1 Title:

2 The mutual relationship between the host immune system and radiotherapy:

3 Stimulating the action of immune cells by irradiation

- 4 Authors: Tsubasa Watanabe^{1,2}, Genki Edward Sato³, Michio Yoshimura³, Minoru Suzuki¹, Takashi
- 5 Mizowaki³
- 6

```
7 Affiliations:
```

- 8 ¹ Institute for Integrated Radiation and Nuclear Science, Kyoto University
- 9 ² The Hakubi Project, Kyoto University
- ³ Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine,
- 11 Kyoto University
- 12

13	*Corresponding:	Tsubasa	Watanabe,	Institute	for	Integrated	Radiation	and	Nuclear	Science,	Kyoto	Э
----	-----------------	---------	-----------	-----------	-----	------------	-----------	-----	---------	----------	-------	---

- 14 University. E-mail: watanabe.tsubasa.8x@kyoto-u.ac.jp; Phone: +81-72-451-2407; FAX: +81-72-
- 15 451-2627
- 16 Address: 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494 JAPAN
- 17

18 Abstract:

19 The effects of irradiation on tumor tissue and the host immune system are interrelated. The antitumor 20 effect of irradiation is attenuated in the immunocompromised hosts. In addition, radiation alone 21 positively and negatively influences the host immune system. The positive effects of radiation are 22 summarized by the ability to help induce and enhance tumor-antigen-specific immune responses. The 23 cancer-immunity cycle is a multistep framework that illustrates how the tumor-antigen-specific 24 immune responses are induced and how the induced antigen-specific immune cells exert their 25 functions in tumor tissues. Irradiation affects each step of this cancer-immunity cycle, primarily in a 26 positive manner. In contrast, radiation also has negative effects on the immune system. The first is that 27 irradiation has the possibility to kill irradiated effector immune cells. The second is that irradiation 28 upregulates immunosuppressive molecules in the tumor microenvironment, whereas the third is that 29 irradiation to the tumor condenses immunosuppressor cells in the tumor microenvironment. When 30 used in conjunction with radiotherapy, immune checkpoint inhibitors can further leverage the positive 31 effects of radiation on the immune system and compensate for the negative effects of irradiation, which 32 supports the rationale for the combination of radiotherapy and immune checkpoint inhibitors. In this 33 review, we summarize the preclinical evidence for the reciprocal effects of radiation exposure and the 34 immune system, and up-front topics of the combination therapy of immune checkpoint inhibitors and 35 radiotherapy.

37 Key words: radiotherapy, immune cells, radiosensitivity, cancer-immunity cycle.

39 Introduction

40 Immune checkpoints are inhibitory pathways that are crucial for maintaining self-tolerance by 41 regulating immune activation and by modulating the T-cell response to self-proteins [1]. In the tumor 42 microenvironment, the immune checkpoint mechanisms driven by molecules, such as cytotoxic T 43 lymphocyte antigen 4 (CTLA-4), programmed cell death protein 1 (PD-1), and its ligand, programmed 44 death-ligand 1 (PD-L1), are activated to suppress the antitumor immune responses. Deactivating the 45 checkpoint mechanisms with immune checkpoint inhibitors (ICIs), anti-CTLA4 antibody (aCTLA4), 46 and anti-PD-1 antibody (aPD-1)/anti-PD-L1 antibody (aPD-L1), has significantly improved cancer 47 patients' prognosis. The combination of ICIs with existing cancer treatment modalities is currently 48 being evaluated to further improve overall survival [2]. 49 50 Radiotherapy (RT) is one of the most promising cancer therapies combined with ICIs. 51 Chemoradiotherapy followed by consolidation ICIs improves the prognosis of advanced-stage non-52 small cell lung cancer (NSCLC) patients without metastases [3-5]. According to an updated report, 53 the 4-year overall survival rate for chemoradiotherapy + aPD-L1 for advanced-stage NSCLC is 49.6%, 54 which represents a tremendous improvement compared with 36.3% for chemoradiotherapy alone [5]. 55 Thus, this treatment protocol was established as a standard treatment of care for advanced-stage

56 NSCLC patients. Radiation can have both positive and negative effects on host immunity. On the other

57	hand, ICIs can mitigate the negative impact of radiation on immunity. In addition, some immune
58	activation mechanisms of radiation are different and non-redundant from those of ICIs, resulting in
59	acting synergistically with ICIs.
60	
61	In this review, we first provide an overview of the types of immune cells associated with tumor
62	shrinkage following irradiation exposure and the radiosensitivity of immune cells to discuss the
63	negative impact of radiation on host immunity. Next, we summarize the positive impact of irradiation
64	on the immune responses focusing on multiple steps of inducing antigen-specific immune responses.
65	In addition to the direct cell-kill of immune cells after irradiation, there are some other negative effects
66	of radiation on the host immune responses. We discuss the potential other negative impacts of radiation
67	on host immune responses and the rationale for combining RT and ICIs with consideration of both
68	positive and negative impacts of radiation on immune cells. Finally, as up-front topics, we will discuss
69	the effect of ICIs on the radiosensitivity of immune cells and the challenges of combining current ICIs
70	with other immune-modulating agents as a new treatment strategy to discuss the potential role of RT
71	in the era of cancer immunotherapy.
72	
73	T-cell immune responses contribute to the antitumor effect of irradiation

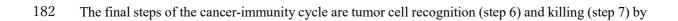
74 In the past, the reason for tumor shrinkage after irradiation was considered to be mediated by only the

