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ABSTRACT Usually learning dynamical systems by data-driven methods requires large amount of training
data, which may be time consuming and expensive. Active learning, which aims at choosing the most
informative samples to make learning more efficient is a promising way to solve this issue. However,
actively learning dynamical systems is difficult since it is not possible to arbitrarily sample the state-action
space under the constraint of system dynamics. The state-of-the-art methods for actively learning dynamical
systems iteratively search for an informative state-action pair by maximizing the differential entropy of
the predictive distribution, or iteratively search for a long informative trajectory by maximizing the sum
of predictive variances along the trajectory. These methods suffer from low efficiency or high compu-
tational complexity and memory demand. To solve these problems, this paper proposes novel and more
sample-efficient methods which combine global and local explorations. As the global exploration, the agent
searches for a relatively short informative trajectory in the whole state-action space of the dynamical system.
Then, as the local exploration, an action sequence is optimized to drive the system’s state towards the
initial state of the local informative trajectory found by the global exploration and the agent explores this
local informative trajectory. Compared to the state-of-the-art methods, the proposed methods are capable
of exploring the state-action space more efficiently, and have much lower computational complexity and
memory demand. With the state-of-the-art methods as baselines, the advantages of the proposed methods
are verified via various numerical examples.

INDEX TERMS Active learning, dynamical system, Gaussian process, global and local explorations.

I. INTRODUCTION AND RELATED WORK
The acquisition of accurate models of dynamical systems [1],
[2] is essential for many applications, such as controller
design and model-based reinforcement learning. If the accu-
rate analytic models are hard to be derived from the first prin-
ciples due to the high complexity of the dynamical systems,
the data-driven learning method will be a useful alternative.
The Gaussian process (GP) has been commonly used to learn
dynamical systems from training data because of its advan-
tageous properties [3]–[5], such as working well with little
training data, providing ameasure of the uncertainty about the
estimated model, being able to incorporate prior knowledge
by the mean or kernel function.

Typically the data-driven learning of dynamical systems
requires large amount of training data, which may be time
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consuming and cause system wear. Active learning [6] can
be seen as a strategy for optimal data selection to make learn-
ing more efficient. At first the literature related to actively
learning the unknown function is introduced. These literature
assume that it is possible to query any point in the input
space of the unknown function. The works in [7] and [8]
actively learn the spatial phenomena using GPs which can
be formulated as the problem of selecting the optimal sensor
locations from a finite set of possible locations. The optimal
sensor locations are obtained by maximizing the differential
entropy or the mutual information, which has been shown
to be NP-hard. Instead of simultaneously optimizing all the
sensor locations, an approximate algorithm which sequen-
tially selects the sensor location is proposed, and a theoretical
bound which quantifies the advantage of the active learning
strategy over a priori design strategy is provided. The work
in [9] researches the problem of actively learning complex
physical systems like buildings using the fully Bayesian GP.
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At each iteration, the next sampling point is chosen by maxi-
mizing the information gain, namely reducing the maximum
uncertainty in the hyperparameters of the GP.

Actively learning dynamical systems is fundamentally dif-
ferent from actively learning unknown functions due to the
fact that it is not possible to arbitrarily sample the state-action
space under the constraint of system dynamics. Taking the
inverted pendulum system as an example, initially the pendu-
lum hangs down, thus the state corresponding to the swing-up
is very informative. To visit the swing-up state, an action
sequence which could drive the system’s state from the initial
state to the swing-up state should be obtained at first.

An algorithm for actively exploring the state-action space
of the dynamical system is proposed in [10]. The dynamical
system is modeled by the Bayesian linear regression. At each
iteration, at first an informative action sequence is optimized
by maximizing the sum of predictive variances along the tra-
jectory or minimizing the differential entropy of the posterior
distribution of themodel parameters. Then the obtained infor-
mative action sequence is applied to the true system to collect
samples. If the corresponding optimization problem can be
solved successfully, this method will work well because it
takes the sample efficiency along the trajectory into account.
However, when the horizon is relatively large, solving the
optimization problem is quite difficult and the computational
complexity and memory demand are very high because the
objective function (sum of predictive variances or differential
entropy of the posterior distribution of the model parame-
ters) is too complicated. Furthermore, the Bayesian linear
regression is not expressive enough tomodel highly nonlinear
dynamical systems. The work in [11] proposes two methods
for actively learning dynamical systems. The first method
searches for an informative action sequence by maximizing
the sum of differential entropies of predictive distributions
along the trajectory at each iteration, which is similar to
the method in [10] and suffers from the same problems.
The second method extends the ideas of actively learning
unknown functions proposed in [7] and [8] to dynamical
systems which are modeled by GPs. At each iteration, at first
an informative state-action pair is selected by maximizing
the differential entropy of the predictive distribution. Then
based on the currently estimated model an action sequence is
optimized to steer the system’s state from the initial state to
an informative state. This method is able to visit informative
states which are far away from the initial state and difficult
to be visited using random actions. But it is very inefficient
since it focuses on exploring a single informative state-action
pair each time.

Active exploration is also an important issue in rein-
forcement learning. The work in [12] augments the objec-
tive (expected sum of rewards) with the expected entropy
of the policy to encourage exploration. The work in [13]
realizes active exploration through augmenting the reward
function with the information gain which is defined over the
posterior distribution of the parameters of the environment
model.

