
Received May 7, 2022, accepted May 31, 2022, date of publication June 3, 2022, date of current version June 9, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3180178

Beamforming Feedback-Based Model-Driven
Angle of Departure Estimation Toward
Legacy Support in WiFi Sensing:
An Experimental Study
SOHEI ITAHARA 1, (Graduate Student Member, IEEE),
SOTA KONDO 1, (Graduate Student Member, IEEE),
KOTA YAMASHITA 1, (Student Member, IEEE), TAKAYUKI NISHIO 1,2, (Senior Member, IEEE),
KOJI YAMAMOTO 1, (Senior Member, IEEE), AND YUSUKE KODA 3, (Member, IEEE)
1Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
2School of Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
3Centre of Wireless Communications, University of Oulu, 90014 Oulu, Finland

Corresponding author: Koji Yamamoto (kyamamot@i.kyoto-u.ac.jp)

This work was supported in part by the Research and Development through the Ministry of Internal Affairs and Communications/Strategic
Information and Communications R&D Promotion Programme (MIC/SCOPE) under Grant JP196000002, and in part by the Japan Society
for the Promotion of Science (JSPS) KAKENHI under Grant JP18H01442.

ABSTRACT In this study, we experimentally validated the possibility of estimating the angle of depar-
ture (AoD) using multiple signal classification (MUSIC) with only WiFi control frames for beamforming
feedback (BFF), defined in IEEE 802.11ac/ax. The examined BFF-based MUSIC is a model-driven algo-
rithm that does not require a pre-obtained database. This is in contrast with most existing BFF-based sensing
techniques, which are data-driven and require a pre-obtained database.Moreover, BFF-basedMUSIC affords
an alternative AoD estimation method without requiring access to the channel state information (CSI).
Extensive experimental and numerical evaluations demonstrate that BFF-based MUSIC can successfully
estimate the AoDs for multiple propagation paths. Moreover, the evaluations performed in this study reveal
that BFF-based MUSIC, where BFF is a highly compressed version of CSI in IEEE 802.11ac/ax, achieves
an error of AoD estimation that is comparable to that of CSI-based MUSIC.

INDEX TERMS Wireless sensing, channel state information, beamforming feedback, MUSIC algorithm.

I. INTRODUCTION
WiFi sensing [1], [2] is envisioned as a technology that adds
value to existing wireless local area networks beyond the
communication infrastructure. In WiFi sensing, an exam-
ple of the widely used radio frequency (RF) information
is the channel state information (CSI), which is measured
in multiple-input multiple-output orthogonal frequency-
division multiplexing (MIMO-OFDM) systems [1]. CSI
demonstrates a high sensing ability to facilitate CSI-based
sensing with a low implementation cost and high sensing
accuracy.

Currently, the next-generation WiFi standards task group,
IEEE 802.11bf [3], is actively embedding WiFi sensing
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ability into WiFi standards. In IEEE 802.11bf [3], allowing
WiFi sensing with legacy devices (i.e., devices whose phys-
ical (PHY) layers are compliant with legacy WiFi standards,
such as IEEE 802.11ac/ax [4], [5]) is essential. A challenge
in terms of meeting this requirement is that the legacy PHY
layer processes and discards CSI, thereby restricting the use
of CSI for WiFi sensing.

To address this challenge, beamforming feedback (BFF),
which is a compressed version of CSI, has attracted attention
as alternative RF information to CSI [6]–[13]. Specifically,
BFF includes a highly quantized right singular matrix of
the CSI matrix for each subcarrier and subcarrier-averaged
stream gain. In IEEE 802.11ac/ax [4], [5], a station (STA)
transmits BFFs to an access point (AP) without encryption,
which allows an arbitraryWiFi device to obtain the BFFswith
medium access control (MAC)-level frame-capturing tools.
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Previous studies [6]–[13] have demonstrated the feasibility
of BFF-based sensing in several sensing tasks, such as human
localization and respiratory estimation.

However, existing BFF-based sensing literature lacks in
the following two aspects: 1) model-driven sensing and
2) comparison of CSI with BFF in terms of the sensing accu-
racy. For the first aspect, to the best of the authors’ knowl-
edge, in the BFF-based sensing literature, no model-driven
algorithms exist that geometrically estimate the surrounding
environment based on mathematical modeling. Specifically,
in existing BFF-based sensing methods [6]–[11], referred
to as data-driven methods, sensing tasks are conducted via
pattern matching to a pre-obtained training dataset, which
comprises the BFF and corresponding actual-measured target
labels (e.g., human locations or device locations). Because
such generation procedures of training datasets incur tremen-
dous human costs, the cost of data-driven sensing is gener-
ally higher than that of model-driven sensing. Therefore, the
lack of model-driven methods in BFF-based sensing litera-
ture results in significant drawbacks for CSI-based sensing,
including model-driven algorithms [14], [15].

This motivated the development of a BFF-based model-
driven sensing algorithm that does not require preparation of
the dataset. To this end, we revisited model-based sensing
in CSI-based sensing literature. A fundamental technique
referred to as the multiple signal classification (MUSIC)
algorithm [16] was used to estimate the angle of depar-
ture (AoD) for each multiple propagation path. AoD is useful
for device localization, human detection, human localization,
and human tracking [1].