75	direct cell-killing effect of irradiation through deoxyribonucleic acid (DNA) damage and the
76	subsequent DNA damage responses. However, it has become clear that the host immune responses
77	also contribute to tumor shrinkage after irradiation [6]. Even when RT is given to the tumor derived
78	from the same tumor cell line under the same irradiation conditions, RT is less effective when tumors
79	are implanted in immunocompromised nude mice than when they are implanted in immunocompetent
80	mice [6]. Nude mice used for <i>in vivo</i> experiments lack a thymus and have immature T-cell functions.
81	This result suggests that T-cell immunity is involved in maintaining tumor volume reduction after
82	irradiation.
83	
84	Among T-cells, the cluster of differentiation eight positive (CD8+) T-cells have been shown to have a
84 85	Among T-cells, the cluster of differentiation eight positive (CD8+) T-cells have been shown to have a powerful influence on the antitumor effect after irradiation [6–9]. In an <i>in vivo</i> mouse tumor model,
85	powerful influence on the antitumor effect after irradiation [6–9]. In an <i>in vivo</i> mouse tumor model,
85 86	powerful influence on the antitumor effect after irradiation [6–9]. In an <i>in vivo</i> mouse tumor model, simultaneous elimination of CD8+T-cells with irradiation significantly attenuates the antitumor effect
85 86 87	powerful influence on the antitumor effect after irradiation [6–9]. In an <i>in vivo</i> mouse tumor model, simultaneous elimination of CD8+T-cells with irradiation significantly attenuates the antitumor effect of RT, and the irradiated tumor rapidly regrows a few days later even after a curative dose of irradiation.
85 86 87 88	powerful influence on the antitumor effect after irradiation [6–9]. In an <i>in vivo</i> mouse tumor model, simultaneous elimination of CD8+T-cells with irradiation significantly attenuates the antitumor effect of RT, and the irradiated tumor rapidly regrows a few days later even after a curative dose of irradiation. CD4+T-cell depletion is less effective for modifying the antitumor effect of radiation, showing a weak
85 86 87 88 89	powerful influence on the antitumor effect after irradiation [6–9]. In an <i>in vivo</i> mouse tumor model, simultaneous elimination of CD8+T-cells with irradiation significantly attenuates the antitumor effect of RT, and the irradiated tumor rapidly regrows a few days later even after a curative dose of irradiation. CD4+T-cell depletion is less effective for modifying the antitumor effect of radiation, showing a weak or no significant difference compared with RT alone [7, 10]. On the other hand, the selective removal

93	using genetic manipulation abrogated the effects of RT [7, 9], while the removal of myeloid-derived
94	suppressor cells (MDSCs) enhances the effects of RT [14, 15]. Considering DCs are involved in the
95	activation process of antigen-specific CD8+T-cells, and MDSCs suppress CD8+T-cell function [16],
96	the effect of removing those immune cells on RT depends upon subsequent effects on CD8+T-cells
97	mainly. Taken together, these data suggest that the immune responses mediated by CD8+T-cells
98	contribute to the antitumor effect of RT in addition to the direct cell-killing effect of irradiation.
99	
100	Activated tumor-infiltrating lymphocytes are radioresistant compared with naïve lymphocytes
101	The radiosensitivity of immune cells depends on whether they are in an activated or naïve state as well
102	as the type of immune cell. Classically, lymphocytes are believed to be equally highly radiosensitive
103	without considering their condition and situation [17]. Actually, irradiation of peripheral blood, bone
104	marrow, and lymphoid tissues is immunosuppressive as a number of the immune cells in these tissues
105	die, even at low doses of irradiation [18, 19]. However, phytohemagglutinin-treated activated
106	lymphocytes have been reported to be radioresistant [20, 21]. Another activator, anti-CD3/CD28
107	antibody, also makes T-cells radioresistant by downregulating the expression of ataxia-telangiectasia
108	mutated (ATM) kinase, a major regulator of the cellular response to DNA double-strand breaks, which
109	results in decreased ATM phosphorylation following irradiation [22].
110	

111	Among the T-cell subsets, memory T-cells survive eight times more than naïve T-cells after irradiation
112	and exhibit resistance to irradiation-induced apoptosis [23]. In this study, after 18 h of whole-body
113	irradiation (6 Gy), the number of naïve T-cells in the spleen decreased from 4×10^6 to 1×10^5 cells
114	(1/40), whereas memory T-cells decreased from 1.5 \times 10 ⁶ to 3 \times 10 ⁵ (1/5) in the lymphocytic
115	choriomeningitis virus (LCMV)-immune mouse model [23]. In addition to memory T-cells, Arina et
116	al. demonstrated that tumor-infiltrating T-cells are radioresistant [24]. They examined the effects of a
117	transforming growth factor beta (TGF- β) blockade on the mortality of the tumor-infiltrating T-cells
118	following irradiation. TGF- β blockade transformed the radioresistant T-cells into a radiosensitive
119	phenotype, indicating that this signal plays a role in the radioresistance of the tumor-infiltrating T-
117	phenotype, indicating that this signal plays a fole in the radiolesistance of the tumor-infinitating 1-
120	cells.
120	
120 121	cells.
120 121 122	cells. Even if T-cells survive radiation exposure, it is of no use if the irradiated T-cells lose their function as
120 121 122 123	cells. Even if T-cells survive radiation exposure, it is of no use if the irradiated T-cells lose their function as effector immune cells in the tumor microenvironment. There is one report that examined the motility

- 127 irradiated intratumoral T-cells have the possibility to maintain their motility and cytotoxic function
- 128 after irradiation [24].