As a global optimization method, Bayesian optimization
(BO) [14] can be used to search for the optimal controller
parameter by maximizing a performance objective. To reduce
the number of interactions with the true system, BO actively
explores the space of the controller parameter and iteratively
selects the controller parameter to be evaluated. The work
in [15] uses BO to learn the gait parameter of a planar
biped robot. The map from the controller parameter to the
performance objective is model by a GP. At each iteration, the
next querying controller parameter is chosen by maximizing
the acquisition function.

This paper proposes novel methods to actively learn the
dynamical systems which are modeled by GPs. The proposed
methods combine global and local explorations. As the global
exploration, the agent searches for a relatively short informa-
tive trajectory in the whole state-action space of the dynami-
cal system. Then, as the local exploration, an action sequence
is optimized to drive the system’s state towards the initial
state of the local informative trajectory found by the global
exploration and the agent explores this local informative
trajectory. By focusing on exploring an informative trajectory
instead of a single informative point [11] at each iteration, the
proposed methods are capable of exploring the state-action
space more efficiently and have faster convergence rates.
Instead of optimizing a long informative trajectory starting
from the initial state [10], [11], the proposed methods search
for a relatively short informative trajectory. As a result, the
proposed methods have much lower computational complex-
ity and memory demand compared with the methods in [10]
and [11] because the corresponding optimization problems
are much easier to solve. With the existing methods in the
literature as baselines, the advantage of the proposedmethods
is verified on three dynamical systems.

II. PROBLEM FORMULATION
Consider a discrete-time dynamical system:

xt+1 = f (xt , ut ), (1)

with a continuous-valued state x ∈ Rdx , a continuous-valued
action u ∈ Rdu and the unknown transition dynamics f to be
learned.

A. GAUSSIAN PROCESS
The system function f is modeled by a GP, with the current
state-action pair zt = (xt , ut ) ∈ Rdx+du as the training input,
the consecutive state xt+1 as the training output. A GP model
is completely specified by the mean function m(·) and the
kernel function k(·, ·) [16]. In this paper, the zero prior mean
function m ≡ 0 and the squared exponential kernel function
k are used:

k(zi, zj)=σ 2
f exp

(
−
1
2
(zi−zj)T3−1(zi − zj)

)
+ σ 2

n δij, (2)

with 3 = diag([l21 , l
2
2 , . . . , l

2
dx+du ]) being the charac-

teristic length-scales, σ 2
f being signal variance, σ 2

n being
noise variance. The item δij is a Kronecker delta which
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is one iff i = j and zero otherwise. Given a tra-
jectory {x0, u0, x1, u1, . . . ., xN−1, uN−1, xN }, the training
inputs and outputs for the GP are collected as X =

{(x0, u0), . . . , (xN−1, uN−1)}, Y = {x1, . . . , xN } respec-
tively. With the training data (X ,Y ), the hyperparamters
{σ 2
f ,3, σ

2
n } are optimized by maximizing the log marginal

likelihood [16], [17]:

log p(Y |X , σ 2
f ,3, σ

2
n )

=

∫
p(Y |f,X )p(f|X )df

= −
1
2
Y T
[
K (X ,X )+ σ 2

n I
]−1

Y

−
1
2
log |K (X ,X )+ σ 2

n I| −
N
2
log 2π, (3)

with f = [f (z0), f (z1), . . . , f (zN−1)]T. For multiple outputs,
an independent GP is used for each output dimension. At the
testing input z, the predictive distribution of the correspond-
ing function value f (z) is Gaussian,

p(f (z)|X ,Y , z) = N (µ(z), σ 2(z)), (4)

where the mean and variance are given by:

µ(z) = K (z,X )
[
K (X ,X )+ σ 2

n I
]−1

Y , (5)

σ 2(z)= k(z, z)−K (z,X )
[
K (X ,X )+σ 2

n I
]−1

K (X , z). (6)

The GPs are trained using the package GPflow [18].

B. INFORMATION CRITERION
Active learning aims at selecting samples which are maxi-
mally informative about the dynamical system. As a result,
accurate models of the dynamical systems can be obtained
with fewer samples. To select informative samples, it is
necessary to define some criteria which could quantify
how informative the samples are. There are two common
information-based criteria. The first one is the differential
entropy of the predictive distribution of the function value
f (z) at the input z. Since each dimension of the system
function f is modeled by an independent GP, the predictive
distribution of f (z) at the input z is multivariate Gaussian
distribution:

p(f (z)|X ,Y , z) = N (µ,6), (7)

where µ = [µ1, . . . , µdx ]
T and 6 = diag([σ 2

1 , . . . , σ
2
dx ])

are predictive means (5) and variances (6) of all dimen-
sions respectively. The differential entropy of the multivariate
Gaussian distribution is calculated by:

H [f (z)] = −
∫
p(f (z)) ln p(f (z))df (z)

=
dx
2

ln(2πe)+
1
2

dx∑
i=1

ln σ 2
i . (8)

Obviously, maximizing the differential entropy is equivalent
to maximizing the predictive variances. With this criterion,

the active learner queries the input z whose function value
f (z) is most uncertain.
The second criterion is the information gain (mutual infor-

mation). The parameters of the GPmodel are collected as θ =
(σ 2
f ,3, σ

2
n ). The uncertainty in the model of the dynamical

system can be represented through a distribution over the
model parameter θ . Denote the current data as D = (X ,Y ),
the data to be selected by the active learner as Dnew. The
information gain I between the two distributions p(θ |D) and
p(θ |D ∪ Dnew) is:

I = H [θ |D]− EDnew [H [θ |D ∪ Dnew]] , (9)

where H is the differential entropy. Maximizing the infor-
mation gain I is equivalent to maximizing the reduction of
the uncertainty in θ . Thus the information gain criterion
selects samples Dnew which maximally reduce the uncer-
tainty in the model. It is quite expensive to compute and
optimize the information gain since there are no closed forms
for the posterior distributions p(θ |D) and p(θ |D∪Dnew). This
paper adopts the differential entropy defined in (8) as the
information criterion for active learning.