This study demonstrates that an extension of the MUSIC
algorithm [16] can be realized using BFF. Specifically, given
Λ̄ and V k as the subcarrier-averaged stream gain and right
singular matrix of the CSI matrix at the kth subcarrier,
respectively, noise subspace vectors in the MUSIC algo-
rithm can be estimated as the eigenvectors of a covariance
matrix

∑
k V kΛ̄VH

k with an eigenvalue of zero. In con-
trast, CSI-based MUSIC generally uses a covariance matrix∑

k hk
Hhk , where hk represents a row vector of the CSI

matrix. Mathematical analyses reveal that the role of the
covariance matrix obtained from BFF is the same as that
of the covariance matrix obtained from CSI. Our numerical
evaluation and extensive experimental evaluations indicate
that the BFF-based MUSIC algorithm accurately estimates
AoDs and is comparable to the CSI-based MUSIC algorithm.

Regarding the second aspect, to the best of the authors’
knowledge, existing BFF-based sensing approaches have not
provided sensing-accuracy comparisons between CSI and
BFF. Instead of the benefit of the usability of BFF, because
BFF is a highly compressed version of CSI, the sensing
accuracy of BFF is, in principle, lower than that of CSI. Thus,
experimental comparisons of CSI and BFF are essential to
assess the feasibility of replacing CSI with BFF. We com-
pared the AoD estimation accuracy of BFF- and CSI-based
sensing and revealed that the accuracy of BFF-based sensing
is comparable to that of CSI-based sensing. Specifically, in

three experimental environments, themedian AoD estimation
accuracy difference between BFF-based MUSIC and CSI-
based MUSIC was found to be smaller than 0.1◦.

The contributions of this study are summarized as follows:

• We analytically confirmed that the MUSIC algorithm
can be employed using only the BFF frame, specifically
Λ̄ and V k . Noise subspace vectors in the MUSIC algo-
rithm are estimated as eigenvectors of

∑
k V kΛ̄VH

k with
an eigenvalue of zero. This finding indicates that AoD
estimation explicitly based on BFF is possible, thereby
elucidating the applicability of model-driven BFF-based
sensing in various sensing tasks (e.g., human sensing and
device localization).

• Through experimental evaluations, we revealed that the
AoD estimation accuracy of BFF-based MUSIC is com-
parable to that of CSI-based MUSIC. This is despite the
fact that the BFF procedure defined in IEEE 802.11ac/ax
quantizes V k and Λ̄ (e.g., 3 × 2 complex matrix is
represented by only 30 bit). That is, we demonstrated
the feasibility of model-driven BFF-based sensing as
an alternative method without requiring access to CSI.
Furthermore, note that this is the first work that com-
pares BFF-based sensing and CSI-based sensing in
terms of the sensing accuracy under same experimental
environments.

This study focused on the feasibility of the originalMUSIC
algorithm using BFF and the assessment of the accuracy
degradation of BFF with respect to CSI. Thus, a compari-
son and implementation with more sophisticated CSI-based
sensing methods such as [14], data-driven BFF-based sensing
methods, and AoD estimation techniques based on observa-
tion of the signal itself [17], [18] lie outside the scope of this
study.

II. RELATED WORKS
Herein, we present a brief overview of the existing WiFi
sensing literature utilizing CSI and BFF, detailing differences
between the motivations behind these existing studies and our
research. Note that AoD estimation techniques based on an
observation of the signal itself [17], [18] are not generally
used for WiFi sensing.

A. CSI-BASED SENSING
Owing to the rich sensing capacity of CSI, it has attracted
attention in terms of providing RF information for WiFi
sensing [1], [2]. Existing CSI-based sensing methods include
model-driven methods [1], [2], [14], [15], [19] and data-
driven methods [1], [2], [20]. While data-driven methods
incur considerable costs for collecting training datasets,
model-driven methods are executed without any train-
ing dataset, thus resulting in lower implementation costs.
A basic approach of model-driven methods is the MUSIC
algorithm [14]–[16], which is detailed in Section III-D.
Based on the MUSIC algorithm, various extended versions
[14], [21], [22] have been proposed.
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TABLE 1. Summary of BFF-based WiFi sensing.

However, general WiFi devices discard CSI in the PHY
layer, and thus, they cannot conduct CSI-based sensing with-
out remodeling their firmware. Thus, a remodeled firmware
(e.g., [23]–[25]) is required to conduct CSI-based sensing.
Moreover, few wireless chips permit access to the PHY layer
from the remodeled firmware.

B. BFF-BASED SENSING
In contrast to CSI-based sensing, BFF-based sensing, which
can be performed using arbitrary devices that are compliant
with the IEEE 802.11ac/ax standard, is the focus herein.
As mentioned in the previous section, BFFs can be collected
via MAC-layer frame capturing without any constraints
regarding the firmware. Thus, BFF sensing demonstrates
potential as an alternative to CSI in WiFi sensing with legacy
devices.

Table 1 summarizes existing BFF-based sensing studies.
Most studies [6]–[8], [10]–[13] are categorized as data-driven
methods. Only [9] is categorized as a model-driven method.
[9] estimated the respiratory rate of a human by focusing on
the relationship between the temporal variations of BFF and
respiratory rate. However, [9] is a heuristic model and does
not provide any propagation model-based analyses. In con-
trast with these studies, the present study is based on a well-
known propagation model [26]. Furthermore, we analytically
confirm that the AoD is estimated using BFF via the MUSIC
algorithm.

