⊥

[
e−k2

⊥/2Q2
s − e−k2

⊥/Q2
s

]
, (66)

where Qs characterizes the typical transverse momentum. We take Qs as Qsτ 0 = 0.1 � 1, which
implies that the macroscopic color electric and color magnetic fields are parallel to the collision
axis.

4.2.1 Pressure isotropization. The energy–momentum (EM) tensor is defined as

T̂μν (x) ≡ −gκσ F̂ a
μκ (x)F̂ a

νσ (x) + 1
4

gμνgαβgγωF̂ a
αγ (x)F̂ a

βω(x). (67)

To define the pressure and the energy density in the expanding geometry, two types of subtrac-
tion are necessary [38],

ε ≡ 1
V

∑
x

gττ

〈
T̂ ττ (x)

〉
mac+fluc − 1

V

∑
x

gττ

〈
T̂ ττ (x)

〉
vac − α

τ 2
, (68)

Pi ≡ 1
V

∑
x

gii
〈
T̂ ii(x)

〉
mac+fluc − 1

V

∑
x

gii
〈
T̂ ii(x)

〉
vac − δi,η

α

τ 2
, (69)

where 〈〉mac + fluc denotes the average in the test particles with the initial conditions given in
Eq. (65) or Eq. (66), 〈〉vac denotes the vacuum contribution, and α/τ 2 is the remaining divergence
after subtracting the vacuum contribution; see Appendix B for details.

In actual calculations, the vacuum contribution
〈
T̂ μμ

〉
vac is evaluated by the test parti-

cle method with vanishing initial macroscopic fields,
〈
�̂aλ

k

〉 ∣∣∣
τ=τ0

= 〈
�̂aλ

k

〉 ∣∣∣
τ=τ0

= 0. Following

Ref. [38], the remaining divergent part α/τ 2 is extracted phenomenologically by a fitting proce-
dure as shown in Appendix B.

Figure 2 shows the time evolution of the transverse and longitudinal pressures, P⊥ and Pη,
normalized by the energy density ε at g = 0.1 and 0.2 for the two types of initial conditions.
It is noted that the error bars are large at small Qsτ because large subtractions are needed. In
the initial stage with Qsτ < (1–2), Pη is negative, which reflects that the macroscopic color elec-
tric and magnetic fields are parallel to the collision axis in the earliest stage. Then, until Qsτ

< (2–3), P⊥ and Pη tend to come closer, and there is no g dependence of their values at this
period. In the later stage with Qsτ > (2–3), P⊥/ε and Pη/ε gradually approach some different
constant values, respectively, with oscillatory behaviors, the amplitudes of which become tiny
in the large-Qsτ region. The ratio Pη/P⊥ in the final stage clearly deviates from unity; although
it slightly gets closer for larger g( = 0.2) the difference between them is still large, which means
that isotropization of the pressure is not achieved with g ≤ 0.2. In a previous study based on the
McLerran–Venugopalan model [38], such pressure isotropization was found at g = 0.5 and not
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Fig. 2. The time evolution of the transverse and longitudinal pressures, P⊥ and Pη, per energy density
ε of Yang–Mills theory in the expanding geometry on a 322 × 420 lattice, with g = 0.1 and 0.2; the
smearing parameter σ is set by a constraint σ /g2 = 1000. The left and right panels show the results with
initial conditions of types 1 and 2, respectively. The number of test particles is NTP = 96. The lines with
circles and triangles show P⊥/ε and Pη/ε, respectively.

Fig. 3. The time evolution of the HW entropy SHW per degrees of freedom with the initial conditions of
type 1 (left) and type 2 (right). The other calculational conditions are the same as in Fig. 2.

at g = 0.1. Therefore, our results do not contradict theirs. It is noted that the nearly constant
behavior of P⊥/Pη at later times shown in Fig. 2 seems consistent with the kinetics results [64].
Such consistency may imply that the semiclassical description and the kinetic description com-
monly take into account one of the essential processes in the Yang–Mills theory [65,66].