The difficulty for actively learning dynamical systems
is that it is not possible to arbitrarily sample the state-
action space. For example, an informative state-action pair
z∗ = (x∗, u∗) could be found by maximizing the differential
entropy in (8). However, to obtain the sample (z∗, f (z∗)), the
system’s state should be steered to x∗ at first.

III. ACTIVE LEARNING THROUGH GLOBAL AND
LOCAL EXPLORATIONS
The goal of active learning is to iteratively choose the most
informative samples so that an accurate model can be learned
using as few training samples as possible [19]–[21]. Common
strategies for active learning include: (1) iteratively querying
the input for which the model output is least certain; (2) iter-
atively selecting a sample which could maximally reduce the
uncertainty in the model. Most of active learning algorithms
do not have any theoretical guarantee on the consistency or
the sample efficiency [20].

Actively learning dynamical systems is fundamentally dif-
ferent because it is not possible to arbitrarily sample the
state-action space under the constraint of system dynamics.
The state-of-the-art methods for actively learning dynamical
systems follow the idea of active learning, at the same time
take the constraint of system dynamics into account. These
methods iteratively search for an informative trajectory by
maximizing the sum of predictive variances along the trajec-
tory with the system dynamics satisfied. These methods also
do not have theoretical guarantee on the sample efficiency.
The proposed methods in this paper follow the similar frame-
work, and try to solve the problems of the state-of-the-art
methods, such as inefficiency, high computational complexity
and memory demand. The advantages of the proposed meth-
ods over the state-of-the-art methods are verified via various
numerical examples.
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In this paper, it is assumed that the system is controllable,
the initial state of the system is always at x0, and the action
is so bounded that the state space of the system can not
be efficiently explored using random actions. At first two
existing algorithms for actively learning dynamical systems
in the literature are introduced. Then more sample-efficient
methods will be proposed.

A. PRELIMINARY METHODS
1) SEPARATED SEARCH AND CONTROL
The work in [11] extends the ideas of actively learning
unknown functions proposed in [7] and [8] to dynamical sys-
tems which are modeled by GPs. At each iteration, at first an
informative state-action pair z∗ = (x∗, u∗) is selected bymax-
imizing the differential entropy of the predictive distribution:

z∗ = argmax
z

H [f (z)] = argmax
z

1
2

{
1+ ln(2πσ 2(z))

}
s.t. umin ≤ u ≤ umax (10)

where umin and umax are lower and upper bounds of the
action u. Then an action sequence (u0, . . . , uM−1) is opti-
mized to drive the system’s state from x0 to x∗. After arriv-
ing at x∗, the action u∗ is applied, and the system’s state
reaches f (z∗). By this way, the informative sample (z∗, f (z∗))
is obtained. Finally the action sequence (u0, . . . , uM−1, u∗)
is applied to the true system to collect samples. Repeat the
three steps above until the learned model is accurate enough.
This method is called Separated Search and Control because
it separates the search for an informative state-action pair
(x∗, u∗) from designing an action sequence which steers the
system’s state from x0 to x∗. This method is able to visit the
informative states which are far away from the initial state
and difficult to be visited under random actions. But it is very
inefficient since it focuses on exploring a single informative
sample (z∗, f (z∗)) at each iteration.

2) INFORMATIVE CONTROL TRAJECTORY
The method Informative Control Trajectory proposed in [10]
and [11] tries to find an action sequence which is expected
to provide the most informative sequence of observations
when executed on the real system. The informative action
sequence is optimized by maximizing the sum of predic-
tive variances along the trajectory with system dynamics
satisfied:

u0, . . . , uT−1

= argmax
u0,...,uT−1

T−1∑
t=0

σ 2(xt , ut )

s.t. xt+1 = µ(xt , ut ), for t = 0, . . . ,T − 2

umin ≤ u ≤ umax (11)

where µ is the predictive mean in (5) and σ 2 is the predictive
variance in (6). Compared with the method Separated Search

and Control, this method takes the sample efficiency along
the trajectory into account. If the optimization problem in
(11) can be solved successfully, this method will work well.
However, with relatively large horizon T , solving the opti-
mization problem in (11) is quite difficult, and the computa-
tional complexity and memory demand are very high because
the objective function (sum of predictive variances) is too
complicated. The work in [11] chooses the horizon T as 10
or 15. With larger T , the optimization problem in (11) can
not be solved successfully using the shooting method. In the
case of very bounded actions, in order to explore the unknown
areas of the state space which are far away from the initial
state, the horizon T must be chosen relatively large, as a result
the shooting method may obtain a bad local optimum and
the algorithm will fail to efficiently explore the whole state
space.