Moreover, this is the first study that presents accuracy
comparisons between CSI and BFF. Prior studies [6]–[13]
have only provided the accuracy of BFF-based sensing and
have not performed comparisons between CSI- and BFF-
based sensing. Because BFF includes significant quantization
losses, the accuracy of BFF-based sensing is principally infe-
rior to that of CSI-based sensing. Thus, evaluating the degree
of accuracy degradation is essential to assess whether BFF
serve as an alternative to CSI. Our extensive experimental
evaluations revealed that the median of the AoD estimation
accuracy of BFF-based MUSIC is comparable to that of
CSI-based MUSIC.

III. PRELIMINARIES
A. NOTATIONS
We denote the transpose of a matrix H as HT, its conjugate
as H∗, its Hermitian transpose as HH, and the (i, j) element
as Hi,j. We denote the ith element of a vector a as ai, and
the Euclidean norm as |a|. The identity matrix is represented

as E. The diagonal matrix, whose ith diagonal element is ai,
is represented as diag(a). The M × N zero matrix is denoted
as 0M×N .

B. BEAMFORMING FEEDBACK SCHEME IN
IEEE 802.11ac/AX
We consider a MIMO communication system in which
a transmitter (e.g., AP) transmits signals to the receiver
(e.g., STA). We denote the CSI matrix from the transmitter
to the receiver at the kth subcarrier as Hk ∈ CM×N , where
M and N denote the number of antenna elements of the
receiver and transmitter, respectively. In IEEE 802.11ac/ax
standards, to provide efficient eigen beam-space division
multiplexing [27], the receiver feeds back the BFF frame to
the transmitter [4], [5], which contains a compressed version
of the CSI matrix. Because the BFF frame is exchanged over
the air without encryption, BFFs can be obtained using MAC
frame-capturing tools, thus enabling an arbitrary sniffer to
perform BFF-based WiFi sensing without requiring access to
PHY layer components of the transmitter and receiver [7].

BFF contains the highly quantized right singular matrixV k
of the CSI matrix Hk for each subcarrier and a subcarrier-
averaged stream gain [4], [5]. The right singular vector V k is
calculated using singular value decomposition as follows:

Hk = UkΣkV k
H, (1)

whereUk and V k represent unitary matrices, andΣk denotes
a diagonal matrix with singular values [28]. Denoting the
number of subcarriers as K , the subcarrier-averaged stream
gain is represented by a diagonal matrix Λ̄, where

Λ̄ =
1
K

K∑
k=1

Σk
2. (2)

Notably, the diagonal elements of Σk are generally real and
positive and are listed in a descending order.

As per the IEEE 802.11ac/ax [4], [5] standards, V k and
Λ̄ are highly quantized to reduce the payload size of the
BFF frame. Specifically, V k is converted to N angle angles
without incurring any quantization losses using Givens rota-
tion, where N angle is determined by N and M . The N angle

angles are quantized using a predefined quantization step size
1 and are contained in a BFF frame. The IEEE 802.11ac
standard [5] defines four quantization step sizes: π/4 rad,
π/8 rad, π/16 rad, and π/32 rad. The subcarrier-averaged
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stream gain Λ̄ is quantized with quantization step sizes of
0.25 dB [5].

C. PROPAGATION MODEL
We consider a discrete physical propagation model [26],
in which a uniform linear array is employed at the trans-
mitter and receiver. In the following description, for sim-
plicity, we assume that the distances between consecutive
antennas at the transmitter and receiver are the same and are
denoted as d .1

Let L denote the number of propagation paths.
Additionally, let φl be the AoD and θl be the angle of
arrival of the lth path. The complex scalar rl denotes atten-
uation from the transmitter’s first antenna to the receiver’s
first antenna by the signal traveling along the lth prop-
agation path. We denote a complex phase shift a(θ ) as
exp(2πd sin(θ )/λ), where λ represents the wavelength. For
shorthand notation, let L-dimensional vectors θ , φ, and r
represent (θ1, . . . , θL)T, (φ1, . . . , φL)T, and (r1, . . . , rL)T,
respectively. Additionally, we denote the steering vector
a(θ ) := (1, a(θ ), . . . , a(θ )M−1)T; L × M steering matrix
A(θ) := (a(θ1), . . . , a(θL))T; and L × L diagonal matrix
R := diag(r). In the discrete physical propagationmodel [26],
the CSI matrix H is represented as follows:

H = A(θ)RA(φ)H. (3)

D. MULTIPLE SIGNAL CLASSIFICATION (MUSIC)
ALGORITHM
The CSI-based MUSIC algorithm [15] estimates multiple
AoDs from CSI by assuming L < N . The general CSI-
based MUSIC algorithm comprises the following three steps
[14]–[16]: First, given an arbitrary slim and full-rank
matrix S, we estimate a matrix X represented by SA(φ)H. For
example, in [14], [16], thematrixX0 is aK×M matrix, whose
kth row vector is the first row vector of the CSI matrix at the
kth subcarrier.