4.2.2 Creation and growth of (Husimi–Wehrl) entropy. In Fig. 3, we show the time evolution
of SHW = SaTP

HW per degrees of freedom with g = 0.1 and 0.2 for the two types of initial condi-
tions. Firstly, we remark that SHW initially agrees with unity with an error of less than 0.01%,
which is in accordance with the fact that the initial conditions are prepared as a coherent state.
In the earliest stage with Qsτ < (2–3), the HW entropy hardly increases, and then in the in-
termediate stage with Qsτ < (20–30), it shows rapid growth. Then it still shows an increase
on average but with a smaller growth rate and an oscillatory behavior imposed. For both of
the initial conditions, the larger the coupling constant, the larger the growth rate of the HW
entropy. In Refs. [39,40], it was shown in the semiclassical simulation with the non-expanding ge-
ometry that in the last stage where the HW entropy production has been saturated with a small
production speed, the Yang–Mills field configuration is already close to that in equilibrium. It
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Fig. 4. The HW entropy increase after time evolution, �SHW = SHW − Ndof , in several longitudinal
momentum intervals with g = 0.1 and 0.2 for the two types of initial conditions. The bin size in the
longitudinal momentum is |ν̃|/�|ν̃| = 0.2. The left (right) panels show the numerical results with g =
0.1(0.2) and the upper (lower) panels are for the type 1 (type 2) initial conditions.

should be noticed, however, that the similar slow production rate of the HW entropy seen in
Fig. 3 does not readily mean that the system is near equilibrium since the large anisotropy of
the pressure still remains in the present case with an expanding geometry, which may account
for, at least partly, the slow production rate of the entropy, which is actually caused by the fact
that the system is still in a nonequilibrium state.

4.2.3 Relationship between particle distribution and Husimi–Wehrl entropy. To understand
the underlying mechanism of the HW entropy production, we investigate the time evolution of
the particle number as well as the HW entropy piecewise with respect to different longitudinal
momentum modes with an interval |ν̃|/�|ν̃| = 0.2, where �|ν̃| denotes the ultraviolet cutoff
of the momentum. Figure 4 shows the entropy increase after time evolution �SHW = SHW

− Ndof in several longitudinal momentum intervals with g = 0.1 and 0.2 for the two types of
initial conditions. We find that the large HW entropy is first produced in the lowest longitudinal
momentum interval, |ν̃|/�|ν̃| < 0.2, which is followed by a slow increase of the HW entropy in
the higher longitudinal momentum intervals. Thus, the rapid production of the HW entropy
shown in Fig. 3 occurs in the low longitudinal momentum modes.

To quantify the above observation, we analyze the effective particle numbers, since one of the
proposed mechanisms of thermalization is the decay of the Yang–Mills field to particles. We
define an effective particle number Nν as a function of the longitudinal momentum ν integrated
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Fig. 5. The time evolution of the effective particle number distribution Nν as a function of the longitu-
dinal momentum ν̃ as defined in Eq. (70) with the two initial conditions and coupling constants g = 0.1
and 0.2. The upper-left and upper-right panels show the numerical results for the type 1 initial condition
with g = 0.1 and 0.2, respectively, while the lower panels show those for the type 2 initial condition with
the same g.

over the transverse momenta as

Nν ≡
∑

k⊥,λ,a

{〈(
âaλ†

k −
〈
âaλ†

k

〉) (
âaλ

k − 〈
âaλ

k

〉) − 1
2

〉}

=
∑

k⊥,λ,a

{〈
âaλ†

k âaλ
k

〉
−

〈
âaλ†

k

〉 〈
âaλ

k

〉 − 1
2

}
. (70)

Here we regard the creation and annihilation operators subtracted with their expectation values
as those operators for the particles under the background classical field. This will be a reason-
able description, since the particle number is counted as zero for a coherent state, where the HW
entropy takes the minimum value. It should be noted that the last term of −1/2 comes from the
semiclassical treatment and the uncertainty relation. In a semiclassical treatment, we cannot
distinguish the order of the operators and the expectation value of the symmetrized operator
(Weyl product) is observed. For example, the expectation value of the number operator 〈â†â〉 is
calculated as 〈(â†â + ââ†)/2〉 = 〈(ω2x̂2 + p̂2)/(2ω)〉 for a harmonic oscillator, and its minimum
value is 1/2 as long as the distribution respects the uncertainty principle. Thus a nonzero Nν

signals entropy production, when we start from a coherent state initial condition.
In Fig. 5, we show the effective particle number as a function of the longitudinal momentum

ν̃ at several values of τ . At the initial state, which is set up to be a coherent state, we find
Nν = 0 (not shown in the figure) as expected. In the earlier stage with Qsτ = 10 (red curves),
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particles with far lower longitudinal momenta dominate over those in other momentum regions.
At later times, particles with higher longitudinal momenta start to increase. The early entropy
production at lower longitudinal momenta shown before is thus naturally understood to be
associated with low momentum particle production.

Comparing Figs. 4 and 5, we find that particle creation is associated with HW entropy pro-
duction, and there are two distinct stages in the evolution of fields. In the first stage, the particle
number in the low longitudinal momentum region grows and the HW entropy from the low lon-
gitudinal momentum modes increases rapidly. In the second stage, the effective particle number
at higher longitudinal momenta grows and the HW entropy of higher longitudinal momentum
modes increases slowly.