B. GLOBAL AND LOCAL EXPLORATIONS
This paper proposes more sample-efficient methods which
combine global and local explorations. As the global explo-
ration, the agent searches for an informative area in the whole
state-action space of the dynamical system. Then, as the
local exploration, the agent efficiently explores the local
informative area found by the global exploration. Assume
that the area around the most informative state-action pair
is also very informative. So the informative area could be
found by searching for the most informative state-action pair
z∗ = (x∗, u∗):

z∗ = argmax
z

H [f (z)]

s.t. umin ≤ u ≤ umax. (12)

In order to explore the informative area around (x∗, u∗), the
system’s state should be driven to x∗ from x0 at first. Making
use of the currently estimated GP model, an action sequence
which could steer the system’s state from x0 to x∗ can be
obtained by solving the following optimal control problem
with the quadratic cost:

u0, . . . , uM−1

= argmin
u0,...,uM−1

M−1∑
t=0

Ext
[
(xt − x∗)TQ(xt − x∗)

+uTt Rut
]
+ ExM

[
(xM − x∗)TQT (xM − x∗)

]
s.t. umin ≤ u ≤ umax. (13)

The expectation is taken with respect to the marginal dis-
tribution of the state p(xt |u0, . . . , ut−1), t = 1, . . . ,M . The
propagation of the marginal state distribution in probabilistic
models can be approximated by moment matching [22] or
linearization of the predictive mean of the GP [23]. This
paper adopts the maximum likelihood observations assump-
tion [24], which propagates only the mean of the marginal
state distribution. The optimal control problem in (13) is
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Algorithm 1 Global and Local Explorations
1: init: Choose horizonsM and T . Generate initial samples
Dinit by applying random actions.

2: Initially the total samples are D = Dinit.
3: for i = 1, 2, . . . ,Niter do
4: Train the GP model using total samples D.
5: Search for the most informative state-action pair z∗ =

(x∗, u∗) by solving (12).
6: Based on the currently estimated model, optimize an

action sequence {u0, . . . , uM−1}which could drive the
system’s state from x0 to x∗, by solving (14). Denote
u∗ as uM .

7: Starting from x0, taking actions {u0, . . . , uM−1, uM },
the system’s state arrives at xM+1 which can be derived
using (15).

8: Optimize an action sequence {uM+1, . . . , uM+T }
which could efficiently explore the local informative
area around xM+1, by solving (16).

9: Apply the actions {u0, . . . , uM , uM+1, . . . , uM+T } to
the real system and collect new samples Dnew.

10: Add newly collected samples to total samplesD = D∪
Dnew.

11: end for

simplified as:

u0, . . . , uM−1

= argmin
u0,...,uM−1

M−1∑
t=0

[
(xt − x∗)TQ(xt − x∗)

+uTt Rut
]
+ (xM − x∗)TQT (xM − x∗)

s.t. xt+1 = µ(xt , ut ), for t = 0, . . . ,M − 1

umin ≤ u ≤ umax. (14)

Starting from the initial state x0, taking the action sequence
{u0, . . . , uM−1}, the system’s state is expected to reach
x∗. Then the action u∗ is applied, and the system’s state
reaches xM+1. To simplify the notation, denote u∗ as uM .
The state xM+1 could be derived by applying the actions
{u0, . . . , uM−1, uM } to the estimated model:

xt+1 = µ(xt , ut ), for t = 0, . . . ,M . (15)

The remaining job is to optimize an action sequence which
could efficiently explore the local informative area around
xM+1:

uM+1, . . . , uM+T

= argmax
uM+1,...,uM+T

T−1∑
t=0

H[f (xM+t+1, uM+t+1)]

s.t. xM+t+2=µ(xM+t+1, uM+t+1),

for t = 0, . . . ,T − 2

umin ≤ u ≤ umax. (16)

Algorithm 1 summarizes the framework of the proposed
method Global and Local Explorations.

Algorithm 2 Improved Global and Local Explorations
1: init: Choose horizonsM and T . Generate initial samples
Dinit by applying random actions.

2: Initially the total samples are D = Dinit.
3: for i = 1, 2, . . . ,Niter do
4: Train the GP model using total samples D.
5: Search for an informative trajectory
{x̄0, ū0, ū1, . . . , ūT−1} by solving (17).

6: Based on the currently estimated model, optimize an
action sequence {u0, . . . , uM−1} which could drives
the system’s state from x0 to x̄0, by solving (18).

7: Apply the actions {u0, . . . , uM−1, ū0, , . . . , ūT−1} to
the real system and collect new samples Dnew.

8: Add newly collected samples to total samplesD = D∪
Dnew.

9: end for

C. IMPROVED GLOBAL AND LOCAL EXPLORATIONS
The proposed method Global and Local Explorations finds a
local informative area from the state-action space by globally
searching for the most informative state-action pair (x∗, u∗)
and assuming that the area around (x∗, u∗) should be also very
informative. This assumption is a bit heuristic. In this subsec-
tion, a more reasonable way to search for a local informative
area is proposed, and the corresponding algorithm is called
Improved Global and Local Explorations.