Considering the propagation model denoted in (3), the
first row vector of the CSI matrix at the kth subcarrier is
represented by

hk =
(
rTkA(φ)

H
)T
. (4)

Given a K × L matrix S0 := (r1, . . . , rK )T, the matrix X0 is
represented by

X0 = (h1, . . . ,h1)T =
(
A(φ)∗r1, . . . ,A(φ)∗rK

)T (5)

= (r1, . . . , rK )TA(φ)H = S0 A(φ)H. (6)

Generally, S0 is slim and full-rank [15], [16]; thus, X0 is
represented as a product of the slim and full-rank matrix
and A(φ)H.

Second, a covariance matrix C := XHX is obtained, and
M − L noise subspace vectors e1, . . . , eM−L are calculated

1This assumption can be easily expanded to the case in which the distances
between consecutive antennas differ between the transmitter and receiver.

FIGURE 1. System model of BFF-based MUSIC. STA transmits BFF to AP
without encryption, allowing the sniffer to capture the BFF and conduct
BFF-based sensing.

as M − L eigenvectors of C with small eigenvalues. Lastly,
the AoDs are estimated as angles that achieve peaks of the
MUSIC spectrum g(φ), where

g(φ) :=
1

a(φ)HEN
HEN a(φ)

, (7)

where EN = (e1, . . . , eM−L).

IV. BEAMFORMING FEEDBACK-BASED MULTIPLE
SIGNAL CLASSIFICATION
Fig. 1 illustrates the system model comprising an STA,
an AP, and a sniffer. The STA receives the sounding frame
(e.g., the null data packet in IEEE 802.11ac/ax [4], [5]) from
the AP, estimates the CSI, and calculates the BFF from the
CSI, which is detailed in Section III-B. Then, the STA trans-
mits the BFF to the AP without any encryption. The sniffer
captures the BFF transmitted from the STA, decodes the BFF,
and obtains the right singular matrix V k for each subcar-
rier and subcarrier-averaged stream gain Λ̄. Subsequently,
the sniffer estimates the AoDs of the AP using the BFF-
based MUSIC algorithm, which is detailed in the following
sections.

We confirmed that the MUSIC algorithm is applicable for
using the BFF to estimate multiple AoDs, which has been
proven in Proposition 1. Specifically, assuming Λ̄ = Σk

2 for
all k , the covariance matrix used in the MUSIC algorithm can
be estimated as follows:

C =
K∑
k=1

V kΛ̄V k
H. (8)

Based on the covariance matrix,2 the AoDs are estimated
by the general MUSIC algorithm, which is detailed in
Section III-D.

2It should be noted that in [11], (8) was used for the feature extraction
method in the data preprocessing procedure for data-driven BFF-based
sensing.
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Theorem 1: Given a slim and full-rank matrix S and
assuming Λ̄ = Σk

2, the covariance matrix C defined in (8)
is denoted by the covariance matrix of SA(φ)H.

Proof: Based on the aforementioned assumptions, C in
(8) is expressed as follows:

C =
K∑
k=1

V kΣk
2V k

H. (9)

Substituting (1) and (3) into C, we obtain

C =
K∑
k=1

Hk
HHk =

K∑
k=1

A(φ)RkHA(θ)A(θ )HRkA(φ)H

= A(φ)

(
K∑
k=1

RkHA(θ )A(θ )HRk

)
A(φ)H. (10)

Using KM ×M matrix S :=
(
R1

HA(θ), . . . ,RKHA(θ )
)H

,

C = A(φ)SHSA(φ)H. (11)

Thus, this proposition proves that S is a full-rank matrix.
Based on the deduction that S0 is slim and full-rank, which is
detailed in Section III-D, the above proposition can be proven
by an indirect proof. We denote a diagonal matrix Â(θ) as
diag(a(θ1), . . . , a(θL)). If S is not a full-rank matrix, a non-
zero vector x ∈ CL satisfies

Sx = 0KM×1. (12)

The equation (12) is equivalent to

S0Â(θ )m−1x = 0K×1, ∀m = 1, . . . ,M . (13)

However, as denoted in [14], S0 is generally a slim and full-
rank matrix, and Â(θ )m−1 is regular; thus, this presents a
contradiction. �

A. DETAILED PROCEDURE
The detailed procedure of the BFF-based MUSIC algorithm
is presented in Algorithm 1. The STA estimates the CSI
using a sounding frame transmitted from the AP, calculates
the BFF from the CSI, and transmits the BFF to the AP.
We denote Hk,i as the CSI matrix at the kth subcarrier from
the ith sounding frame. We also denote the right singular
matrix and subcarrier-averaged stream gain of Hk,i as V k,i
and Λ̄i, respectively. The BFF corresponding to the ith sound-
ing frame includes

(
V1,i, . . . ,VK ,i

)
and Λ̄i. Λ̄i and V k,i

include quantization errors because the BFF frame is highly
quantized in IEEE 802.11ac/ax [4], [5], which is detailed in
Section III-B.
The frame capture obtains N pct BFF frames transmitted

from the STA and can estimate multiple AoDs of the AP
from the BFF frames. For each captured BFF frame, the
frame capture obtains the subcarrier-averaged stream gain Λ̄i
and the right singular matrix V k,i. Using Λ̄i and V k,i, the
covariance matrix C i is calculated as follows:

C i =
1
K

K∑
k=1

W kV k,iΛ̄i V k,i
HWH

k , (14)

Algorithm 1 BFF-Based MUSIC

Input: N pct BFF frames
1: for each packet i do
2: C i =

1
K

∑K
k=1W kV k,iΛ̄i V k,i

HWH
k .