130 Effects of irradiation on each step of the cancer-immunity cycle

131 "The cancer-immunity cycle" is a multistep framework used to describe how the tumor-antigen-132 specific immune cells are activated as well as recognize and kill tumor cells (Fig.1) [25]. In the first 133 step (step 1), the cancer-immunity cycle is initiated by regulated cell death known as immunogenic 134 cell death (ICD). ICD is a form of stress-driven cell death that elicits sufficiently immune responses 135 through the extracellular release of tumor-associated antigens and damage-associated molecular 136 patterns (DAMPs), including extracellularly secreted adenosine-5'-triphosphate (ATP) and high-137 mobility group box 1 (HMGB1) as well as surface-exposed calreticulin by translocation, from the 138 dying tumor cells in the tumor microenvironment [26]. Radiation is a bona fide ICD inducer [27] as 139 is a consequence of the production of reactive oxygen species and endoplasmic reticulum stress in the 140 irradiated tumor (Fig.1) [28, 29]. The next step (step 2) is the tumor-antigen presentation by DCs. In 141 addition to the release of DAMPs and tumor antigens, irradiation induces DC maturation, as measured 142 by the increased expression of costimulatory molecules, CD80/CD86 (ligands to CD28 or CTLA4 on 143 T-cells) on DCs following irradiation [7]. The release of DAMPs and tumor antigens, and the 144 maturation of DCs cooperatively enable the DCs to present tumor antigens to responsive T-cells as the 145 next step of the cancer-immunity cycle.

129

147	The third step of the cancer-immunity cycle is the T-cell priming and activation phase. After step 1
148	and step 2, DCs transport from the tumor tissue to draining lymph nodes and serve as antigen-
149	presenting cells to effector cells in the lymph nodes, by cross-presenting captured antigens to effector
150	cells and priming them [9, 30]. The efficient initiation of the priming step requires type I interferon
151	(IFN) [31, 32], and starts from the activation of cyclic GMP-AMP synthase (cGAS) and the stimulator
152	of IFN genes (STING) pathway in both tumor cells and DCs [32-34]. Micronuclei are extra-nuclear
153	bodies that form following DNA damage whenever a chromosome or its fragment is not incorporated
154	into the daughter nuclei during cell division. Micronuclei and chromatin bridges, which are bridges
155	formed between the separating groups of anaphase chromosomes accompanied by acentric
156	chromosome fragments, are vital cGAS activators [35, 36]. Radiation-induced DNA damage forms
157	micronuclei and chromatin bridges in the irradiated tumor cells, and activates cGAS and subsequent
158	STING pathway in a dose-dependent manner, which results in the production of type I IFN (Fig.1)
159	[34, 37]. After priming, the activated CD8+T-cells divide and proliferate. Thus, the degree of priming
160	is estimated <i>in vivo</i> by monitoring the division of the CD8+T cells in the tumor-draining lymph nodes.
161	By measuring the enhanced division of CD8+T-cells after irradiation in the draining lymph nodes,
162	irradiation of the tumor is demonstrated to induce robust priming compared with unirradiated tumors
163	(Fig.1) [6].

165	Activated antigen-specific CD8+T-cells in the draining lymph nodes return to the tumor
166	microenvironment and infiltrate the tumor tissue. This represents the next steps of the cancer-
167	immunity cycle and is known as the T-cell trafficking (step 4) and infiltration (step 5) phase. Radiation-
168	induced chemokines and integrin ligand receptors cooperatively enhance T-cell trafficking at the
169	irradiated tumor site [38]. Chemokine receptors, C-X-C chemokine receptor 3 (CXCR3) and CXCR6,
170	are receptors for C-X-C chemokine ligand 9 (CXCL9)/CXCL10 and CXCL16, respectively. CXCR3
171	and CXCR6 are expressed at low levels on naïve T cells, but are upregulated upon activation [39, 40].
172	Radiation induces CXCL9/CXCL10 and CXCL16 expression in the tumor microenvironment in an
173	IFN _γ -dependent manner, which helps activated T-cells to traffic to the irradiated tumor (step 4) [41,
174	42]. Regarding T-cell infiltration to the tumor (step 5), irradiation induces the expression of integrin
175	ligand receptors, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion protein-1
176	(VCAM-1), on the endothelium in the tumor microenvironment in a radiation-dose-dependent manner
177	from 2 Gy up to 20 Gy (Fig.1) [43, 44]. The induced integrin ligand receptors of the T-cells assist in
178	migration to the irradiated tumor and prevent recirculation to draining lymph nodes, which results in
179	the enhanced localization of antigen-specific CD8+T-cells and condensation of them in the tumor
180	tissue [45, 46].

183	immune cells. The recognition of tumor cells by the activated antigen-specific CD8+T-cells requires
184	major histocompatibility complex I (MHC-I) expression on the tumor cells. The CD8+T-cells respond
185	better to tumor cells expressing abundant peptide-MHC-I complexes than those with low or no MHC-
186	I expression [47, 48]. Importantly, radiation induces MHC-I expression on the tumor cell surface in a
187	dose-dependent manner and enhances tumor immunogenicity (Fig.1) [49-51]. Moreover, radiation
188	enhances not only MHC-I expression but also both the peptide repertoire in the tumor cells and the
189	expression level of tumor-associated antigens [49, 52, 53]. These make irradiated tumor cells more
190	likely to be recognized by immune cells, and help tumor-antigen-specific CD8+ T-cells to kill tumor
191	cells (Fig.1) [52, 53].

