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ABSTRACT
This paper proposes a decentralized navigation method with collision avoidance for
a robotic swarm whose individuals possess heterogeneous abilities, such as sensing
range and maximum speed. In this method, each agent distributedly constructs and
maintains a local directed connection with another agent using only local informa-
tion, which is relative distance. Moreover, all agents always maintain some distance
from other agents to avoid collision. As a result, one leader robot can guide an entire
swarm of robots to their destination, and the other robots can follow the leader while
maintaining connectivity and not colliding with others. We prove the above math-
ematically, and we demonstrate the validity of the proposed method by numerical
simulation and experimentation.
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1. Introduction

Research on robotic swarms has increased in recent years. Robotic swarms are useful
from several viewpoints: they are robust against failures of individual agents, flexible
with respect to environments and tasks, and easily scalable [1–3]. Scalability is possible
because individual agents act in a distributed manner using only local information.
Thus, it is important to control the robots by a decentralized controller.

Thanks to their flexibility in adapting to different environments and tasks, robotic
swarms are expected to be applicable to main tasks such as cooperative coverage [4],
surveillance [5], and transportation [6]. The most basic task common to them is moving
to a destination together as a group. Each agent can acquire only local information
using onboard sensors or wireless communication equipment.

There are many studies on the navigation of robotic swarms while maintaining con-
nectivity [7–14], but in most of them, all of the agents in a swarm have the same
homogeneous abilities. Some of those studies considered distributed connectivity con-
trol for agents, where the communication or sensing region of each agent is limited,
but the region is equal for all agents. In practice, however, when performing actual
tasks, all agents will not always have the same abilities. In addition, a group of agents
with different abilities will have a greater potential to do a wider range of tasks than a
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group of agents with homogeneous abilities [15,16]. For instance, in our prior work [17],
we proposed a navigation method for a robotic swarm whose individuals possess dif-
ferent abilities. Then, in our subsequent study [18], we added an FoV constraint and
collision avoidance between an agent and its target. In addition, a distributed flock-
ing controller has been proposed for agents with limited communication and sensing
regions that are equal for all agents but heterogeneous input constraints, where each
agent has a different maximum input constraint [19]. However, neither of these works
considered collision avoidance between an agent and the other non-target agents. A
previous work [20] also proposed a method of navigating a robotic swarm whose in-
dividuals possessed heterogeneous abilities while maintaining connectivity, but it did
not consider collision avoidance.

When considering the navigation of a real robotic swarm, it is crucial not to adopt
a trajectory where agents will collide, as this will lead to failure. Previous studies have
dealt with collision avoidance between agents during the guidance of group robots [21–
25]. However, those studies have limitations. In several of them, the agents in a swarm
have homogeneous abilities [23–25]. In [21], A. Filotheou et al. proposed a connectiv-
ity maintenance method with collision avoidance of a robotic swarm whose individuals
possessed heterogeneous abilities. However, the controller requires the current and de-
sired global positions and the velocities of the agents. In general, for a controller to
know this information, it must receive global information from all robots via a com-
mon coordinate system. In addition, connectivity preservation and collision avoidance
methods have been proposed for a robotic swarm [22]. However, collision avoidance
between a follower and the other non-target followers has not been considered, and
the robotic swarm has no heterogeneous ability such as velocity constraint.

To our best knowledge, there has not yet been any research about a navigation
method without global information and with collision avoidance of robotic swarms
having heterogeneous abilities, such as sensing range and maximum speed.

In this paper, we propose a distributed guidance control method for a robotic swarm
having such heterogeneous abilities. A swarm has only one leader that knows the
maximum speed limit of all agents, but it cannot access their real-time information
such as position and speed. The leader can move freely under the maximum speed limit.
On the other hand, each follower selects a target agent and maintains connectivity with
it so as not to collide with other agents while satisfying maximum speed limitations.
In addition, the controller of the followers does not need global information.

The main features of this paper are as follows. First, we consider a robotic swarm
having heterogeneous abilities such as sensing range and maximum speed. Second,
we propose a distributed navigation method that keeps the group connected and pre-
vents agents from colliding with each other. In this method, robots do not require
communication equipment and global information, and robots with various mobilities
and sensing functions can be treated as a swarm. However, by simply combining the
existing methods, we could not prove collision avoidance while maintaining group con-
nectivity. Therefore, we realized collision avoidance between agents by switching the
connectivity topology according to the situation.

This paper is organized as follows. In Section 2, we show the problem setting, and
we propose a navigation method in Section 3. Section 4 describes the mathematical
analysis. Section 5 shows the simulation result, and Section 6 presents the experimental
result. These results show the effectiveness of the proposed method. Finally, Section 7
concludes the paper.
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2. Problem Settings

2.1. Model of Agents

This paper considers a leader-follower problem in which one or more followers are
guided by one leader. Let us consider a two-dimensional planar environment D ∈ R2

with no obstacles as the environment in which the robot moves. The number of agents
is n+1. ID 1, 2, · · · , n are assigned to the followers, and n+1 to a leader. This number is
given for convenience of description: it is not necessary for the agent to actually identify
itself or to identify other agents. Hereafter, the set of all agent numbers is expressed
as A = {1, 2, · · · , n+ 1} and the set of follower numbers as F = {1, 2, · · · , n}.