3: end for
4: Averaging among packets: Cave

=
1

N pct

∑N pct

n=1 Cn
5: Spatial smoothing: Csmt

= f smt(Cave)
6: Obtain eigenvectors e1, . . . , eM of Csmt, where
e1, . . . , eM is aligned in descending order of its
eigenvalue.

7: Calculate the noise subspace matrix EN =

(e1, . . . , eM−L)T.
8: Evaluate the MUSIC spectrum 1/a(φ)HEN

HEN a(φ).
9: Obtain AoDs as L peaks of the MUSIC spectrum.

where W k denotes a diagonal matrix that compensates for
the phase shift introduced at the AP. The methods employed
to estimate W k are detailed in Section IV-B. We average C i
among N pct packets and use the averaged covariance matrix
Cave in the following MUSIC procedure, where

Cave
=

1
N pct

N pct∑
i=1

C i. (15)

Following the existing CSI-basedMUSICmethods [15], [29],
we apply spatial smoothing to Cave. We denote the spa-
tial smoothing function as f smt and the smoothed covari-
ance matrix as Csmt, where Csmt

= f smt(Cave). The spatial
smoothing procedure is detailed in Section IV-C. From the
smoothed covariance matrix Csmt, we estimate the AoDs
using the general MUSIC algorithm [16], as described in
Section III-D.
Notably, estimation of the number of propagation paths L is

required in the BFF-based MUSIC algorithm as in the CSI-
based MUSIC algorithm. In this work, we assume that L is
given, and the number of path estimation problem lies outside
the scope of this study. This is because the problem is not
specific to BFF-based sensing.

B. CALIBRATION PROCEDURE
To perform accurate AoD estimation, the compensation for
the phase offset introduced at the AP is required [15]. To this
end, we implemented a calibration method that estimates the
phase shift difference between the antenna elements. The
calibration procedure measures the BFF in the environment
where the number of propagation paths is only one, and the
AoD is given; subsequently, the phase offset at the AP is esti-
mated. Specifically, the calibration procedure is as follows:
the covariance matrix of the CSI matrix is estimated from the
BFF, and the eigenvector of the covariance matrix with the
largest eigenvalue corresponds to the phase shift of the AP.

Formally, we denote the phase offset introduced at the nth
antenna of the AP as ejτn,k . The calibration procedure then
estimates ej(τn,k−τ1,k ). For a shorthand notation, we denote a
diagonal matrix W k as diag

(
1, ej(τ2,k−τ1,k ), . . . , ej(τN ,k−τ1,k )

)
.
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Considering the N × 1 MIMO system, and given that L = 1
and the pre-obtained AoD is φ̂, the observed CSI matrix is
denoted as follows:

Hobs
k = ejτ1,k rka(φ̂)W k , (16)

where rk denotes the complex path gain.
The calibration procedure estimates W k using the pre-

obtained AoD φ̂ and BFF calculated from Hobs
k as follows.

We denote the right singular matrix and subcarrier-averaged
stream gain of Hobs

k as Vobs
k and Λ̄

obs
, respectively. First, the

covariance matrix of Hobs
k is estimated as Vobs

k Λ̄
obs

(Vobs
k )H.

The covariance matrix is also represented as follows:

(Hobs
k )HHobs

k = |rk |
2W k

Ha(φ̂)Ha(φ̂)W k . (17)

From (17), the covariance matrix has N−1 eigenvectors with
an eigenvalue of zero and an eigenvector with an eigenvalue
of |rk |2, and the latter eigenvector isW k

Ha(φ̂)H. Thus, denot-
ing the latter eigenvector as x := (1, x2, . . . , xN )T, W k is
estimated as

W k = diag(a(φ̂))Hdiag(x)H. (18)

In the MUSIC algorithm, which is implemented after cali-
bration,W kV k is used instead of V k .

C. SPATIAL SMOOTHING
As described in [15], [29], when multipath signals are phase-
synchronized with each other, distinct multipath signals are
recognized as one superposed signal, resulting in false peaks
in the MUSIC spectrum. To address this problem, we adopt
spatial smoothing [15], [29], which splits the antenna array
of an AP into multiple sub-antenna arrays. Given that M ′

antennas are integrated into a sub-antenna array, the antenna
array with M antennas is considered as M − M ′ + 1 sub-
antenna arrays. The covariance matrix is calculated for each
sub-antenna array in the spatial smoothing procedure, and
the covariance matrices are averaged. Specifically, given the
covariance matrix for the jth sub-antenna array as Csub

j ∈

CM ′×M ′ , Csub
j is a submatrix of C, where 1, . . . , j − 1,

j + M ′, . . . ,M rows and columns are removed from C. The
averaged covariance matrix Csmt

∈ CM ′×M ′ is obtained as
follows:

Csmt
=

1
M −M ′ + 1

M−M ′+1∑
j=1

Csub
j . (19)

The averaged covariance matrix Csmt is used for estimating
the noise subspace vectors, instead of the original covariance
matrix C.

V. NUMERICAL EVALUATION
Because ground-truth multiple AoDs generally cannot be
measured in a real-world environment, we examined the
capacity of BFF-based MUSIC to estimate multiple AoDs
through numerical evaluations. Moreover, in the extensive
experimental evaluations in real-world environments pre-
sented in Section VI, we evaluated the accuracy of AoD
estimation, assuming that only the direct path exists.