5. Summary
We have investigated the possible thermalization process of the highly occupied and weakly
coupled Yang–Mills fields in an expanding geometry through a computation of the entropy,
as given by the Husimi–Wehrl (HW) entropy, (an)isotropization of the pressure, and the par-
ticle production within the semiclassical approximation: The time evolution of the system was
obtained by solving the equation of motion of the Wigner function with use of the test par-
ticle method; the Husimi function is obtained by smearing the evaluated Wigner function in
the phase space. The initial condition of the simulation was constructed so as to mimic the
glasma initial condition [9–13], where the macroscopic color electric and color magnetic fields
are boost invariant and parallel to the collisional axis. As such, we have considered two types
of initial conditions whose momentum distributions are different from each other.

To obtain the HW entropy SHW defined in terms of the Husimi function, it was first calcu-
lated by two different test particle methods, one is called the “single test particle method (sTP)”
and the other is called the “parallel test particle method (pTP)”. The resultant values thus ob-
tained are denoted by SpTP

HW and SsTP
HW, respectively, and are shown to satisfy the inequalities

SsTP
HW < SHW < SpTP

HW. We have shown that the average value of them, SaTP
HW, turns out to give

an excellent estimate of SHW with numerical errors of O(N−2
TP ) with NTP being the number of

test particles, SaTP
HW = SHW + O(N−2

TP ), while SsTP
HW and SpTP

HW have numerical errors of O(N−1
TP ),

SsTP(pTP)
HW = SHW + O(N−1

TP ). Nevertheless, to circumvent the computational difficulty in calcu-
lating the multiple integration in the HW entropy. we have taken the product ansatz for the
Wigner function.

Before proceeding with the study of the Yang–Mills field in the expanding geometry, the
above computational method was checked by applying it to the massless φ4 scalar theory in
Minkowski spacetime. The numerical results in the scalar theory have indicated that SsTP

HW <

SHW < SpTP
HW and SaTP

HW ∼ SHW nicely hold. It has been found that SHW increases rapidly, then
the growth rate becomes moderate, and finally stops increasing and keeps almost a constant
value. The saturation of SHW indicates the achievement of equilibration of the system.

We have investigated the dynamical production of the HW entropy in the semiclassical evolu-
tion of the Yang–Mills field in the expanding geometry at g = 0.1 and 0.2. We have also shown
the semiclassical evolution of the transverse and longitudinal pressures, P⊥ and Pη. Up to Qsτ

< (2–3), P⊥ and Pη have been found to approach each other, and there is no g dependence in this
time region. In the later stage with Qsτ > (2–3), P⊥ and Pη have been found to approach some
constant values slowly showing oscillatory behavior. The amplitude of the oscillation becomes
smaller at large Qsτ . The longitudinal pressure relative to the transverse pressure, Pη/P⊥, has
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been found to come slightly closer as g increases, but pressure isotropization was not achieved,
which is not in contradiction with a previous work [38] where a much larger coupling constant
was used. After the earliest stage with Qsτ < (2–3), where the HW entropy in the expanding
geometry hardly increases, it grows rapidly in the following time range, Qsτ < (20–30), and
then increases more slowly in the later stage with Qsτ > (20–30). For both types of initial con-
ditions, the growth rate of the HW entropy at g = 0.2 is larger than that at g = 0.1. The slow
HW entropy production stage does not readily mean that the system is near equilibrium since
the large anisotropy of the pressure still remains in our simulations. Such a slow production far
from equilibrium is expected to be caused by the longitudinal expansion effect.

We have defined the effective particle number so that it represents the particle number created
due to the deviations from the coherent state and have compared its time evolution and the time
evolution of the HW entropy piecewise with respect to the longitudinal momentum mode. We
have found that the effective particle number and the HW entropy production are associated
with each other, and there are two distinct time stages in the time evolution of the Yang–Mills
fields: In the first stage, the particle number distribution in the low longitudinal momentum
region grows and the HW entropy of the longitudinal low momentum modes increases rapidly,
while in the second stage the particle number distribution at higher longitudinal momentum
grows and the HW entropy of corresponding modes increases slowly.

Since our choice of the initial conditions only mimics the glasma state, we should directly
take the McLerran–Venugopalan model in order to make the model more realistic [13]. It is
also a rather urgent subject to perform calculations at larger coupling constants such as g =
0.5, which is used in the previous calculation [38], thereby clarifying the coupling dependence
of the way of the thermalization process.
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Appendix A. Second quantization of a free gauge field in an expanding geometry
In this appendix, we present the second-quantized formulation of a free gauge field in
the τ–η coordinate, which is found convenient to analyze fluctuations in the expanding
glasma [42,62,67]. This appendix refers to Ref. [42].