Agent i ∈ A is assumed to be circular with radius ρsizei whose center position is
xi(t) ∈ D. The dynamics of agent i is described as follows:

ẋi(t) = ui(t), (1)

where ui(t) ∈ R2 is the velocity input. This is a simple dynamics, but many realistic
second-order ones can be converted into this form using a speed-reference-type motor
amplifier with speed feedback and the high-gain characteristics of the amplifier [26].

Follower i ∈ F has the following velocity constraint.

∥ui(t)∥ ≤ Ui, (2)

where Ui is the maximum speed. In addition, the follower i ∈ F has the following
sensing region Si(t):

Si(t) := {X ∈ D | ∥xi(t)−X∥ ≤ ρi, ρi > 0} . (3)

That is, the follower i ∈ F can sense within the circle of radius ρi centered on its
center. If the agent j ∈ A is in Si(t), the follower i ∈ F can measure the following
relative position of the agent j:

xi
j(t) = ximin

j (t)− xi(t). (4)

Here, ximin
j (t) is the closest point on the agent j from the follower i and defined as

ximin
j (t) = arg min

x∈Oi
j(t)

∥x− xi(t)∥, (5)

where Oi
j(t) is the set of points on the agent j detected by the follower i at time t in the

environment D. As long as an agent on Si(t) continues to be in Si(t), the individual
can be distinguished from other agents in Si(t).

2.2. Connectivity

Graph representation is used to express connectivity between agents. Let us consider
a directed graph G(t) = N × E(t), where N = {N1, N2, · · · , Nn+1} is a set of nodes
and E(t) is a set of directed edges between nodes at time t. The directional edge from
Nj to Ni is expressed as Eji ∈ E(t). If Eji exists, Nj is said to be the parent of Ni. A
path that can follow a directed edge is called a directed path, and a node that can be
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Figure 1. ij semi-connection. Figure 2. Various distances of agent i.

reached from Nj via a directed path is called a descendant of Nj . When Nn+1 has no
parent and all nodes except Nn+1 have only one parent and are descendants of Nn+1,
G(t) is said to be a spanning tree that is rooted at Nn+1.

The above expression is applied to a robotic swarm by making agent i ∈ A corre-
spond to Ni. Suppose that there is a directional edge Eji ∈ E(t) from Nj to Ni when
ximin
j (t) ∈ Si(t).

Definition 1 (Leader Semi-Connected [17]). When Eji exists, agents i ∈ A and j ∈ A
are said to be ij semi-connected (see Fig. 1). When Ni is a descendant of Nn+1, the
follower i ∈ F is said to be leader semi-connected (LSC). When any follower is LSC,
that is, when G(t) contains a spanning tree rooted in Nn+1, the agent group is LSC.

Now, we define positive constants ρ′i, ρ
′′
i , ρ

′′′
i such that ρsizei ≤ ρ′′′i < ρ′′i < ρ′i < ρi

(Fig. 2). Here, ρ′i and ρ′′i are the distances for switching control input. Using our
method, none of the agents comes closer than ρ′′′i . For follower i ∈ F , we define the
following areas: {

S′
i(t) := {X ∈ D | ∥xi(t)−X∥ ≤ ρ′i},

S′′
i (t) := {X ∈ D | ∥xi(t)−X∥ ≤ ρ′′i }.

(6)

And we set the boundaries of these areas as follows:{
∂S′

i(t) := {X ∈ D | ∥xi(t)−X∥ = ρ′i},
∂S′′

i (t) := {X ∈ D | ∥xi(t)−X∥ = ρ′′i }.
(7)

Now we introduce the assumption used in this paper.

Assumption 1 (Initial Position). Suppose that at t = 0, for any follower i ∈ F , there
is at least one agent in S

′

i(0)\{∂S
′

i(0)∪S′′
i (0)} and that no agents exist in S′′

i (0). Also
assume that all agents stop at t = 0.

With this assumption, every follower can sense at least one candidate agent of the
target at t = 0.

2.3. Control Objective

In this study, we propose the leader’s constraint and the follower’s distributed control
rules. Based on these rules, for any t, all followers maintain the velocity constraint (2),
remain LSC, and avoid colliding with other agents. The leader moves freely without
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sensing, and each follower moves according to information about itself and the relative
positions of other agents obtained by sensing.

3. Proposed Method

We propose a method for constructing and maintaining a spanning tree G(t) with
collision avoidance. Each follower selects another agent as a target, and moves to
maintain semi-connection with that agent while switching the target appropriately.
As a result, the agent group becomes LSC, and there is no collision between agents.
The proposed method consists of the velocity constraint for the leader, the target
determination of each follower, and a control input.