A local informative trajectory {x̄0, ū0, ū1, . . . , ūT−1} can
be found by maximizing the sum of differential entropies
along the trajectory:

x̄0, ū0, . . . , ūT−1

= argmax
x̄0,ū0,...,ūT−1

T−1∑
t=0

H [f (x̄t , ūt )]

s.t. x̄t+1 = µ(x̄t , ūt ), for t = 0, . . . ,T − 2

umin ≤ u ≤ umax, (17)

where x̄0 is the initial state of the local informative trajectory.
This trajectory is very informative since all the information
along the trajectory is taken into account. To explore this local
informative trajectory, the system’s state should be driven
to x̄0 from x0 at first. Based on the currently estimated GP
model, an action sequence which could steer the system’s
state from x0 to x̄0 can be obtained by solving the following
optimal control problem:

u0, . . . , uM−1

= argmin
u0,...,uM−1

M−1∑
t=0

[
(xt − x̄0)TQ(xt − x̄0)

+uTt Rut
]
+ (xM − x̄0)TQT (xM − x̄0)

s.t. xt+1 = µ(xt , ut ), for t = 0, . . . ,M − 1

umin ≤ u ≤ umax. (18)

Algorithm 2 summarizes the framework of the method
Improved Global and Local Explorations. The optimization
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problems in (14) and (16)-(18) are solved by the multiple
shooting method using the package CasADi [25].

For the proposed methods Global and Local Explorations
and Improved Global and Local Explorations, to explore the
local informative trajectory found by the global exploration,
an action sequence {u0, . . . , uM−1} with horizon M which
could drive the system’s state from the initial state x0 to the
desired state (x∗ or x̄0) should be obtained at first, as shown
in (14) or (18). If M is too small, the system’s state can not
reach the desired state even if the action sequence is opti-
mized using the true dynamics. If M is too large, the sample
efficiency along the trajectory from x0 to the desired state
will be very low. Thus M should be large enough so that the
system’s state could reach any desired state starting from the
initial state x0, but at the same timeM should not be too large
so that the sample efficiency along the trajectory from x0 to
the desired state will not be too low.When learning dynamical
systems by data-driven methods, it is common to use the
analytical physical model (may be inaccurate due to the diffi-
culty of modeling complex friction and damping) as the prior
information [26], [27]. The analytical physical model such as
ordinary differential equations (ODEs) can help the choice of
M . Denote ODEs derived using the Lagrange method as:

ẋ = g(x, u;w), (19)

with unknown physical parameter w identified using training
data. Regarding ODEs as the true dynamics, choosing a set
of desired states {x∗1 , x

∗

2 , . . . , x
∗
l } which are far away from

the initial state x0, determine through trial and error how
many time steps the system needs to reach these desired states
starting from x0. The horizon M should be large enough so
that the system’s state could reach any desired state starting
from x0. For systems whose analytical physical models are
hard to derive, it is better to choose a relatively largeM . The
horizon T is the sample size of the local informative trajectory
found by the global exploration. With larger T , the algorithm
could explore the state-action space more efficiently, but
solving the optimization problems (16) and (17) becomes
much more difficult, as well as the computational complexity
and memory demand are much higher, and vice versa. On the
premise of being able to solve the optimization problems (16)
and (17), larger values of T are preferred.
In (14) and (18), since the currently estimated GP model

is used for planning, it is not guaranteed that the opti-
mized action sequence {u0, . . . , uM−1} is actually going to
drive the system’s state towards the desired state (x∗ or x̄0).
Whether the system’s state reaches the desired state under
{u0, . . . , uM−1} is not important. If the actually reached state
deviates seriously from the desired state, it means that the
estimated GP model is very inaccurate along the trajectory,
thus the collected samples are very informative and will
greatly improve the accuracy of the GP model.

Compared with the method Separated Search and Con-
trol, the proposed methods are capable of exploring the
state-action space much more efficiently because the agent
focuses on exploring an informative area instead of a single

informative point at each iteration. The method Informative
Control Trajectory optimizes an informative action sequence
{u0, . . . , uT−1} with the initial state x0 at each iteration.
In the case of very bounded actions, in order to explore the
unknown areas of the state space which are far away from
x0, the horizon T must be chosen relatively large. Because
the objective function is too complicated, the optimization
problem in (11) can not be solved successfully, and the com-
putational complexity and memory demand are very high.
As a result, the method Informative Control Trajectory is
not able to efficiently explore the whole state space. Instead
of optimizing a long informative trajectory with the initial
state x0, the proposed methods search for a relatively short
informative trajectory with the initial state xM+1 or x̄0 by
solving (16) or (17). Then to explore this informative trajec-
tory, an action sequence is optimized to drive the system’s
state towards xM+1 or x̄0 from x0. By this way, on the one
hand the algorithm can efficiently explore the whole state
space. On the other hand, the optimization problems are
much easier to solve, and the computational complexity and
memory demand are much lower compared with the method
Informative Control Trajectory. These conclusions will be
verified via the following empirical evaluations.

IV. SIMULATIONS
A. SIMULATED DYNAMICAL SYSTEMS
The proposed methods and the existing methods are com-
pared on three simulated dynamical systems as shown
in Fig. 1.

1) CART-POLE
The physical parameters are: cart mass m1 = 0.5kg, pole
mass m2 = 0.5kg, pole length l = 0.6m, friction coeffi-
cient between the cart and its rail µ = 0.2Ns/m, bounded
horizontal force u ∈ [−3.5, 3.5]N. The time discretization is
1t = 0.1s. The action u is piecewise constant and can be
modified every 1t = 0.1s. The cart-pole system has four
states: the position of the cart y, its velocity ẏ, the angle of
the pole θ , and the angular velocity θ̇ , which are collected as
x = [y, ẏ, θ, θ̇ ]T. The pole angle θ is measured anticlockwise
from hanging down. The initial state is x0 = [0, 0, 0, 0]T.