192

193 Synergistic effects of combining ICIs and RT

194	Among the multistep of the cancer-immunity cycle, immune checkpoint molecules suppress especially
195	step 3 (priming) and step 7 (killing of targets) [25]. T-cell mediated antigen recognition requires the
196	interaction of T-cell receptor (TCR) with MHC molecules and costimulatory signals by CD28 on the
197	T-cells through CD80/CD86 molecules expressed on antigen-presenting DCs (Fig. 1). CTLA4 is a
198	CD28 homolog with the higher binding affinity of CD80/CD86 and competitively suppresses the
199	binding of CD80/CD86 to CD28 [54, 55]. CTLA4 expression on both DCs and Tregs deprives the
200	effector T-cells' chance to get a sufficient costimulatory signal via CD28, leading to the attenuation of

201	the antigen-specific activation processes (step 3). In contrast to CTLA4, mainly expressed on immune
202	cells, PD-1 ligands, PD-L1 and PD-L2, are expressed on various normal tissues [56, 57], and these
203	tissues protect themselves against the potentially autoreactive effector T-cells by suppressing their
204	activities with PD-1 ligands [58]. By expressing the PD-L1, cancer cells escape the effector cell-killing
205	step of the cancer-immunity cycle by inducing the exhaustion of effector immune cells and attenuating
206	the effector functions [59]. ICIs, both aCTLA4 and aPD-1/aPD-L1, reverse the inhibitory responses
207	on the cancer-immunity cycle and enhance tumor-antigen-specific immune responses. Irradiation
208	activates multistep of the cancer-immunity cycle, while ICIs deactivate immunosuppressive responses
209	in the cancer-immunity cycle. This is one of the rationales for the combination of RT and ICIs.
210	
210 211	In addition, RT enhances the antitumor reactivity of T-cells in a non-redundant way of ICIs'
	In addition, RT enhances the antitumor reactivity of T-cells in a non-redundant way of ICIs' mechanisms of action, which also strengthens the rationale for combining ICIs with RT. The effective
211	
211 212	mechanisms of action, which also strengthens the rationale for combining ICIs with RT. The effective
211 212 213	mechanisms of action, which also strengthens the rationale for combining ICIs with RT. The effective antigen-specific T-cell responses are induced only if the intratumoral TCR repertoire is intrinsically
211212213214	mechanisms of action, which also strengthens the rationale for combining ICIs with RT. The effective antigen-specific T-cell responses are induced only if the intratumoral TCR repertoire is intrinsically tumor-reactive and appropriate T-cell clones are ready to respond to the tumor [60], which is consistent
 211 212 213 214 215 	mechanisms of action, which also strengthens the rationale for combining ICIs with RT. The effective antigen-specific T-cell responses are induced only if the intratumoral TCR repertoire is intrinsically tumor-reactive and appropriate T-cell clones are ready to respond to the tumor [60], which is consistent with the clinical finding that the increased diversity of TCR of tumor-infiltrating T-cells is predictive

220	while ICIs, if combined with RT, expand the RT-induced variety of T-cell clones, working
221	synergistically to enhance the more robust immune responses [62, 64].
222	
223	In contrast to these positive effects of RT, there are some negative effects on the immune system.
224	Combining RT with ICIs compensates for the negative impact of radiation on the antitumor immune
225	responses. First, irradiation induces the expression of PD-L1 on tumor cells [65]. Sato et al.
226	demonstrated that tumor cells upregulate PD-L1 in response to DNA double-strand break in an
227	ATM/ataxia telangiectasia and Rad3-related protein (ATR)/checkpoint kinase 1 (Chk1) pathway-
228	dependent manner [66]. Other studies indicate that increased tumor PD-L1 expression and subsequent
229	T-cell exhaustion cause resistance to RT + aCTLA combination therapy using a genetic PD-L1-
230	deficient tumor [62]. The combination of aPD-1/aPD-L1 with RT reverses the effect of irradiation-
231	induced PD-L1. The second negative effect of radiation on the antitumor immune responses involves
232	Tregs. Several reports have shown that Tregs are more radioresistant than other lymphocytes, resulting
233	in their selection after irradiation [67, 68]. Irradiated Tregs in the tumor are able to exert suppressive
234	effects equally and are also able to proliferate in the tumor tissue even after irradiation [68]. CTLA-4
235	is expressed by Tregs constitutively. aCTLA4 drives the loss of Treg stability in the tumor
236	microenvironment [69]. Targeting Tregs with aCTLA4 or other drugs is a strategy to reverse the Treg-

window of the T-cell response [63]. In summary, radiation increases the diversity of the T-cell clones,

related negative impact on the immune responses following irradiation [70–72].