3.1. Leader’s Constraint

To maintain LSC of the agents, the following constraint is imposed on the leader’s
maximum speed Un+1.

Assumption 2 (Leader’s maximum speed). The leader’s maximum speed Un+1 sat-
isfies the following constraint:

Un+1 ≤ min
i∈F

Ui. (8)

This is needed when we prove the connectivity and the velocity constraint (2).

3.2. Target Determination

The follower i ∈ F determines, as its target, one agent j ∈ A when ximin
j (t) ∈ {∂S′

i(t)∪
∂S′′

i (t)} holds for the first time at t > 0. If multiple agents hold this correlation at
the same time, we can select any one of them as the target. Here, each follower only
chooses the moving agent as its target. In addition, note that it is impossible for two
agents to pick each other as the target. Since it is the leader that begins to move first,
Assumption 1 and this procedure ensure that at least one follower targets the leader,
and each follower achieves LSC by remaining semi-connected with its target, and G(t)
becomes a spanning tree.

Let t = ti be the time when agent i decided on a target.

3.3. Control Input

The control input to the follower i ∈ F is denoted by the following form:

ui(t) = uir(t)eir(t) + uiθ(t)eiθ(t), (9)

where the target of agent i is agent j, ri(t) := ∥xi
j(t)∥ and eir(t) := xi

j(t)/ri(t).
eiθ(t) is a unit vector obtained by rotating eir(t) by π/2 counterclockwise (Fig. 3).
In addition, we define di(t) = ∥xi

k(t)∥ and the angle φi(t) ∈ (−π, π] formed by xi
j(t)

and xi
k(t) for the agent k with the smallest distance to the agent i other than the

target (Fig. 4). uir(t) and uiθ(t) are determined as follows. Here, the control input
is divided into three cases. The control input in case (I) is the control input before
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Figure 3. Local basis vectors eir and eiθ of agent i.
Figure 4. Agents’ positions.

determining the target. The control input in case (II) is for maintaining connectivity
during navigation. Finally, the control input in case (III) is for collision avoidance.

• Case (I) t < ti:

uir(t) = 0, uiθ(t) = 0. (10)

• Case (II) t ≥ ti ∩ di(t) := ∥xi
k(t)∥ > ρ′′i :

(a) When ρe−i (t) ≤ ri(t) := ∥xi
j(t)∥ ≤ ρ′′i :

uir(t) =
Ui(ri(t)−ρ′′

i )
ρ′′
i −ρ′′′

i
, uiθ(t) = 0. (11)

(b) When ρ′′i < ri(t) ≤ (ρ′′i + ρ′i)/2:

uir(t) = 0, uiθ(t) =
2σi(t)U ′

i(t)
ρ′
i−ρ′′

i
(ri(t)− ρ′′i ). (12)

(c) When (ρ′′i + ρ′i)/2 < ri(t) < ρ′i:

uir(t) = 0, uiθ(t) =
2σi(t)U ′

i(t)
ρ′
i−ρ′′

i
(ρ′i − ri(t)). (13)

(d) When ρ′i ≤ ri(t) ≤ ρci (t):

uir(t) =
Ui(ri(t)−ρ′

i)
ρi−ρ′

i
, uiθ(t) = σi(t)uir(t). (14)

(e) When ρci (t) < ri(t) ≤ ρe+i (t):

uir(t) =
Ui(ri(t)−ρ′

i)
ρi−ρ′

i
, uiθ(t) = σi(t)(U

′
i(t)− uir(t)) (15)

where,

U ′
i(t) := max

0≤τ≤t
∥uir(τ)∥, (16){

ρe−i (t) := ρ′′i −
U ′

i(t)
Ui

(ρ′′i − ρ′′′i ), ρci (t) := ρ′i +
U ′

i(t)
2Ui

(ρi − ρ′i),

ρe+i (t) := ρ′i +
U ′

i(t)
Ui

(ρi − ρ′i).
(17)
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Figure 5. Control input for TM.

Figure 6. Definitions of Sr
i and Sl

i.

Here note that, when ri(t) ≤ ρ′′i , ri(t) ≥ ρe−i always holds from (11) and (16).
Further, when ri(t) ≥ ρ′i, ri(t) ≤ ρe+i always holds from (14), (15), and (16).
Thus, ri(t) satisfies ρe−i (t) < ri(t) < ρe+i (t) as long as there exists a ij semi-
connection, and it is sufficient to design the input in this range.

Here, σi(t) ∈ [−1, 1] is a parameter to change the shape of the swarm. The
larger the absolute value of σi(t) becomes, the wider the shape of the swarm
becomes. This value is changed to prevent the distance to other agents from
approaching. The method for changing σi(t) is described in Section 3.4.