First, we begin by showing the way of the second quantization in the continuum limit. In
this paragraph only, none of the quantities are normalized by lattice spacings. The equation of
motion for the free gauge field [D, F] = 0 describing the τ evolution reads

∂1∂τ A1(x) + ∂2∂τ A2(x) + 1
τ 2

∂η∂τ Aη(x) = 0, (A1)(
∂2
τ + 1

τ
∂τ − ∂2

1 − ∂2
2 − ∂2

η

τ 2

)
Ai(x) + ∂i

(
∂1A1(x) + ∂2A2(x) + 1

τ 2
∂ηAη(X )

)
= 0, (A2)
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(
∂2
τ − 1

τ
∂τ − ∂2

1 − ∂2
2 − ∂2

η

τ 2

)
Aη(x) + ∂η

(
∂1A1(x) + ∂2A2(x) + 1

τ 2
∂ηAη(X )

)
= 0. (A3)

For the Fourier modes with finite transverse momentum mode, the general solution satisfying
the Coulomb type gauge condition,

(
∂1A1 + ∂2A2 + τ−2∂ηAη

) ∣∣∣
τ=τ0

= 0, is expressed in terms of

the Hankel function,

Aμ =
∑
λ=1,2

∫
d3k

(2π )3

(
ξ

λ,(1)
k A(−)λ

μ,k (τ )ei(k⊥·x⊥+νη) + ξ
λ,(2)
k A(+)λ

μ,k (τ )ei(k⊥·x⊥+νη)
)

, (A4)

A(−/+ )1
μ,k (τ ) = i

k⊥
(0, k2, −k1, 0)H (1/2 )

iν (k⊥τ ), (A5)

A(−/+ )2
μ,k (τ ) = − ν

k⊥

(
0, k1α

(1/2 )
iν (k⊥τ ), k2α

(1/2 )
iν (k⊥τ ), −1

ν
β

(1/2 )
iν (k⊥τ )

)
, (A6)

α
(1/2 )
iν (k⊥τ ) =

∫ k⊥τ

k⊥τ0

dz
1
z

H (1/2 )
iν (z) − k⊥τ0

ν2 + (k⊥τ0)2
Ḣ (1/2 )

iν (k⊥τ0), (A7)

β
(1/2 )
iν (k⊥τ ) =

∫ k⊥τ

k⊥τ0

dzzH (1/2 )
iν (z) − (k⊥τ0)3

ν2 + (k⊥τ0)2
Ḣ (1/2 )

iν (k⊥τ0), (A8)

where k⊥ =
√

k2
1 + k2

2 is a transverse momentum and ξλ,i
k is a given constant. The solution,

A(i)λ
μ,k(τ )ei(k⊥·x⊥+νη), is orthogonal to other solutions with different indexes (λ′, i′, k′) = (λ, i, k),(

A(i)λ
μ,k(τ )eik·x,A(i′ )λ

μ′,k′ (τ )eik′·x
)

= 0, (A9)

with respect to a scalar product defined as(
fμ(x), gμ(x)

) = −i
∫

d3xτgμν
(

f ∗
μ(x)∂τ gν (x) − gν (x)∂τ f ∗

μ(x)
)
. (A10)

If (λ′, i′, k′) = (λ, i, k), the scalar product does not vanish and is invariant under the τ evolution
according to Eqs. (A1)–(A3). Since the second kind of Hankel function asymptotically behaves
as the positive frequency mode,

H (i)
iν (k⊥τ ) →

√
2

πk⊥τ
exp

[
−i

(
k⊥τ − π

4

)
− πν

2

]
(k⊥τ → ∞), (A11)

we can obtain the expression of the second-quantized gauge field as a linear combination of
A(+)1

μ (τ, k) and A(+)2
μ (τ, k),

Ai(x) =
∑

λ

∫
d3k

(2π )3

(
âλ

kAλ
μ,k(τ )ei(k⊥·x⊥+νη) + h.c.