240	Up-front topics and future perspectives of the combination therapy of ICIs and RT
241	The sequence of combination therapy of RT plus ICIs (e.g., RT 1st & ICIs later or ICIs 1st & RT later)
242	was one of the controversial issues that need to be resolved to maximize the combination effect [73].
243	As for an up-front topic, a recent report provides clues to a solution to the optimal order of the
244	combination in relation to the radiosensitivity of immune cells [13]. To determine whether aPD1 prior
245	to RT affects radiation-induced DNA damage of T-cells, the amount of fluorescent-stained
246	phosphorylation of histone 2A family member X (γH2AX), a marker for DNA damage, of CD8+T-
247	cells was evaluated by flow cytometry. T-cells treated with aPD1 showed a significantly higher level
248	of γ H2AX median fluorescence intensity than those with isotype control. In addition, treatment with
249	aPD1 before irradiation induced more apoptosis of intratumor T-cells than isotype control. These
250	results suggest that RT first protocol may be better in combination with RT and aPD1. To elucidate the
251	underlying mechanism, the authors used an unsupervised hierarchical clustering algorithm, and found
252	that aPD-1 administration before irradiation expanded the intratumor CD8+T-cell population, which
253	resulted in a more naïve/non-activated phenotype in the tumor tissue [13]. This is consistent with the
254	previous reports demonstrating that the administration of aPD1 not only reinvigorates exhausted

255	immune cells, but also induces the proliferation of CD8+T-cells [64, 74]. Naïve/non-activating
256	CD8+T-cells are more radiosensitive compared with the activating ones, as mentioned above. The
257	administration of aPD1 prior to RT results in an increased percentage of radiosensitive, unactivated
258	intratumor CD8+T-cell populations, and the following RT may eradicate the radiosensitive
259	populations expanded in the tumor tissue by aPD1. The potential survival superiority of "RT 1st &
260	ICIs later protocol" was demonstrated in a retrospective analysis of patients with resected melanoma
261	brain metastases [75]. Although further translational researches and prospective clinical trials are still
262	needed, these findings may imply that aPD1/aPD-L1 administration has the potential to be better used
263	following irradiation.

265 The effect of the double combination of RT and ICIs is still insufficient in clinical situations, and triple 266 combination therapy of RT, ICIs, and the addition of immunomodulatory and radiosensitizing drugs 267is a promising future strategy. One such candidate agent is an indoleamine 2, 3-dioxygenases (IDO) 268 inhibitor, which compensates for the negative impact of RT on host immune function and improves 269 the efficacy of the double combination. IDO is a tryptophan catabolic enzyme that catalyzes the 270 essential amino acid tryptophan into its immunosuppressive metabolite, kynurenine. Irradiation 271induces not only PD-L1 on the tumor, but also IDO overexpression in the tumor cells through type I 272 and II IFN signaling [76]. The depletion of tryptophan and the increase in kynurenine in the

273	microenvironment impair the proliferation of effector immune cells, induce their apoptosis, and
274	stimulate the differentiation process into Tregs [77]. Additionally, IDO inhibitors improve the
275	radiosensitivity of tumor cells, and synergistic effects are observed when used in combination with RT
276	[78]. Free heme and heme-derived iron show pro-oxidant activity in the irradiated sites. IDO contains
277	heme [79], and IDO inhibitors release IDO-bound heme, which increases the concentration of free
278	heme in the microenvironment and contributes to increased radiosensitivity [80]. With the
279	aforementioned mechanisms of action, we hypothesized that the combination of IDO inhibitors and
280	RT as well as aPD1 would have a synergistic effect by mitigating the negative impact of radiation. We
281	showed that the combination of RT + IDO inhibitor (1-methyl-D-tryptophan) + aPD1 enhances the
282	effect of the double combination of RT and aPD1 in preclinical models [81]. The combination of RT
283	and IDO inhibitors (+ chemotherapy) is being tested in the clinical studies based on the compatibility
284	of each (NCT04049669, NCT02052648). The treatments in these clinical trials are not combined with
285	ICIs, leaving room for further combination with them if the clinical trials are successful. Although the
286	result of a randomized phase III study (ECHO-301) of the combination of ICIs and an IDO inhibitor
287	(without RT) was negative [82], the triple treatment strategy with ICIs + IDO inhibitors + RT would
288	still be promising considering that RT has immune-activating effects that do not overlap with
289	immunotherapy and IDO inhibitors can mitigate the radioresistance of tumor cells.
290	

001	α	•
291	Concl	lusion
	Contra	usion

292	We summarized the preclinical data related to the interaction of irradiation and the immune responses
293	mainly from the viewpoint of the radiosensitivity of immune cells, the rationale for combining ICIs
294	with RT considering the positive and negative impacts of radiation on the immune system, and future
295	perspectives of the combination strategy of RT + ICIs. The results of preclinical studies may help us
296	to effectively combine ICIs with RT to further improve treatment response in clinical practice.
297	
298	Acknowledgments
299	This work was supported in part by JSPS KAKENHI (Grant numbers 19K17231, 21K15805, T.
300	Watanabe).
301	
302	Compliance with ethical standards
303	Conflict of interest
304	The authors declare no potential conflicts of interest.
305	
306	Figure legend
307	Fig.1 The effects of radiation on multistep of cancer-immunity cycle
308	The cancer-immunity cycle is a multistep framework to induce antigen-specific host immune response,