A. SETUP
Fig. 2 illustrates the system, which comprises an AP, an STA,
and a reflection point, resulting in two different propagation
paths between an antenna element of the AP and that of the
STA—i.e., a direct path and an indirect path caused by the
reflection point. The STA and reflection point exist at (0m,
10m) and (5.5m, 3m), respectively, whereas the AP exists
at any of the 11 points along the x-axis. Specifically, the
nath position of the AP is denoted by (na − 5m, 0m), where
0 ≤ na ≤ 10. The AP and STA are equipped with uniform
array antennas. Each of the antenna arrays contains four
antenna elements that are parallel to the x-axis.

We assume free-space propagation, wherein indirect paths
are decayed by a factor of 0.3 in amplitude, and we ignore
the effect of reflectionmore than once. CSI estimation is emu-
lated by addingGaussian noise to the ground-truth CSImatrix
Hk . Specifically, the estimated CSI at the kth subcarrier is
denoted as follows:

Hobs
k = Hk + N, (20)

where N represents an M × N complex matrix, for which
real and imaginary parts of the elements follow a Gaussian
distribution with a mean of zero and a variance of σ 2/2. Note
that σ 2 denotes the noise power at each antenna element.
We calculate Hobs

k for each subcarrier k and then obtain V k
for each subcarrier and subcarrier-averaged stream gain Λ̄
by following the procedure detailed in Section III-B. Specif-
ically, we select the quantization step size 1 of π/32 rad
for quantization of V k ,3 leading to a representation of the
4 × 4 right singular matrix V k by only 60 bit. Additionally,
as defined in the IEEE 802.11ac [5], the subcarrier-averaged
stream gain Λ̄ is quantized with a quantization step size
of 0.25 dB.

Moreover, to assess the error involved in multiple AoD
estimations, we swap the order of the estimated AoDs to
minimize the error between the estimated AoDs and ground-
truth AoDs; subsequently, the error is calculated from the
swapped versions of the estimated and ground-truth AoDs.
The detailed parameters are as follows: the distance of each
antenna element is 25mm, number of subcarriers is 52, band-
width is 20MHz, center frequency is 5.18GHz, number of
CSIs used for each AoD estimation N pct is 10, and number of
antenna elements in each sub-antenna arrayM ′ is two.

B. RESULT
Fig. 3 presents an example of the MUSIC spectrum function
g(φ) of the BFF- and CSI-based MUSIC algorithms, respec-
tively. The results presented in Fig. 3 are obtained under the
setting that the signal-to-noise ratio (SNR) is 20 dB, and the
AP exists at (−3m, 0m), which denotes the AP position
surrounded by the red square in Fig. 2. The two peaks of the
MUSIC spectrum function indicate the two estimated AoDs.

3The quantization step size 1 of π/32 rad is one of the quantization
step sizes defined in IEEE 802.11ac and is used in the BFF procedure in
commercial APs, ASUS RT-AC86U and Buffalo WXR-5700AX7S.
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FIGURE 2. Numerical evaluation environment. The STA and reflection
point exist at (0 m, 10 m) and (5.5 m, 3 m) in a two-dimensional space,
respectively. The AP exists at either of the 11 points denoted by blue dots.
Color-dotted lines indicate two propagation paths when the AP exists on
a point surrounded by a red square.

FIGURE 3. MUSIC spectrum function of BFF- and CSI-based MUSIC
obtained through numerical evaluation. The two peaks of the function
indicate the two estimated AoDs.

The estimated AoDs of the BFF-based MUSIC match with
the ground-truth AoDs, as well as with that of the CSI-based
MUSIC.

Table 2 lists the median of the absolute error of the AoD
estimation performed using CSI- and BFF-based MUSIC for
each SNR. Regardless of the SNR, the error resulting from
CSI-based MUSIC is lower than or equal to that resulting
from BFF-based MUSIC. This is because BFF is highly
quantized; specifically, the 4 × 4 right singular matrix is
represented by only 60 bit. However, the difference in the
error between the two sensing methods is trivial. Specifically,
for estimation of the AoDs for the direct and indirect paths,
the difference is smaller than 0.03◦ and 0.4◦, respectively.
Thus, we can conclude that BFF-based MUSIC accurately
estimates multiple AoDs; moreover, the accuracy of BFF-
based MUSIC is comparable to that of CSI-based MUSIC.
If the BFF is not quantized, the result of AoD estimation by
the CSI and BFF matches perfectly.

TABLE 2. Median of the absolute error of AoD estimation by CSI- and
BFF-based MUSIC for each SNR.

VI. EXPERIMENTAL EVALUATION
This study evaluated the accuracy of the BFF- and CSI-
based MUSIC algorithms in various real-world environ-
ments, where a line-of-sight (LoS) path between the AP and
STA exists. Notably, this evaluation is based on the assump-
tion that the number of propagation paths is one (i.e., only the
direct path exists), and the ground-truth AoD is defined as the
AoD of the LoS path. This assumption is adopted because we
cannot measure the ground-truth AoDs of the reflection paths
in real-world environment.