)
, (A12)

Aλ
μ,k(τ ) =

√
π

4
e

π |ν|
2 A(+)λ

μ,k (τ ), (A13)

[
âλ

k, âλ′†
k′

]
= (2π )3δλ,λ′δ(k − k′). (A14)

Here we determine the normalization constant in front of A(+)λ
μ,k (τ ) in Eq. (A13) so as to satisfy

the orthonormal condition,(√
π

4
e

π |ν|
2 A(+)λ

μ,k (τ )ei(k⊥·x⊥+νη),

√
π

4
e

π |ν′ |
2 A(+)λ′

μ,k′
⊥,ν ′ (τ )ei(k′

⊥·x⊥+ν ′η)
)

= (2π )3δλ,λ′δ(k⊥ − k′
⊥)δ(ν − ν ′). (A15)
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The procedure of the second quantization using such a scalar product is standard in quantum
field theory in curved spacetime. In our analysis, we only treat the finite transverse momentum
modes since the contribution of the 0 transverse mode decreases as the transverse size of the
system increases.

Next, we show the second quantization of the free gauge field on a space lattice with contin-
uous time. The equation of motion reads

∂B
1 ∂τ A1(x) + ∂B

2 ∂τ A2(x) + 1
a2

ητ
2
∂B
η ∂τ Aη(x) = 0, (A16)(

∂2
τ + 1

τ
∂τ − ∂B

1 ∂F
1 − ∂B

2 ∂F
2 − ∂B

η ∂F
η

a2
ητ

2

)
Ai(x)

+ ∂i

(
∂B

1 A1(x) + ∂B
2 A2(x) + 1

a2
ητ

2
∂B
η Aη(X )

)
= 0, (A17)(

∂2
τ − 1

τ
∂τ − ∂B

1 ∂F
1 − ∂B

2 ∂F
2 − ∂B

η ∂F
η

a2
ητ

2

)
Aη(x)

+ ∂i

(
∂B

1 A1(x) + ∂B
2 A2(x) + 1

a2
ητ

2
∂B
η Aη(X )

)
= 0, (A18)

where ∂B
i denotes a backward difference operator in the i-direction. In much the same way as

the continuum case, we can get the expression of the second-quantized gauge field as

Ai(x) = 1√
L2

⊥Lη

∑
λ,k

(
âλ

kÃλ
μ,k(τ )ei(k⊥·x⊥+νη) + h.c.

)
, (A19)

[
âλ

k, âλ′†
k

]
= δλ,λ′δk,k′, (A20)

Ã1
μ,k(τ ) = i

ωk⊥

√
π

4aη

e
π |ν̃|
2aη (0, k̃2, k̃1, 0)H (2)

i|ν̃|/aη
(ωk⊥τ ), (A21)

Ã2
μ,k(τ ) = − ν̃∗

aηωk⊥

√
π

4aη

e
π |ν̃|
2aη

(
0, k̃1α

(2)
i|ν̃|/aη

(ωk⊥τ ), k̃2α
(2)
i|ν̃|/aη

(ωk⊥τ ), −a2
η

ν̃∗ β
(2)
i|ν̃|/aη

(ωk⊥τ )

)
.

(A22)

By utilizing this expression, the electric field and the free part of the magnetic field are also
written in terms of the annihilation and creation operators,

Ê i(x) = 1√
L2

⊥Lη

∑
λ,k

(
âλ

kEλ,i
k (τ )ei(k⊥·x⊥+νη) + h.c.

)
, (A23)

B̂i
0(x) = 1

2
εi jk∂F

j Ak(x) = 1√
L2

⊥Lη

∑
λ,k

(
âλ

kBλ,i
k (τ )ei(k⊥·x⊥+νη) + h.c.

)
, (A24)

E1,i
k (τ ) = Ḣ (2)

i|ν̃|/aη
(ωk⊥τ )ε1,i

k , E2,i
k (τ ) = H (2)

i|ν̃|/aη
(ωk⊥τ )ε2,i

k , (A25)

B1,i
k (τ ) = H (2)

i|ν̃|/aη
(ωk⊥τ )ε2,i∗

k , B2,i
k (τ ) = Ḣ (2)

i|ν̃|/aη
(ωk⊥τ )ε1,i∗

k , (A26)

ε1,i
k = iaητ

√
π

4aη

e
π |ν̃|
2aη

(
k̃∗

2, −k̃∗
1, 0

)
, ε2,i

k = − ν̃∗

ωk⊥

√
π

4aη

e
π |ν̃|
2aη

(
k̃1, k̃2, −

ω2
k⊥

ν̃∗

)
. (A27)
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Solving Eqs. (A23) and (A24) with respect to âλ
k, we can write âλ

k as a linear combination of the
Fourier modes (Êk, B̂k),

â1
k = i

aηωk⊥τ

×
⎛
⎝ ω2

k⊥

ω2
k⊥ + |ν̃/(τaη )|2

Ḣ (2)∗
i|ν̃|/aη

(ωk⊥τ )

H (2)∗
i|ν̃|/aη

(ωk⊥τ )

[
B1∗

k · B0,k(τ )
] +

H (2)∗
i|ν̃|/aη

(ωk⊥τ )