Hereinafter, Case (I) and Case (II) are collectively called Tracking Mode (TM).
Control input (10) is introduced for Assumption 1. The control input uir(t) is designed
to guarantee that followers maintain LSC. On the other hand, uiθ(t) is designed to
widen the swarm shape and to prevent it from becoming a chain structure. As a result,
the follower behaves as follows in each case. In Case (II)–(a), the follower moves away
from the target to avoid colliding with it. In Case (II)–(b) and (c), the follower moves
away from the other agents to keep from approaching them. In Case (II)–(d) and
(e), the follower moves away from the other agents while approaching the target to
maintain connectivity. An outline of TM input is shown in Fig. 5.

• Case (III) t ≥ ti ∩ di(t) ≤ ρ′′i :

ui(t) = uj
i +

t−tstarti

Ti
(uk

i (t)− uj
i ), (18)

where Ti = hi/(ζUi), hi = min{ρi − ρ′i, ρ
′′
i − ρ′′′i }, ζ is a positive constant that

satisfies 2π(1− e−1/ζ)/ζ ≤ 1 (ζ = 2.253 is used in this paper). Further, let tstarti
be the time when di(t) = ρ′′i , and agent k be the new target at t = tstarti . Here
note that if another agent comes into S′′

i (t), it becomes a new target. From the
implementation points of view, it is difficult to switch targets instantly. Thus, the
input is changed from the previous target reference to the new target reference
over Ti. Redefine ri(t) = ∥xi

k(t)∥, eir(t) = xi
k(t)/ri(t), and unit vector eiθ(t) by

rotating eir(t) counterclockwise by π/2, and define each component of the input
as follows:

uj
i := ui(t

start
i ), uk

i (t) = uir(t)eir, (19)
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where uir(t) is defined in Case (II). Agent i uses the input (18) when tstarti ≤ t <
tstarti + Ti, returns to the TM at t = tstarti + Ti, and redefines this time as t = ti.

To summarize here, ti is the time when follower i’s target is decided or follower i’s
target-switching mode ends. tstarti is, on the other hand, the time when follower i’s
target-switching mode starts. Below, Case (III) is called the Switching Target Mode
(SM). Agents that could not be avoided by input uiθ(t) in TM are set as new targets.
By doing so, they avoid collision. Here, we introduce the assumption for SM.

Assumption 3 (Target Switching). Regarding SM, three things are assumed. First,
two or more agents do not start this mode at the same time; i.e., tstarti ̸= tstartj if i ̸= j.
Second, agent i’s new target is not a descendant of itself. Third, no other agents enter
S′′
i (t) \ ∂S′′

i (t) during this mode.

With this assumption, LSC is maintained even after the SM is executed.

3.4. Changing σi(t) Method

Now, we propose an algorithm that changes σi(t). Here, note that the method of
changing σi(t) is not unique, as σi(t) can be changed to satisfy the limitation σi(t) ∈
[−1, 1]. In particular, if σi(t) ∈ [−1, 1] holds, the proofs in Section 4 are satisfied.

Since σi(t) is not included in the input of the SM, we set σi(ti) = 0. In the TM,
on the other hand, σi(t) can be changed. To avoid fast changes of σi(t), we make the
following restriction:

αi < σ̇i(t) < βi, (20)

where lower limit αi is a negative constant and upper limit βi is a positive constant. In
our algorithm, when three or more followers are targeting the same agent, the distance
between them is almost equal, and thus the collisions between them are avoided.

Here, Sr
i (t) and Sl

i(t) are defined as follows (Fig. 6):{
Sr
i (t) := {X ∈ D | ∥xi(t)−X∥ ≤ ρi , φi(t) > 0} ,

Sl
i(t) := {X ∈ D | ∥xi(t)−X∥ ≤ ρi , φi(t) < 0} ,

(21)

where φi(t) ∈ (−π, π] is the angle formed by xi
j(t) and xi

k(t) for the agent k with the
smallest distance to the agent i other than the target (Fig. 4).

Based on the above, we define the event Ri(t) as follows using the manner of logical
operation: Ri(t) = R1

i (t) if t = ti, and R2
i (t) ∨ R3

i (t) otherwise. Here, R1
i (ti) = 1 if

the target is in the region Sr
i (ti) at time t = ti, and 0 otherwise. R2

i (τ) = 1 if the
closest agent enters region Sr

i (τ) from outside of region Si(τ) at time t = τ > ti, and
0 otherwise. R3

i (τ) = 1 if the closest agent changes from the agent in Sl
i(τ) to the

agent in Sr
i (τ) at time t = τ > ti, and 0 otherwise. Similarly, we define a symmetrical

event Li(t); that is, for Li(t) we replace Sr
i with Sl

i and vice versa. We count, at time
t, the number of times Ri(t) = 1 is satisfied in ti ≤ τ < t and make this number nr

i (t).
The same applies to Li(t) and the number becomes nl

i(t). Here, n
r
i (t) is, in brief, the

number of times other agents approached from the right with respect to (w.r.t.) the
target.