2) MODIFIED REACHER-V2 IN MUJOCO [28]
The modified Reacher-v2 is a two-link planar manipula-
tor with two actuated joints. The bounded torques in the
original Reacher-v2 are u1, u2 ∈ [−1, 1]N. To increase
the difficulty of exploration, the bounded torques in the
modified Reacher-v2 are set as u1, u2 ∈ [−0.2, 0.2]N.
The time discretization is 1t = 0.01s. The state is x =
[cos θ1, cos θ2, sin θ1, sin θ2, vx , vy]T, with θ1, θ2 joint angles,
vx , vy velocities of the fingertip in the x, y directions. The
initial state is x0 = [1, 1, 0, 0, 0, 0]T.

3) 3-LINK REACHER
This is a three-link planar manipulator with three actuated
joints. The bounded torques are u1, u2, u3 ∈ [−0.2, 0.2]N.
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FIGURE 1. Simulated dynamical systems.

TABLE 1. Horizons.

The time discretization is 1t = 0.01s. The state is
x = [cos θ1, cos θ2, cos θ3, sin θ1, sin θ2, sin θ3, θ̇1, θ̇2, θ̇3]T,
with θ1, θ2, θ3 joint angles, θ̇1, θ̇2, θ̇3 angular velocities. The
initial state is x0 = [1, 1, 1, 0, 0, 0, 0, 0, 0]T.
The angle θ ∈ [−π, π] is a discontinuous function of

the GP input (x, u) which is hard to be modeled by the
GP with the squared exponential kernel. To avoid the diffi-
culty of modeling discontinuity, the angle θ in the state x
of the cart-pole is extended to (sin θ, cos θ ). Then the state
of the cart-pole is augmented to x = [y, ẏ, sin θ, cos θ, θ̇ ]T.
An independent GP is used for each dimension of the state.
Assume that the initial state of the system is always at x0. For
all systems, the action u is set so limited that it is difficult to
explore the areas of the state space far away from the initial
state x0 when applying random actions.
The initial training data is generated by applying random

actions. All methods share the same initial training data.
To fairly compare the models learned by various methods
over iterations, all methods obtain the same number of sam-
ples at each iteration. For different methods and different
systems, corresponding horizons are summarized in Table 1.
The meanings ofM and T are explained in Section III. In the
remaining of the paper, Sepa represents the method Separated
Search and Control; Info represents the method Informative
Control Trajectory; Glob represents the method Global and
Local Explorations; iGlob represents the method Improved
Global and Local Explorations.

B. EVALUATION CRITERIA
The quality of the learned model is evaluated on four criteria:
(1) accuracy of the one-step prediction; (2) accuracy of the
long-term prediction; (3) exploration ratio of the state space;
(4) informativeness of the explored trajectory.

1) ACCURACY OF THE ONE-STEP PREDICTION
Randomly generate a set of samples of the state-action
pair (x, u) from the state-action space X × U , denoted as

(xi, ui)
N1
i=1. For each (xi, ui), the predictive distribution of

the next state is Gaussian with mean µ(xi, ui) and variance
σ 2(xi, ui), (5) and (6). The true value of the next state is
f (xi, ui). The root mean square error (RMSE) for the one-step
prediction is calculated by:

RMSEone-step =

√√√√ 1
N1

N1∑
i=1

(µ(xi, ui)− f (xi, ui))2. (20)

The mean absolute percentage error (MAPE) for the one-step
prediction is defined as:

MAPEone-step =
1
N1

N1∑
i=1

∣∣∣∣µ(xi, ui)− f (xi, ui)f (xi, ui)

∣∣∣∣ . (21)

Since each dimension of the system function f is mod-
eled by an independent GP, there is a RMSE and a MAPE
for each dimension of the state. For the cart-pole, ran-
domly generate 1250 samples of (x, u) from the state-action
space {y ∈ [−20, 20], ẏ ∈ [−10, 10], θ ∈ [−π, π], θ̇ ∈
[−10, 10], u ∈ [−3.5, 3.5]}. For the modified Reacher-
v2, randomly generate 1250 samples of (x, u) from the
state-action space {θ1 ∈ [−π, π], θ2 ∈ [−π, π], vx ∈
[−15, 15], vy ∈ [−15, 15], u1 ∈ [−0.2, 0.2], u2 ∈

[−0.2, 0.2]}. For the 3-link Reacher, randomly generate
5000 samples of (x, u) from the state-action space {θ1 ∈
[−π, π], θ2 ∈ [−π, π], θ3 ∈ [−π, π], θ̇1 ∈ [−10, 10], θ̇2 ∈
[−10, 10], θ̇3 ∈ [−10, 10], u1 ∈ [−0.2, 0.2], u2 ∈ [−0.2,
0.2], u3 ∈ [−0.2, 0.2]}.