Ḣ (2)∗
i|ν̃|/aη

(ωk⊥τ )

[
E1,∗

k · Ek(τ )
]⎞⎠ ,

(A28)

â2
k = i

aηωk⊥τ

×
⎛
⎝ ω2

k⊥

ω2
k⊥ + |ν̃/(τaη )|2

Ḣ (2)∗
i|ν̃|/aη

(ωk⊥τ )

H (2)∗
i|ν̃|/aη

(ωk⊥τ )

[
E2∗

k · Ek(τ )
] +

H (2)∗
i|ν̃|/aη

(ωk⊥τ )

Ḣ (2)∗
i|ν̃|/aη

(ωk⊥τ )

[
B2∗

k · B0,k(τ )
]⎞⎠ .

(A29)

In actual calculations, we use these relations to transform (A, E) to (�, �) through Eqs. (54)
and (55).

Appendix B. Divergence in pressure and energy density
In this appendix, we show the remaining divergences in the pressure and energy density after
subtracting the vacuum contribution, and discuss how to subtract them. For convenience, we
use the following notation, ()ini mac, which means the contribution of the macroscopic field part
of the initial Wigner function to a given observable at the initial time τ 0. For example, in the
case of the Fourier transforms of the color electric and color magnetic fields, (Ea

k)ini mac and
(Ba

k)ini mac have already been given in Eqs. (59)–(64). Thus, the macroscopic field contribution
to the initial pressure is given by

(Pη )ini mac ∼ −(P⊥)ini mac = − 1
V

∑
x

gii
(
T̂ ii(x)

)
ini mac

= −aητ

2

∑
a,x⊥,η

[(
Êaη(x)2)

ini mac + (
B̂aη(x)2)

ini mac

]

∼ − �

8L2
⊥αs

∑
k⊥

ω2
k⊥| fl (k⊥)|2. (B1)

In Fig. 6, we show the Qsτ 0 dependence of the initial pressure after subtracting the vacuum
contribution and the macroscopic field contribution,

P̃i = 1
V

∑
x

gii
〈
T̂ ii(x)

〉
mat+flu − 1

V

∑
x

gii
〈
T̂ ii(x)

〉
vac − (Pi)ini mac, (B2)

normalized by (Pi)ini mac at g = 0.1 and 0.2 for the two types of initial conditions. We find that∣∣P̃η/(Pη )ini mac
∣∣ diverges as (Qsτ 0)−2 since the Qsτ 0 dependence of

∣∣P̃η/(Pη )ini mac
∣∣ is reproduced

well by the fitting function fpow(Qsτ 0) = Apow/(Qsτ 0)2. We also find that
∣∣P̃⊥/(P⊥)ini mac

∣∣ diverges
as ln 2Qsτ 0 since the

∣∣P̃⊥/(P⊥)ini mac
∣∣ data lie on the fitting curve f log (Qsτ 0) = Blog ln 2(Qsτ 0) +

Clog .
Here, we briefly explain how to remove the remaining divergence at any τ based on the method

presented in Ref. [38]. As seen above, the remaining divergence in P⊥ at τ = τ 0 is a logarithmic
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Fig. B1. The Qsτ 0 dependence of the initial pressure after subtracting the vacuum contribution and
the macroscopic field contribution, P̃i = 1

V

∑
x gii

〈
T̂ ii(x)

〉
mat+flu − 1

V

∑
x gii

〈
T̂ ii(x)

〉
vac − (Pi )ini mac, nor-

malized by (Pi)ini mac. These calculations are performed at g = 0.1 and 0.2 for the two types of initial
conditions. The red (blue) line with circles shows the transverse pressure at g = 0.1(0.2). The red (blue)
line with triangular points shows the longitudinal pressure at g = 0.1(0.2). The result in the left (right)
panel is calculated with the type 1 (2) initial condition.

function of τ 0 and is much smaller than the initial macroscopic field contribution,

Blog ln2 (Qsτ0) � |(P⊥)ini mac|. (B3)

Thus, we neglect the remaining divergence in P⊥ at any τ . Then we can define the subtracted
energy density and pressure as

ε ≡ 1
V

∑
x

gττ

〈
T̂ ττ (x)

〉
mac+fluc − 1

V

∑
x

gττ

〈
T̂ ττ (x)

〉
vac − αdiv(t), (B4)

Pi ≡ 1
V

∑
x

gii
〈
T̂ ii(x)

〉
mac+fluc − 1

V

∑
x

gii
〈
T̂ ii(x)

〉
vac − δi,ηαdiv(t), (B5)

where αdiv(τ ) represents the divergence that should be removed. The energy density also has
the remaining divergence because of the relation between the energy density and pressure, ε

= P1 + P2 + Pη. By using the conservation law in the boost-invariant longitudinal (Bjorken)
expanding geometry, ∂ε/∂τ = −ε + Pη/τ , we obtain the evolution equation for α,

dαdiv

dτ
= −2αdiv

τ
. (B6)

By solving the differential equation, we find αdiv(τ ) = α/τ 2, where α is a constant. As seen
above, we can obtain α(τ 0) as α(τ 0) = Apow/(Qsτ 0)2 by the fit. Thus, we use α = Apow in the
actual calculations.