Experimental evaluations were performed in three real-
world scenarios: indoor, outdoor, and semi-outdoor. The
indoor, outdoor, and semi-outdoor scenarios differ in terms
of the effect of reflection paths. Specifically, the received
power caused by the reflection paths in the indoor scenario
is generally larger than that caused by the reflection paths
in the outdoor and semi-outdoor scenarios. The outdoor and
semi-outdoor scenarios differ in terms of the method used
for varying the AoD. In the outdoor scenario, the position
and orientation of the antenna array of the AP are fixed, and
the AoD only depends on the position of the STA. However,
in the semi-outdoor scenario, the AP and STA are fixed, and
the AoD only depends on the orientation of the AP’s antenna
array.

A. SETUP
1) EXPERIMENTAL EQUIPMENT
The experimental system comprises an AP and STA equipped
with three and two antennas, respectively, resulting in the
2 × 3 CSI matrix. As shown in Fig. 4, the antenna elements
of the AP are linearly aligned, where the distance between
conservative antenna elements is 25mm. The communication
protocol, wireless channel, bandwidth, and number of sub-
carriers are IEEE 802.11ac, 104ch, 20MHz, and 52, respec-
tively. Moreover, ASUS RT-AC86U is used for the AP and
STA. The detailed parameters of the MUSIC algorithm are
as follows: the number of CSIs or BFFs used for each AoD
estimation N pct is 10, and the number of antenna elements in
each sub-antenna arrayM ′ is two.

2) BFF ESTIMATION
Notably, for a fair comparison between CSI- and BFF-based
sensing, we used a firmware modification [23] to extract
CSI from the AP and calculate BFF from the extracted
CSI. Specifically, assuming channel reciprocity, we emu-
lated the CSI measured at the STA as the transpose of the
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FIGURE 4. Snapshot of AP. Three antennas are linearly aligned with
25 mm of space between the antennas.

FIGURE 5. Outdoor experimental scenario. STA is placed at any of the
nine red points. AP and STA are located at a height of 0.9 m.

CSI measured at the AP. From the CSI, the corresponding
BFF was calculated following the IEEE 802.11ac standard,
as described in Section III-B.

Because the shape of the CSI is 2 × 3, the right singular
matrix V k is represented by 12 angles with a quantization
step size of 1. Unless otherwise noted, this evaluation uses
1 of π/32 rad, resulting in a 2 × 3 complex matrix V k

H

represented by 30 bit.3 Additionally, as defined in the IEEE
802.11ac standard [5], the subcarrier-averaged stream gain Λ̄
is quantized with a quantization width of 0.25 dB.

3) EXPERIMENTAL SCENARIO
The experimental evaluation was performed under three sce-
narios: outdoor, semi-outdoor, and indoor. An LoS path exists
between the AP and STA in all three scenarios. For all the sce-
narios, the CSIs and corresponding BFFs were obtained for
multiple arrangements of the AP and STA, where the ground-
truth AoD differed based on the arrangement. Regardless of
the scenario, theAP captures approximately 850 packets from
the STA for each equipment arrangement and estimates the
CSI and BFF for each captured packet.

Fig. 5 presents the setup and snapshot of the outdoor
scenario. The STA is placed at any of the nine positions on
the circle with a radius of 2.0m, centered on the AP. The
orientations of the antenna array of the AP and STA are fixed
to be parallel to the x-axis. Thus, the AoD only depends on

FIGURE 6. Semi-outdoor experimental scenario. AP and STA are located
in different rooms on the fourth floor, where the LoS path exists through
open windows. The height of AP and STA from the floor is 0.9 m and that
of the rooms is 3.0 m.

FIGURE 7. Indoor experimental scenario. STA is placed at any of the
10 red points, whereas two APs are located at the blue points. The
heights of the AP and STA are 0.9 m. The height, width, and depth of
the room are 3.0 m, 7.5 m, and 18.6 m, respectively.

the position of the STA, resulting in the AoD lying in a range
of −60◦ to 60◦ in 15◦ increments.
Fig. 6 presents the semi-outdoor experimental scenario and

its snapshot. The AP and STA are fixed in different rooms,
where the LoS exists through open windows. In the semi-
outdoor environment, the orientation of the antenna array of
the AP is changed, whereas the orientation of the antenna
array of the STA is fixed parallel to the y-axis. Thus, the AoD
only depends on the orientation of the antenna array of theAP.
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FIGURE 8. Setup of the calibration procedure. The lengths of the coaxial
cables are adjusted so that phases at the three antennas of the AP are
the same.

Specifically, the orientation of the AP is changed so that the
AoD lies in the range of −60◦ to 60◦ in 15◦ increments.
Fig. 7 presents the indoor experimental scenario and its

snapshot. The two APs and STA are located in a lecture
room, where the orientation of the antenna array of the APs
and STA is fixed parallel to the y-axis. While the APs are
fixed, the STA is located at any of the 10 positions along a
line parallel to the x-axis, where the distance between the
line and AP is 2.4m. Thus, the AoD only depends on the
position of the STA. In this scenario, the AoD is varied from
approximately −60◦ to 60◦. It should be noted that AoD
estimation is conducted for each AP.