309	star	ting from (1) initiation by immunogenic cell death of tumor cells phase to the subsequent phases:					
310	(2) cancer antigen presentation by DC, (3) T-cell priming and activation by antigen-presenting cells,						
311	(4)	(4) T-cell trafficking from draining lymph nodes, (5) infiltration of T-cells to the tumor tissue, (6) T-					
312	cell	recognition and (7) killing of tumors. Radiotherapy (RT) enhances each step of the cancer-					
313	imn	nunity cycle and antigen-specific immune responses.					
314							
315	Ref	erences					
316	1.	Wei SC, Duffy CR, Allison JP (2018) Fundamental Mechanisms of Immune Checkpoint					
317		Blockade Therapy. Cancer Discov 8:1069–1086					
318	2.	Morad G, Helmink BA, Sharma P, et al (2021) Hallmarks of response, resistance, and toxicity to					
319		immune checkpoint blockade. Cell 184:5309–5337					
320	3.	Antonia SJ, Villegas A, Daniel D, et al (2017) Durvalumab after Chemoradiotherapy in Stage III					
321		Non-Small-Cell Lung Cancer. N Engl J Med 377:1919–1929					
322	4.	Antonia SJ, Villegas A, Daniel D, et al (2018) Overall Survival with Durvalumab after					
323		Chemoradiotherapy in Stage III NSCLC. N Engl J Med 379:2342–2350					
324	5.	Faivre-Finn C, Vicente D, Kurata T, et al (2021) Four-Year Survival With Durvalumab After					
325		Chemoradiotherapy in Stage III NSCLC-an Update From the PACIFIC Trial. J Thorac Oncol					
326		16:860-867					

327	6.	Lee Y, Auh SL, Wang Y, et al (2009) Therapeutic effects of ablative radiation on local tumor
328		require CD8+ T cells: changing strategies for cancer treatment. Blood 114:589–595
329	7.	Gupta A, Probst HC, Vuong V, et al (2012) Radiotherapy Promotes Tumor-Specific Effector CD8
330		+ T Cells via Dendritic Cell Activation. J Immunol 189:558–566
331	8.	Chen J, Cao Y, Markelc B, et al (2019) Type I IFN protects cancer cells from CD8+ T cell-
332		mediated cytotoxicity after radiation. J Clin Invest 129:4224-4238
333	9.	Blair TC, Bambina S, Alice AF, et al (2020) Dendritic Cell Maturation Defines Immunological
334		Responsiveness of Tumors to Radiation Therapy. J Immunol 204:3416-3424
335	10.	De La Maza L, Wu M, Wu L, et al (2017) In Situ Vaccination after Accelerated Hypofractionated
336		Radiation and Surgery in a Mesothelioma Mouse Model. Clin Cancer Res 23:5502–5513
337	11.	Bos PD, Plitas G, Rudra D, et al (2013) Transient regulatory T cell ablation deters oncogene-
338		driven breast cancer and enhances radiotherapy. J Exp Med 210:2435-2466
339	12.	Kohno M, Murakami J, Wu L, et al (2020) Foxp3+ Regulatory T Cell Depletion after Nonablative
340		Oligofractionated Irradiation Boosts the Abscopal Effects in Murine Malignant Mesothelioma. J
341		Immunol 205:2519–2531
342	13.	Wei J, Montalvo-Ortiz W, Yu L, et al (2021) Sequence of aPD-1 relative to local tumor irradiation
343		determines the induction of abscopal antitumor immune responses. Sci Immunol 6:eabg0117
344	14.	Liang H, Deng L, Hou Y, et al (2017) Host STING-dependent MDSC mobilization drives

345 extrinsic radiation resistance. Nat Commun 8:1736

346	15.	Jones KI, 7	Fiersma J,	Yuzhalin AE,	et al	(2018)	Radiation	combined	with 1	nacrophage	depletion

- 347 promotes adaptive immunity and potentiates checkpoint blockade. EMBO Mol Med 10:e9342
- 348 16. Baumann T, Dunkel A, Schmid C, et al (2020) Regulatory myeloid cells paralyze T cells through
- 349 cell-cell transfer of the metabolite methylglyoxal. Nat Immunol 21:555–566
- 350 17. Bergonié J, Tribondeau L (2003) Interpretation of some results from radiotherapy and an attempt
- to determine a rational treatment technique. 1906. Yale J Biol Med 76:181–182
- 352 18. Dunn PL, North RJ (1991) Selective radiation resistance of immunologically induced T cells as
- 353 the basis for irradiation-induced T-cell-mediated regression of immunogenic tumor. J Leukoc
- 354 Biol 49:388–396
- 355 19. Alexandru M, Rodica A, Dragos-Eugen G, et al (2021) Assessing the Spleen as an Organ at Risk
- 356 in Radiation Therapy and Its Relationship With Radiation-Induced Lymphopenia: A
- 357 Retrospective Study and Literature Review. Adv Radiat Oncol 6:100761
- 358 20. Schrek R, Stefani S (1964) Radioresistance of Phytohemagglutinin-Treat- ed Normal and
- 359 Leukemic Lymphocytes I, 2. Journal of the National Cancer Institute 32:507–521
- 360 21. Carloni M, Meschini R, Ovidi L, Palitti F (2001) PHA-induced cell proliferation rescues human
- 361 peripheral blood lymphocytes from X-ray-induced apoptosis. Mutagenesis 16:115–120
- 362 22. Heylmann D, Badura J, Becker H, et al (2018) Sensitivity of CD3/CD28-stimulated versus non-