Appendix C. Evaluation by test particle methods
An integral I consisting of a function H(	) that is evaluated by test particle methods is expressed
as

I =
∫

d	F (H (	)), (C1)

where 	 denotes the phase space point under consideration. In general, H(	) evaluated with the
ith set of test particles, which is represented as Hi(	), has numerical errors dHi(	) depending
on the phase space point 	 as

Hi(	) = H (	) + dHi(	). (C2)
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Note that each H(	) that enters the integral I can be evaluated with different and independent
sets of test particles. (When all the test particle sets are identical, it is called the single test
particle method.) Then, under the condition dH

H � 1, the integral I can be expanded as a series
of dHi(	),

I =
∫

d	F (H ) +
∑

i1,i2,...,iN

∫
d	F ′1,2,...,N

i1,i2,...,iNdHi1
1 dHi2

2 , . . . , dHiN
N , (C3)

where F ′ denotes coefficients in the expansion, and 	 in the functions are omitted. We here
consider the situation where the integrals of the odd-order terms of dH disappear due to nu-
merical error cancellation as

∫
d	dH2n+1

i (	)G(	) = 0, which would be justified when positive
and negative contributions of dHi(	) equally enter in the integration as

∫
d	dHi(	) = 0 and G

is smooth enough. In such a case, only even-order terms contribute to I’s numerical errors as

I =
∫

d	F (H ) +
∑

i1,i2,...,iN∈even

∫
d	F ′1,2,...,N

i1,i2,...,iNdHi1
1 dHi2

2 · · · dHiN
N , (C4)

and the number of terms is greatly reduced.
Let us proceed with the evaluation of an HW entropy based on test particle methods. An

HW entropy S can be expressed as

S = −
∫

d	H (	) ln H (	), (C5)

with a Husimi function H(	). With the parallel test particle (pTP) method in mind, S can be
written as

S = −
∫

d	H1(	) ln H2(	)

= −
∫

d	(H (	) + dH1(	)) ln(H (	) + dH2(	)), (C6)

which is further expanded as

S = −
∫

d	H (	) ln H (	) −
∫

d	dH1(	) ln H (	) −
∫

d	dH2(	)

−
∫

d	
dH1(	)dH2(	)

H (	)
+

∫
d	

dH2
2 (	)

2H (	)
+

∫
d	

dH1(	)dH2
2 (	)

2H (	)
+ · · · , (C7)

when dH
H � 1. In the case where H(	) is a Husimi function, we have confirmed that the

equality
∫

d	H(	) = 1 numerically holds with good accuracy, which indicates that positive
and negative contributions of dHi(	) equally enter in the integration, and the integrals of
the odd-order terms of dH are expected to disappear due to numerical error cancellation
as

∫
d	dH2n+1(	)G(	) = 0, since G(	) is a function of H(	), which is a smooth Gaussian-

smeared function. Such error cancellation has been numerically confirmed at least in the cal-
culations presented in this paper, and we can leave only even-order terms of dH.

For the single test particle (sTP) method, the errors in and outside the logarithmic function
are identical (dH1 = dH2) and S leads to the form

SsTP = −
∫

d	H (	) ln H (	) −
∫

d	
dH2

2 (	)
2H (	)

. (C8)

For the parallel test particle (pTP) method, dH1 and dH2 are independent and

SpTP = −
∫

d	H (	) ln H (	) +
∫

d	
dH2

2 (	)
2H (	)

(C9)

23/26

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2022/7/073D

02/6632994 by Kyoto U
niversity Library user on 23 January 2023



PTEP 2022, 073D02 H. Matsuda et al.

holds. We finally obtain the inequality

SsTP < S < SpTP. (C10)

When the test particles used for evaluating ln H(	) are common in sTP and pTP methods, the
entropy evaluated with NTP → ∞ can be obtained as

S = SsTP + SpTP

2
+ O(N−2

TP ), (C11)

where we make the reasonable assumption that dH ∝ 1/
√

NTP.