2) ACCURACY OF THE LONG-TERM PREDICTION
Generate a set of testing trajectories {x(i)0 , u

(i)
0 , x

(i)
1 , u

(i)
1 , . . .}

(i = 1, 2, . . . ,N2). From each testing trajectory {x(i)0 ,
u(i)0 , x

(i)
1 , u

(i)
1 , . . .}, randomly choose N3 states as the initial

states, and predict the statesK steps into the future (cart-pole:
K = 10, modified Reacher-v2: K = 20, 3-link Reacher:
K = 20). For example, if the state x(i)j is chosen as the initial
state, the predicted state can be derived from:

x̄(i)j+k+1 = µ(x̄
(i)
j+k , u

(i)
j+k ), for k = 0, . . . ,K − 1

x̄(i)j = x(i)j , (22)

where µ is the predictive mean in (5). The predicted state is
x̄(i)j+K and the true state is x(i)j+K . Summarize all the predicted
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FIGURE 2. RMSEs of one-step prediction over iterations for the cart-pole.

FIGURE 3. MAPEs of one-step prediction over iterations for the cart-pole.

states as {x̄l}
N2N3
l=1 , all the true states as {xl}

N2N3
l=1 , the RMSE for

the long-term prediction is calculated by:

RMSElong-term =

√√√√ 1
N2N3

N2N3∑
l=1

(x̄l − xl)2. (23)

The MAPE for the long-term prediction is calculated by:

MAPElong-term =
1

N2N3

N2N3∑
l=1

∣∣∣∣ x̄l − xlxl

∣∣∣∣ . (24)

Similarly for each dimension of the state, there is
a RMSE and a MAPE of the long-term prediction.
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FIGURE 4. RMSEs of long-term prediction over iterations for the cart-pole.

FIGURE 5. MAPEs of long-term prediction over iterations for the cart-pole.

Generate 6, 6 and 8 testing trajectories for the cart-
pole, the modified Reacher-v2 and the 3-link Reacher
respectively.

3) EXPLORATION RATIO OF THE STATE SPACE
The exploration efficiency of the active learning algorithm
can be quantified by the exploration ratio. The state space

VOLUME 10, 2022 24223



S. Tang et al.: Actively Learning Gaussian Process Dynamical Systems Through Global and Local Explorations

FIGURE 6. RMSEs of one-step prediction over iterations for the modified Reacher-v2.

FIGURE 7. MAPEs of one-step prediction over iterations for the modified Reacher-v2.

X for the cart-pole is {ẏ ∈ [−10, 10], θ ∈ [−π, π], θ̇ ∈
[−10, 10]}. The position y is not included because it is less
important for the cart-pole’s dynamics. Discretize the state

space X with bins [10, 20, 10]. The state space X for the
modified Reacher-v2 is {θ1 ∈ [−π, π], θ2 ∈ [−π, π], vx ∈
[−15, 15], vy ∈ [−15, 15]}. Discretize the state space X
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FIGURE 8. RMSEs of long-term prediction over iterations for the modified Reacher-v2.

FIGURE 9. MAPEs of long-term prediction over iterations for the modified Reacher-v2.

with bins [20, 20, 10, 10]. The state space X for the 3-link
Reacher is {θ1 ∈ [−π, π], θ2 ∈ [−π, π], θ3 ∈ [−π, π], θ̇1 ∈
[−10, 10], θ̇2 ∈ [−10, 10], θ̇3 ∈ [−10, 10]}. Discretize the

state space X with bins [20, 20, 20, 10, 10, 10]. Suppose that
the number of visited cells of the state space X is Nvisited
and the number of total cells is Ntotal. The exploration ratio
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FIGURE 10. RMSEs of one-step prediction over iterations for the 3-link Reacher.

TABLE 2. Average running time for each algorithm (seconds).

is calculated by:

exploration ratio =
Nvisited

Ntotal
. (25)

4) INFORMATIVENESS OF THE EXPLORED TRAJECTORY
At each iteration, the active learning algorithm optimizes
an action sequence {u0, u1, . . . , uT ′−1}. Then a trajectory is
explored by applying this action sequence to the true sys-
tem, {x0, u0, x1, u1, . . . , xT ′−1, uT ′−1, xT ′}. The informative-
ness of this explored trajectory can be measured by the sum

of differential entropies along the trajectory:

sum of differential entropies =
T ′−1∑
t=0

H [f (xt , ut )]. (26)

V. RESULTS AND DISCUSSION
The number of iterations Niter is 4, 6, 7 for the cart-pole, the
modified Reacher-v2 and the 3-link Reacher respectively. For
the modified Reacher-v2 and the 3-link Reacher, the evalu-
ation of Info is not possible when the number of iterations
Niter exceeds 4 due to its high memory demand, so Info only
goes through 4 iterations. Independently run each algorithm
20 times on each system. Table 2 shows the average time per
run of the algorithm. The time unit is seconds. The values in
parentheses mean the average running times when Niter = 4.
Info takes muchmore time than other methods due to the high
computational complexity of solving (11). Glob and iGlob
take longer time than Sepa.

24226 VOLUME 10, 2022



S. Tang et al.: Actively Learning Gaussian Process Dynamical Systems Through Global and Local Explorations

FIGURE 11. MAPEs of one-step prediction over iterations for the 3-link Reacher.