The desired value of σi(t), σ
des
i (t) = tan(θdesi (nr

i , n
l
i)), is defined as follows:
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1. nr
i + nl

i ≤ 1:

θdesi (0, 0) = 0, θdesi (1, 0) = π/4, θdesi (0, 1) = −π/4. (22)

2. nr
i + nl

i ≥ 2 ∩ θdesi (nr
i , n

l
i) < 0:

θdesi (nr
i +1, nl

i) = −1
2θ

des
i (nr

i , n
l
i), θdesi (nr

i , n
l
i+1) = 1

2

[
−π

4 + θdesi (nr
i , n

l
i)
]
. (23)

3. nr
i + nl

i ≥ 2 ∩ θdesi (nr
i , n

l
i) > 0:

θdesi (nr
i + 1, nl

i) =
1
2

[
π
4 + θdesi (nr

i , n
l
i)
]
, θdesi (nr

i , n
l
i + 1) = −1

2θ
des
i (nr

i , n
l
i). (24)

Set σi(ti) = σdes
i (ti) = nr

i (ti) = nl
i(ti) = 0 and update θdesi (t) and σdes

i (t). Then we
make σi(t) follow σdes

i (t) satisfying a constraint of αi < σ̇i(t) < βi. There are numerous
ways to realize this, but we adopt the discrete method from the implementation point
of view. In particular, we calculate this value as follows: σi(t) = σi(t − ∆t) + αi∆t
if σi(t) > σdes

i (t), σi(t) = σi(t − ∆t) + βi∆t if σi(t) < σdes
i (t), and σi(t) = σdes

i (t)
otherwise. By changing σi(t) in this way, the swarm shape can be expanded. Especially
when three or more followers are targeting the same agent, the distance between them
is almost equal.

3.5. Summarizing the Proposed Method

Here, we summarize the proposed control method.
The leader moves in D satisfying the constraint (8) from Assumption 2.
The followers determine their targets using the target determination method in

Section 3.2. In addition, followers move in D using the following control inputs:

• Case (I): (9) and (10).
• Case (II): (9) and (11)–(15), where σi(t) is determined by the method in Sec-

tion 3.4.
• Case (III): (18).

4. Guarantees by the Proposed Method

Now we prove that LSC is maintained, the followers’ velocity constraint (2) is satisfied,
and each follower avoids colliding with the others. Assumptions 1, 2, and 3 are satisfied,
and all followers determine the target according to the method in Section 3.2, and
then move according to the control input in Section 3.3. Then, at any time t ≥ ti, the
following lemmas and theorem are satisfied.

In the following, we consider agent i and define its target as agent j and the target
after SM as agent k. Further, the argument (t) is omitted unless specifically empha-
sized. The inputs of agents j and k are decomposed into the r direction and θ direction
w.r.t. agent i as

uj = ujreir + ujθeiθ, uk = ukreir + ukθeiθ. (25)
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Here, note that uj and uk are represented using the local basis vectors eir and eiθ of
agent i. Further, we assume that

∥uj∥ ≤ Un+1, ∥uk∥ ≤ Un+1. (26)

We show that this assumption always holds after Lemma 4.4.
First, we consider TM.

Lemma 4.1 (Connectivity in TM). Under (26), ρ′′′i < ri < ρi holds for agent i in
TM.

Proof. First, we prove the lower bound. When we consider ri ≤ ρ′′i , the following
equation is obtained from the control law (11):

ṙi = ujr − uir = ujr − Ui

ρ′′
i −ρ′′′

i
(ri − ρ′′i ). (27)

We set t = t′i for the first time when ri ≤ ρ′′i in t ≥ ti. Solving (27) with ri(t
′
i) = ρ′′i as

the initial condition, we obtain the following estimation:

ri = ρ′′i +

∫ t

t′i

e
Ui

ρ′′
i −ρ′′′

i
(τ−t)

ujr(τ)dτ > ρ′′i −
Un+1

Ui
(ρ′′i − ρ′′′i ) ≥ ρ′′′i . (28)

Here, we used ujr ≤ Un+1, derived from (26), and (8). In addition, when ri > ρ′′i holds,
ri > ρ′′′i holds. Therefore, ri > ρ′′′i always holds.

Next, we consider the upper bound. When ri ≥ ρ′i, we obtain

ṙi = ujr − Ui

ρi−ρ′
i
(ri − ρ′i) (29)

from the control laws (14) and (15). Here, we set t = t′i for the first time when ri ≥ ρ′i
in t ≥ ti. Solving (29) with the initial condition ri(t

′
i) = ρ′i and using ujr ≤ Un+1 and

(8), we obtain

ri < ρ′i +
Un+1

Ui
(ρi − ρ′i) ≤ ρ′i + ρi − ρ′i = ρi. (30)

When ri < ρ′i holds, ri < ρi holds. Thus, the upper bound of ri is ρi. □

Lemma 4.2 (Velocity Constraint in TM). Under (26), ∥ui∥ < Un+1 holds for agent i
in TM.

Proof. This is proved separately for each control input.