Appendix D. Choice of the smearing parameter
Here we show how the HW entropy defined in Eq. (20), in which the smear parameters are set
to the eigenfrequencies, behaves for the Gibbs state and vacuum state of the free field.

We first discuss the HW entropy defined in Eq. (20) for the Gibbs ensemble of the free field,
ρfree

Gibbs ∝ e−Hfree/T . In this case, the total density matrix, ρfree
Gibbs, can be written as the product

of the Gibbs ensembles of 1D harmonic oscillators, ρfree
Gibbs = ∏

k ρh.o.
Gibbs,k ∝ ∏

k e−Hh.o.
k /T . Then

the total Husimi function can also be written as the product of the Husimi functions for each
degree of freedom,

fH({�, �, ω})
∣∣∣
ρ=ρfree

Gibbs

=
∏

k

fH(�k, �k, ωk)
∣∣∣
ρ=ρh.o.

Gibbs,k

. (D1)

Therefore, the total HW entropy, SHW|ρ=ρfree
Gibbs

, is given by the sum of the HW entropy for each
degree of freedom,

SHW({ω})
∣∣∣
ρ=ρfree

Gibbs

= −
∫

D	 fH({�, �, ω}) ln fH({�, �, ω})
∣∣∣
ρ=ρfree

Gibbs

=
∑

k

−
∫

d�kd�k

2π
fH(�k, �k, ωk) ln fH(�k, �k, ωk)

∣∣∣
ρ=ρh.o.

Gibbs,k

=
∑

k

SHW(ωk)
∣∣∣
ρ=ρh.o.

Gibbs,k

. (D2)

On the basis of the discussion of the HW entropy of a 1D harmonic oscillator with the smearing
parameter being set to its eigenfrequency, which is given in Sect. 5 in Ref. [49], the HW entropy
for each degree of freedom, SHW(ωk)

∣∣∣
ρ=ρh.o.

Gibbs,k

, is found to be larger than the von Neumann

entropy SvN

(
= −Tr(ρh.o.

Gibbs,k ln ρh.o.
Gibbs,k)

)
obtained from the same density matrix, but to agree

with it in the high-temperature limit,

SHW(ωk)
∣∣∣
ρ=ρh.o.

Gibbs,k

> SvN

∣∣∣
ρ=ρh.o.

Gibbs,k

, (D3)

lim
T→∞

SHW(ωk)
∣∣∣
ρ=ρh.o.

Gibbs,k

= lim
T→∞

SvN

∣∣∣
ρ=ρh.o.

Gibbs,k

. (D4)

Accordingly. the same relationship holds for the total HW entropy and the von Neumann en-
tropy given as a sum of harmonic oscillators,

SHW({ω})
∣∣∣
ρ=ρfree

k

> SvN

∣∣∣
ρ=ρfree

k

, (D5)

lim
T→∞

SHW({ω})
∣∣∣
ρ=ρfree

k

= lim
T→∞

SvN

∣∣∣
ρ=ρfree

k

, (D6)
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where SvN

∣∣∣
ρ=ρfree

k

= ∑
k SvN

∣∣∣
ρ=ρh.o.

Gibbs,k

. This shows that the HW entropy SHW({ωk}) adopted in

our study agrees with the von Neumann entropy in the high-temperature and weak-coupling
limit.

Next, we show that the HW entropy defined by Eq. (20) takes the minimum value 1 for the
perturbative vacuum state as

SHW({ω}) ≥ SHW({ω})
∣∣∣
|0〉〈0|

= 1. (D7)

To show the above inequality, we utilize the theorem given in Refs. [68,69] stating that, in gen-
eral, the HW entropy for given conjugate variables (x̂, p̂) and the smearing parameter σ takes
the minimum value 1 for the coherent state |α; σ 〉 defined as the eigenstate of the “annihilation
operator”, â = (σ x̂ + i p̂)/

√
2σ :

SHW(σ ) ≥ SHW(σ )
∣∣∣
|α;σ 〉〈α;σ |

= 1. (D8)

Then, one sees that the HW entropy with the smearing width {ωk} automatically takes the
minimum value 1 for the coherent states |{αk}; {ωk}〉 defined by the annihilation operators {âk}
given by Eq. (16), as

SHW({ω}) ≥ SHW({ω})
∣∣∣
|{αk};{ωk}〉〈{αk};{ωk}|

= 1. (D9)

Such coherent states |{αk}; {ωk}〉 include the perturbative vacuum state |0〉 since it is an eigen-
state of âk (âk|0〉 = 0), and then

SHW({ω}) ≥ SHW({ω})
∣∣∣
|0〉〈0|

= 1 (D10)

generally holds.
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