The RMSEs and MAPEs of the one-step prediction
and the long-term prediction over iterations are shown in
Figs. 2 to 13. Each plot in a figure represents one dimension
of the state. Themeans (curves) and standard deviations (error
bars) are obtained over 20 independent runs of the algorithms.
For the cart-pole (Figs. 2 to 5), Glob and iGlob have the
best performances because the RMSEs and MAPEs of the
one-step prediction and the long-term prediction decrease
the fastest; Sepa follows; and Info performs the worst. The
reasons are as follows. With very bounded actions, in order
to explore the informative areas of the state space which
are far away from the initial state, the horizon T of Info
must be chosen relatively large. However, solving the opti-
mization problem in (11) is very difficult when the horizon
T is large, and the solution may be a very bad local opti-
mum. For the cart-pole, the state around the swing-up is very
informative. With Info, the agent can not successfully visit
the swing-up state in most cases. That is why the RMSEs

and MAPEs obtained from Info decrease the slowest. With
Sepa, the agent is able to explore the swing-up state grad-
ually during iterations. However, Sepa is very inefficient
since it focuses on visiting a single informative sample at
each iteration. As a result, the RMSEs and MAPEs obtained
from Sepa, Glob and iGlob converge to almost the same
values in the end, but the RMSEs and MAPEs obtained
from Sepa decrease slower than those obtained from Glob
and iGlob. The proposed methods Glob and iGlob combine
global and local explorations. At each iteration, the agent
globally searches for an informative trajectory in the whole
state-action space instead of a single informative point, and
then explores the found local informative trajectory. By this
way, the agent is able to explore the state-action space much
more efficiently. Finally iGlob searches for the informa-
tive trajectories in a better way than Glob as discussed in
Section III-C. That is why iGlob performs slightly better than
Glob.

VOLUME 10, 2022 24227



S. Tang et al.: Actively Learning Gaussian Process Dynamical Systems Through Global and Local Explorations

FIGURE 12. RMSEs of long-term prediction over iterations for the 3-link Reacher.

For the modified Reacher-v2 (Figs. 6 to 9), Glob and
iGlob have the best performances because the RMSEs and
MAPEs of the one-step prediction and the long-term predic-
tion decrease the fastest; Info follows; and Sepa performs
the worst. For vx , vy, the RMSEs and MAPEs obtained from
Glob, iGlob and Info are very small and very close. The
RMSEs and MAPEs obtained from Sepa decease the slowest
because Sepa focuses on exploring a single informative sam-
ple at each iteration and is very inefficient. Compared with
Sepa, Info has the potential to explore the state-action space
more efficiently. However, solving the optimization problem
in (11) with relatively large horizon T is very difficult and a
bad local optimum may be obtained. As a result, the RMSEs
and MAPEs obtained from Info decrease faster than those
obtained fromSepa, but slower than those obtained fromGlob
and iGlob. Finally iGlob performs better than Glob because

iGlob searches for the informative areas in a better way than
Glob.

The results of the 3-link Reacher (Figs. 10 to 13) are similar
to those of the modified Reacher-v2. Glob and iGlob have
the best performances because the RMSEs andMAPEs of the
one-step prediction and the long-term prediction decrease the
fastest; Info follows; and Sepa performs the worst. For angu-
lar velocities θ̇1, θ̇2, θ̇3, the RMSEs and MAPEs obtained
from Glob, iGlob, Info and Sepa are very small and very
close.

In general, the accuracy of the learned model is correlated
with the exploration ratio of the learning algorithm. The
higher exploration ratio is more likely to lead to a learned
model with smaller RMSEs and MAPEs. The exploration
ratios over iterations are shown in Fig. 14. For the cart-pole,
the exploration ratios of Glob and iGlob increase fastest,
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FIGURE 13. MAPEs of long-term prediction over iterations for the 3-link Reacher.

FIGURE 14. Exploration ratios over iterations.
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FIGURE 15. Sum of differential entropies along the explored trajectory over iterations.

followed by Sepa, and subsequently Info. And the exploration
ratios of iGlob increase slightly faster than those of Glob. For
the modified Reacher-v2 and the 3-link Reacher, the explo-
ration ratios of Glob and iGlob increase fastest, followed by
Info, and subsequently Sepa. And the exploration ratios of
iGlob increase faster than those of Glob. For all systems, the
results of exploration ratios correspond exactly to the results
of RMSEs and MAPEs of the one-step prediction and the
long-term prediction.

The sum of differential entropies along the explored tra-
jectory over iterations is shown in Fig. 15. For all systems,
Glob and iGlob have the largest sum of differential entropies,
and iGlob has slightly larger sum of differential entropies
than Glob. Larger sum of differential entropies represents
the more informative trajectory. Thus the proposed methods
could explore more informative trajectories at each iteration.

The above simulations demonstrate the advantages of the
proposed active learning algorithms. The computational com-
plexity and memory demand of Glob and iGlob are slightly
higher than those of Sepa, but much lower than those of Info.
Glob and iGlob can explore the state spaces more efficiently
and yield more accurate models of the dynamical systems.

VI. CONCLUSION
This paper proposes more sample-efficient methods to
actively learn the dynamical systems which are modeled by
Gaussian processes. By combining the global and local explo-
rations, the proposed methods could explore the state-action
space of the dynamical system more efficiently, generate
more informative samples, and learn a more accurate model.
The proposed methods are compared to the existing methods
in the literature on simulated dynamical systems in terms of
the one-step and long-term predictive accuracies, the explo-
ration ratio and the informativeness of the explored trajectory.
The simulation results demonstrate that the proposed meth-
ods perform better.

In future work, the proposed methods will be scaled to
dynamical systems with high-dimensional states by replacing
Gaussian processes with Bayesian neural networks, which
scale much better with the number of samples. Furthermore,
as another information-based criterion, the information gain
will be incorporated into the proposed methods.
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