• Case (I): ∥ui∥ = 0 < Un+1 holds from (10).
• Case (II)-(a): We have |uir| < Un+1 because of (11) and ri > ρ′′i − Un+1(ρ

′′
i −

ρ′′′i )/Ui from (28). Thus, ∥ui∥ = |uir| < Un+1 holds.
• Case (II)-(d): |uir| < U ′

i/2 holds from (14) and ρci , and U ′
i < Un+1 holds from (30)

and (14). Thus, we obtain |uir| < Un+1/2. Therefore, the following inequality

holds: ∥ui∥ =
√

uir2 + uiθ2 < Un+1/
√
2 < Un+1. Here note that |σi| ≤ 1 holds.

• Case (II)-(e): From (15), U ′/2 < |uir| ≤ U ′
i , and therefore the following inequality

holds: ∥ui∥2 = u2ir + σ2
i (U

′
i − uir)

2 ≤ U ′2
i because of |σi| ≤ 1. Hence, U ′

i < Un+1

from (30) and (15). So, ∥ui∥ ≤ U ′
i < Un+1 holds.
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• Case (II)-(b),(c): From (12) and (13), ∥ui∥ = |uiθ| ≤ |σiU ′
i | < Un+1 holds,

because |σi| ≤ 1 holds. Here, we used U ′
i < Un+1 because |uir| < Un+1 holds in

all cases.

From the above, ∥ui∥ < Un+1 always holds. □

Second, we consider SM. Here, the inputs of agent i, uj
i and uk

i are decomposed
into the r direction and θ direction w.r.t. agent i as follows:

uj
i = (uj

i · eir)eir + (uj
i · eiθ)eiθ, uk

i (t) = uireir. (31)

Note that uj
i is not a function of t (see (19)). We set

δi =
t− tstarti

Ti
. (32)

Lemma 4.3 (Connectivity in SM). Under (26), ρ′′′i < ri < ρi holds for agent i in
SM.

Proof. We will prove the lower bound. From (18), as long as ri ≤ ρ′′i , ri follows

ṙi = ukr−uir = ukr− [uj
i ·eir+δi(uir−uj

i ·eir)], that is, ṙi+δiUi(ri−ρ′′i )/(ρ
′′
i −ρ′′′i ) =

ukr − (1− δi) (u
j
i · eir), where we used (11). Solving this differential equation under

the initial condition ri(t
start
i ) = ρ′′i and using 0 ≤ 1 − δi ≤ 1 and (26), the following

estimation holds:

ri = ρ′′i + e−Γit2
∫ t

0

[
ukr −

(
1− τ

Ti

)
(uj

i · eir)
]
eΓiτ2

dτ

≥ ρ′′i − 2Un+1e
−Γit2

∫ t

0
eΓiτ2

dτ, (33)

where Γi = Ui/{2Ti(ρ
′′
i − ρ′′′i )} and we set t as t − tstarti . Here, set I =

∫ t
0 e

Γiτ2

dτ =∫ 0
−t e

Γiτ2

dτ and the following inequality holds: (2I)2 =
∫ t
−t

∫ t
−t e

x2+y2

dxdy <∫ √
2t

0

∫ 2π
0 eΓir2rdθdr, that is, I < {π(e2Γit2 − 1)/Γi}1/2/2. Therefore, from the defi-

nition of ζ, that satisfies 2π(1− e−1/ζ)/ζ ≤ 1, and Ti = hi/(ζUi),

ri ≥ ρ′′i − 2Un+1e
−Γit2I ≥ ρ′′i − Un+1(ρ

′′
i − ρ′′′i )/Ui > ρ′′′i . (34)

Note that even if ri > ρ′′i holds while tstarti < t < tstarti + Ti, the bound can be proved
in the same way by changing the time when ri = ρ′′i holds again to t = tstarti . On the
other hand, using the same approach, it is easy to prove the upper bound of ri. □

Lemma 4.4 (Velocity Constraint in SM). Under (26), ∥ui∥ < Un+1 holds for agent i
in SM.

Proof. From Lemma 4.3 and (16), we can show that |uir| ≤ U ′
i < Un+1 holds in SM

as shown in proof of Lemma 4.2. Thus, from (18), (26), 0 ≤ δi ≤ 1 and |uir| < Un+1,
we obtain the following:

∥ui∥2 = (1− δi)
2 ∥uj

i∥
2 + δ2i u

2
ir + 2δi (1− δi) (u

j
i · eir)uir < U2

n+1. (35)
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Therefore, the velocity constraint is satisfied in SM. □

Note that all constraints are satisfied from the end of the SM until ri = ρ′′i or ri = ρ′i
for the first time. The connectivity maintenance can be proved by solving (27) under
the initial condition ri(t = tstarti +Ti) = r0(ρ

e−
i ≤ r0 ≤ ρ′′i ), and the velocity constraint

can be proved in the same way.
Now we show (26). From Assumption 1, the leader n+1 begins to move first, while

other agents are stationary. Next, from the target determination in Section 3.2, at
least one follower targets the leader. Now, let us consider the case where the target of
agent i is the leader and agent i is in TM. At this time, ∥uj∥ ≤ Un+1 holds because
agent j is the leader. Therefore, from Lemma 4.2, ∥ui∥ ≤ Un+1 holds. As agent i moves
to follow j, an agent l sets i or n+ 1 as its target l′. Since ∥ui∥ ≤ Un+1, we can apply
the same argument for j and i to l′ and l. Further, we can consider any pair of such
agents m′ and m in the same way. Then, (26) holds for all agents. In addition, using
Lemma 4.4 and the same procedure, (26) holds even if any agents are in SM.