4) CALIBRATION PROCEDURE
Fig. 8 illustrates the setup of the calibration procedure. The
AP’s antennas and a transmitter antenna are connected via
coaxial cables. Because the length of coaxial cables between
the antenna of the AP and the transmitter remains the same
among the three antennas of theAP, the phases of the antennas
of AP are considered to be the same, and there exists only
a direct wave (i.e., L = 1 and φ̂ = 0). We captured
approximately 1,000 packets in the environment, obtained
CSIs, and calculated BFFs. From the BFFs, we estimated the
calibration matrixW , as detailed in Section IV-B.

B. RESULTS
1) RESULTS OF THE CALIBRATION PROCEDURE
Fig. 9 depicts the angle of the estimated calibration matrix
W k from the BFFwith quantization step sizes ofπ/32 rad and
π/4 rad, and CSI, respectively. As detailed in Section IV-B,
the calibration matrix W k is denoted as diag(1,Wk,2,Wk,3).
Thus, Fig. 9 depicts the argument ofWk,2 andWk,3. When the
quantization step size is π/32 rad, the estimated arguments
from the BFF match those from the CSI; specifically, the
difference between the arguments estimated from the BFF
and CSI is smaller than 2.3◦ regardless of the subcarrier
index. Thus, we can conclude that when the quantization
step size is small, the results of the BFF-based calibration
accurately match those of the CSI-based calibration.

As the quantization step size is increased, the difference in
the estimated arguments between the BFF and CSI increases
owing to the quantization error induced in the BFF. Specifi-
cally, when the quantization step size is π/4 rad, the median

FIGURE 9. Angle of the estimated calibration matrix Wk from BFF and
CSI, respectively. Calibration matrix Wk is represented by
diag(1,Wk,2,Wk,3).

TABLE 3. Median of the absolute error of AoD estimation by CSI- and
BFF-based MUSIC for each scenario.

and maximum difference between the estimated arguments
from the BFF and CSI are 15.4◦ and 25.0◦, respectively.
However, the following evaluations reveal that, evenwhen the
quantization step size is large, the AoD estimation accuracy
of BFF-based MUSIC is comparable to that of the CSI-based
method.

2) AoD ESTIMATION ERROR COMPARISON
Fig. 10 illustrates the empirical cumulative distribution func-
tion (CDF) of the AoD estimation error resulting from BFF-
and CSI-based MUSIC. In Fig. 10, the error resulting from
BFF-based MUSIC is comparable to that resulting from
CSI-based MUSIC, regardless of the experimental scenario.
Table 3 lists the error medians of AoD estimation by CSI-
based MUSIC and BFF-based MUSIC in the three scenarios.
As shown in Fig. 10, regardless of the scenario, the errors
resulting from BFF- and CSI-based MUSIC are comparable.
Thus, the AoD estimation accuracy of BFF-based MUSIC
is comparable to that of CSI-based MUSIC, although BFF
is highly quantized; specifically, the 2 × 3 right singular
matrix is represented by only 30 bit, and the subcarrier-
averaged stream gain is represented with a quantization step
size of 0.25 dB.

Additionally, the error resulting from CSI-based MUSIC
in this evaluation is comparable to the previously reported
value [19], that is approximately 10◦. Although the error asso-
ciated with AoD estimation largely depends on the experi-
mental environment and the equipment used (e.g., the antenna
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FIGURE 10. Empirical CDF of the absolute error of AoD estimation by
CSI-based MUSIC and BFF-based MUSIC for each scenario.

FIGURE 11. Impact of quantization step size on the median error of AoD
estimation for each scenario.

characteristics, propagation environment, placement of the
AP and STA, assumption that the number of propagation
paths is one, and performance of calibration), the similarity
of error between the one reported in this paper and that in
an existing report [19] indicates that the implementation in
this study is adequate. Note that developing methods that are
agnostic to these experimental environments and equipment
is a future challenge.

Upon comparing the estimation errors between the scenar-
ios, the errors for indoor scenarios were found to be higher
than those for outdoor and semi-outdoor scenarios for both
CSI- and BFF-based MUSIC. This is because the number
of propagation paths in the indoor scenario is larger than
that in the outdoor and semi-outdoor scenarios. Furthermore,
because we assumed L = 1 in this experimental evaluation,
the largermultipath degrades the accuracy ofAoD estimation.

3) IMPACT OF QUANTIZATION STEP SIZE
Fig. 11 presents the impact of the quantization step size on
the AoD estimation error resulting from BFF-based MUSIC.
In IEEE 802.11ac [5], four quantization step sizes 1 of
V k are defined: π/4 rad, π/8 rad, π/16 rad, and π/32 rad.

Regardless of the experimental scenario, the impact of the
quantization step size on the median of error is less than 3.0◦.
Moreover, regardless of the experimental scenario and the
quantization step size, theAoD estimation error of BFF-based
MUSIC is comparable to that of the CSI-based methods.
Thus, even when the AP adopts the largest quantization step
size defined in IEEE 802.11ac, the AoD estimation accuracy
of BFF-based MUSIC is comparable to that of CSI-based
MUSIC.

VII. CONCLUSION
This study confirmed that, to estimate multiple AoDs,
an extension of the MUSIC algorithm is applicable using
BFF, which contains only subcarrier-averaged stream gain
and the highly quantized right singular matrix. Numerical and
experimental evaluations on three scenarios revealed that the
AoD estimation accuracy of BFF-based MUSIC is compara-
ble to that of CSI-based MUSIC.
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