- 363 stimulated lymphocytes to ionizing radiation and genotoxic anticancer drugs: key role of ATM in
- the differential radiation response. Cell Death Dis 9:1053
- 365 23. Grayson JM, Harrington LE, Lanier JG, et al (2002) Differential sensitivity of naive and memory
- 366 CD8+ T cells to apoptosis in vivo. J Immunol 169:3760–3770
- 367 24. Arina A, Beckett M, Fernandez C, et al (2019) Tumor-reprogrammed resident T cells resist
- 368 radiation to control tumors. Nat Commun 10:3959
- 369 25. Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity
- 370 39:1–10
- 26. Galluzzi L, Vitale I, Warren S, et al (2020) Consensus guidelines for the definition, detection and
- 372 interpretation of immunogenic cell death. J Immunother Cancer 8:e000337
- 373 27. Galluzzi L, Buqué A, Kepp O, et al (2017) Immunogenic cell death in cancer and infectious
- disease. Nat Rev Immunol 17:97–111
- 375 28. Hernandez C, Huebener P, Schwabe RF (2016) Damage-associated molecular patterns in cancer:
- a double-edged sword. Oncogene 35:5931–5941
- 377 29. Golden EB, Frances D, Pellicciotta I, et al (2014) Radiation fosters dose-dependent and
- 378 chemotherapy-induced immunogenic cell death. Oncoimmunology 3:e28518
- 379 30. Gardner A, Ruffell B (2016) Dendritic Cells and Cancer Immunity. Trends Immunol 37:855–865
- 380 31. Ablasser A, Schmid-Burgk JL, Hemmerling I, et al (2013) Cell intrinsic immunity spreads to

382	32.	Fuertes MB, Kacha AK, Kline J, et al (2011) Host type I IFN signals are required for antitumor
383		CD8+ T cell responses through CD8 alpha+ dendritic cells. J Exp Med 208:2005–2016
384	33.	Deng L, Liang H, Xu M, et al (2014) STING-Dependent Cytosolic DNA Sensing Promotes
385		Radiation-Induced Type I Interferon-Dependent Antitumor Immunity in Immunogenic Tumors.
386		Immunity 41:843–852
387	34.	Vanpouille-Box C, Alard A, Aryankalayil MJ, et al (2017) DNA exonuclease Trex1 regulates
388		radiotherapy-induced tumour immunogenicity. Nat Commun 8:15618
389	35.	Mackenzie KJ, Carroll P, Martin C-A, et al (2017) cGAS surveillance of micronuclei links
390		genome instability to innate immunity. Nature 548:461-465
391	36.	Flynn PJ, Koch PD, Mitchison TJ (2021) Chromatin bridges, not micronuclei, activate cGAS
392		after drug-induced mitotic errors in human cells. Proc Natl Acad Sci U S A 118:e2103585118
393	37.	Schröder-Heurich B, Wieland B, Lavin MF, et al (2014) Protective role of RAD50 on chromatin
394		bridges during abnormal cytokinesis. FASEB J 28:1331–1341
395	38.	Zhao Y, Zhang T, Wang Y, et al (2021) ICAM-1 orchestrates the abscopal effect of tumor

bystander cells via the intercellular transfer of cGAMP. Nature 503:530-534

radiotherapy. Proc Natl Acad Sci U S A 118:e2010333118

381

- 397 39. Harlin H, Meng Y, Peterson AC, et al (2009) Chemokine expression in melanoma metastases
- 398 associated with CD8+ T-cell recruitment. Cancer Res 69:3077–3085

40. Matsumura S, Wang B, Kawashima N, et al (2008) Radiation-induced CXCL16 release by breast
 cancer cells attracts effector T cells. J Immunol 181:3099–3107

- 401 41. Lugade AA, Sorensen EW, Gerber SA, et al (2008) Radiation-induced IFN-gamma production
- 402 within the tumor microenvironment influences antitumor immunity. J Immunol 180:3132–3139
- 403 42. Matsumura S, Demaria S (2010) Up-regulation of the pro-inflammatory chemokine CXCL16 is
- 404 a common response of tumor cells to ionizing radiation. Radiat Res 173:418–425
- 405 43. Lugade AA, Moran JP, Gerber SA, et al (2005) Local Radiation Therapy of B16 Melanoma
- 406 Tumors Increases the Generation of Tumor Antigen-Specific Effector Cells That Traffic to the
- 407 Tumor. J Immunol 174:7516–7523
- 408 44. Rodriguez-Ruiz ME, Garasa S, Rodriguez I, et al (2017) Intercellular Adhesion Molecule-1 and
- 409 Vascular Cell Adhesion Molecule Are Induced by Ionizing Radiation on Lymphatic Endothelium.
- 410 Int J Radiat Oncol Biol Phys 97:389–400
- 411 45. Slaney CY, Kershaw MH, Darcy PK (2014) Trafficking of T cells into tumors. Cancer Res

412 74:7168–7174

- 413 46. Yanguas A, Garasa S, Teijeira Á, et al (2018) ICAM-1-LFA-1 Dependent CD8+ T-Lymphocyte
- 414 Aggregation in Tumor Tissue Prevents Recirculation to Draining Lymph Nodes. Front Immunol
 415 9:2084
- 416 47. Riaz N, Havel JJ, Makarov V, et al (2017) Tumor and Microenvironment Evolution during

417 Immunotherapy with Nivolumab. Cell 171:934-949

- 418 48. Benci JL, Johnson LR, Choa R, et al (2019) Opposing Functions of Interferon Coordinate
- 419 Adaptive and Innate Immune Responses to Cancer Immune Checkpoint Blockade. Cell 178:933-
- 420 948
- 421 49. Reits EA, Hodge JW, Herberts CA, et al (2006) Radiation modulates the peptide repertoire,
- 422 enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med