Theorem 4.5 (LSC and constraints of whole swarm). All followers satisfy the velocity
constraints (2) and do not collide with other agents, and the swarm forms a spanning
tree.

Proof. From Assumption 1 and the target determination in Section 3.2, the leader
begins to move first, while other agents are stationary. Next, from the target determi-
nation in Section 3.2, at least one follower i, whose target is the leader moves. In the
same way, follower j, whose target is the leader or the follower i, moves. Repeating
these steps, and from Lemmas 4.1 and 4.3 and Assumption 3, we can prove that the
swarm always forms a spanning tree and that no collisions occur between agents. That
is, from Lemma 4.1, all followers have a certain distance to the target, and thus do
not collide. Now let us consider follower i. When an agent k other than the target
of follower i enters the area S′′

i (t), the agent k becomes the target of the follower i
because of SM. Here, agent k is not a descendant of itself, so the LSC is maintained
from Assumption 3. Furthermore, from Lemma 4.3, the distance between follower i
and agent k is more than a certain distance, so no collision occurs. From this, collision
avoidance is achieved.

On the other hand, from Lemmas 4.2 and 4.4, the velocity constraints of the followers
are satisfied. Therefore, at any time t > 0, all followers satisfy the velocity constraint
and, do not collide with other agents, and the swarm forms a spanning tree. □

5. Simulation Results

In the simulation, we confirm that agents do not collide in the proposed method even
in the motion by which agents do collide in the conventional method. Here, we define
the specifications of all followers as shown in Table 1.

Now, we compare the prior method [17] and the proposed method under the same
conditions. The prior method does not have SM input (18) and did not consider
collision avoidance between agents. In addition, although σi(t) was used in the prior
method, the method of changing σi(t) was not described. Therefore, in this simulation,
we used the same change method of σi(t) as the proposed method in the prior method.
The two methods are compared in Fig. 7. The figures in the upper row show the
simulation of the conventional method, and those in the lower row show that of the
proposed method. The blue agent is the leader, and the lines between agents describe

12



Table 1. Specifications of followers in the simulation.

Agent i 1 2 3 4 5 6 7–10

ρi (m) 5.00 4.00 6.00 4.50 3.50 3.00 5.00
ρ′i (m) 4.65 3.55 5.45 3.85 3.15 2.57 4.45
ρ′′i (m) 0.55 0.75 0.85 1.00 0.65 0.65 0.85
ρ′′′i (m) 0.20 0.30 0.30 0.35 0.30 0.22 0.30
ρsizei (m) 0.20 0.30 0.30 0.35 0.30 0.10 0.20
Ui (m/s) 0.90 0.60 0.50 0.30 0.70 0.20 0.20
−αi, βi 1.00 1.00 1.00 1.00 1.00 1.00 1.00

-10 0 10
-10

0

10

-10 0 10
-10

0

10

-10 0 10
-10

0

10

-10 0 10
-10

0

10

-10 0 10
-10

0

10

-10 0 10
-10

0

10

-10 0 10
-10

0

10

-10 0 10
-10

0

10

X [m]

Y
 [m

]

Y
 [m

]

Y
 [m

]

Y
 [m

]

X [m] X [m] X [m]

X [m] X [m] X [m] X [m]

Y
 [m

]

Y
 [m

]

Y
 [m

]

Y
 [m

]

Figure 7. Screenshots of the simulation.

the connectivity. The line when the connectivity is changed by the SM is shown in
red. Agents that collide with other agents are shown in red. The sampling period is
set to 0.01s.

In the prior method, there is a collision between agents at time t = 78s, but in the
proposed method, the collision is avoided by SM input (18) at time t = 81s.

In addition, Fig. 8 and Fig. 9 show the simulation results of the proposed method
and the prior method, respectively. In both figures, (a) shows the paths of all agents,
(b) shows the distance to the target, (c) shows the difference between ρ′′i and minimum
distance to agents other than the target, (d) shows the difference between ρsizei and
minimum distance to agents other than the target, (e) shows the norm of velocity,
and (f) shows the σ. First, we consider the simulation results of the proposed method
(Fig. 8). Since the minimum distance to agents is not less than ρsizei from (d), no
collision between agents has occurred. In particular, from (c), the minimum distance
to agents becomes smaller than ρ′′i at around t = 81s, and SM works to realize collision
avoidance. Here, note that the value in (c) is not smaller than ρ′′i at around t = 34s. We
also see that connectivity is maintained, and velocity constraints are satisfied from (b)
and (e). Moreover, we can see in (f) that −1 ≤ σ ≤ 1 is always satisfied. On the other
hand, in the prior method, since the minimum distance to agents is less than ρsizei at
t = 78s from Fig. 9 (d), the collision between agents has occurred. These results show
that, by the proposed method, all agents maintain semi-connection with the target,
no agent collides with any other, and no velocity constraints are exceeded.
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(a)                      (b)

(c)                                                (d)

(e)                                                (f)

Figure 8. Simulation results by the proposed
method. (a) shows the paths of the agents. Here,

the circles show the initial positions. (b) shows the

distances from the targets. (c) shows the differences
between ρ′′i and minimum distance from agents. (d)
shows the differences between ρsizei and minimum dis-

tance from agents. (e) shows the norm of velocity. (f)
shows σ.

(a)                                                (b)

(c)                                                (d)

(e)                                                (f)
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Figure 9. Simulation results by the prior method.

(a) shows the paths of the agents. Here, the circles
show the initial positions. (b) shows the distances

from the targets. (c) shows the differences between

ρ′′i and minimum distance from agents. (d) shows the
differences between ρsizei and minimum distance from

agents. (e) shows the norm of velocity. (f) shows σ.
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Table 2. Specifications of followers in

the experiment.

Agent i 1 2 3 4

ρi (m) 1.30 1.30 1.30 1.30
ρ′i (m) 1.00 1.00 1.00 1.00
ρ′′i (m) 0.52 0.59 0.66 0.68
ρ′′′i (m) 0.29 0.32 0.34 0.36
ρsizei (m) 0.09 0.09 0.09 0.09
Ui (m/s) 0.25 0.25 0.25 0.25
−αi, βi 1.00 1.00 1.00 1.00

6. Experimental Results

To confirm the effectiveness of the proposed method in a real environment, we carried
out an experiment. In the experiment, we used one leader robot and four follower
robots. All of these robots were omni-directional driven with three omni wheels. Since
a robot needs the coordinates of other robots within its own sensing region, six AR
markers were attached to each robot. The leader robot was controlled by velocity
command via Bluetooth, and the operator sent the velocity commands.

On the other hand, each follower robot had three cameras to achieve a 360-degree
sensing region. These cameras read the AR marker of the robot within the sensing
region to obtain the robot’s relative coordinates. In addition, a computer was built into
each follower robot. Each follower was controlled based on the calculation of its own
control input by this computer. The sampling frequency was 10Hz. The specifications
of all followers are shown in Table 2.

In the experiment, we observe the motions of the four followers when the leader robot
meanders so that the followers collide with each other. Fig. 10 shows screenshots of this
experiment. In this figure, L is the leader, and F1, F2, F3, and F4 are the followers.
White solid lines between agents describe the connectivity. Around t = 28s, F1 and
F3 got too close to each other. For this reason, F3 changed the target from leader to
F1. The red line represents the new connectivity and the white dotted line represents
the old connectivity. This switching of targets prevented agents from colliding. After
that, the followers maintained connectivity and followed the leader.

The experimental results are shown in Fig. 11. In Fig. 11 (c) and (d), when the
minimum distance d to agents other than the target is d > ρ, the distance is not
acquired in the implementation. Therefore, when d > ρ, the response was created with
d = ρ. From these results, we found that all robots in the proposed method maintained
connectivity with the target, none collided with any others, and none exceeded the
velocity constraints. In particular, from (c), the L3’s minimum distance to agents other
than the target becomes smaller than ρ′′i at around t = 28s. In that time, F3 changed
the target by SM and realized collision avoidance. Thus, the proposed method works
effectively even in real situations. In Fig. 11 (c) and (d), there are the parts where the
response oscillates. This is because the AR marker to be measured was switched when
the camera measured the distance. Therefore, the proposed method works well even
in the presence of measurement noise.

7. Conclusion

In this study, we proposed a control method in which a single leader guide a robotic
swarm whose agents have various individual abilities and do not collide with each other.
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Figure 10. Screenshots of the experiment.
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Figure 11. Experimental results. (a) shows the
distances from the targets. (b) shows σ. (c) shows

the differences between ρ′′i and minimum distance

from agents. (d) shows the differences between ρsizei
and minimum distance from agents. (e) shows the

norm of velocity.

In the proposed method, each follower chooses a target with which to maintain a con-
nection and switches the target appropriately. The proposed method is distributed in
the sense that each agent is controlled using only local information. Moreover, the
effectiveness of the proposed method was confirmed by both simulation and experi-
ment. Future issues include improving the θ direction input and making the topology
more flexible to guarantee collision avoidance even in situations where it cannot be
guaranteed at present, and to deal with situations in which one agent fails and loses
the line of sight to its target, thus partitioning the network.
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