423 203:1259–1271

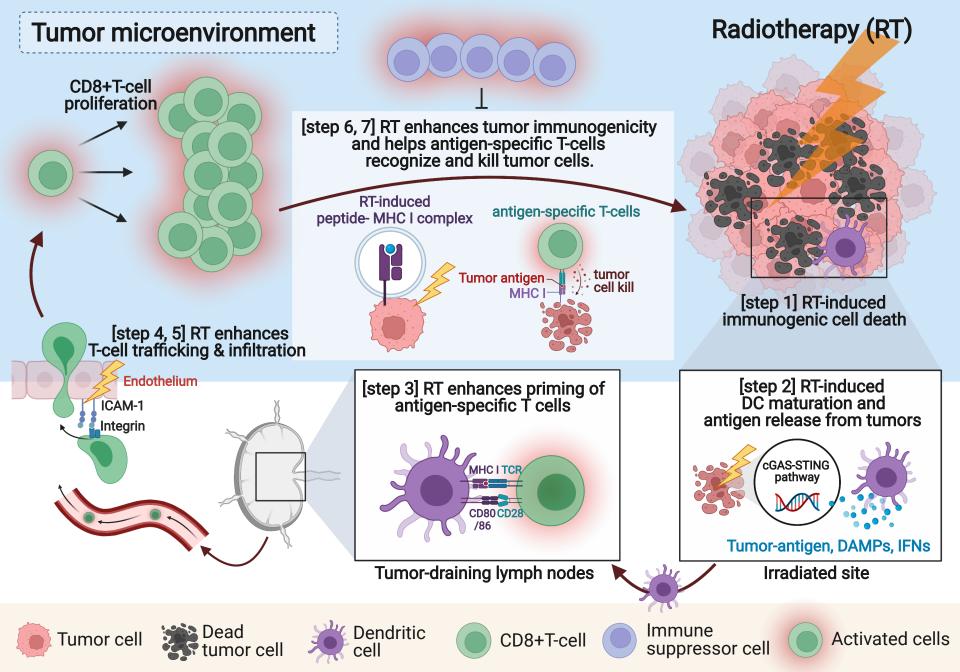
- 424 50. Sharabi AB, Nirschl CJ, Kochel CM, et al (2015) Stereotactic Radiation Therapy Augments
- 425 Antigen-Specific PD-1-Mediated Antitumor Immune Responses via Cross-Presentation of
- 426 Tumor Antigen. Cancer Immunol Res 3:345–355
- 427 51. Zebertavage LK, Alice A, Crittenden MR, et al (2020) Transcriptional Upregulation of NLRC5
- 428 by Radiation Drives STING- and Interferon-Independent MHC-I Expression on Cancer Cells and
- 429 T Cell Cytotoxicity. Sci Rep 10:7376
- 430 52. Lhuillier C, Rudqvist N-P, Yamazaki T, et al (2021) Radiotherapy-exposed CD8+ and CD4+
- 431 neoantigens enhance tumor control. J Clin Invest 131:e138740
- 432 53. Lussier DM, Alspach E, Ward JP, et al (2021) Radiation-induced neoantigens broaden the
- 433 immunotherapeutic window of cancers with low mutational loads. Proc Natl Acad Sci U S A

434 118:e2102611118

- 435 54. van der Merwe PA, Bodian DL, Daenke S, et al (1997) CD80 (B7-1) binds both CD28 and CTLA-
- 436 4 with a low affinity and very fast kinetics. J Exp Med 185:393–403
- 437 55. Buchbinder EI, Desai A (2016) CTLA-4 and PD-1 Pathways: Similarities, Differences, and
- 438 Implications of Their Inhibition. Am J Clin Oncol 39:98–106
- 439 56. Freeman GJ, Long AJ, Iwai Y, et al (2000) Engagement of the PD-1 immunoinhibitory receptor
- 440 by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med
- 441 192:1027–1034
- 442 57. Latchman Y, Wood CR, Chernova T, et al (2001) PD-L2 is a second ligand for PD-1 and inhibits
- 443 T cell activation. Nat Immunol 2:261–268
- 444 58. Keir ME, Liang SC, Guleria I, et al (2006) Tissue expression of PD-L1 mediates peripheral T
- 445 cell tolerance. J Exp Med 203:883–895
- 446 59. Iwai Y, Ishida M, Tanaka Y, et al (2002) Involvement of PD-L1 on tumor cells in the escape from
- 447 host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A
- 448 99:12293–12297
- 449 60. Scheper W, Kelderman S, Fanchi LF, et al (2019) Low and variable tumor reactivity of the
- 450 intratumoral TCR repertoire in human cancers. Nat Med 25:89–94
- 451 61. Valpione S, Mundra PA, Galvani E, et al (2021) The T cell receptor repertoire of tumor infiltrating
- 452 T cells is predictive and prognostic for cancer survival. Nat Commun 12:4098

62. Twyman-Saint Victor C, Rech AJ, Maity A, et al (2015) Radiation and dual checkpoint blockade 454 activate non-redundant immune mechanisms in cancer. Nature 520:373-377 455 63. Rudqvist N-P, Pilones KA, Lhuillier C, et al (2018) Radiotherapy and CTLA-4 Blockade Shape 456 the TCR Repertoire of Tumor-Infiltrating T Cells. Cancer Immunol Res 6:139-150 457 64. Im SJ, Hashimoto M, Gerner MY, et al (2016) Defining CD8+ T cells that provide the 458 proliferative burst after PD-1 therapy. Nature 537:417-421 459 65. Sato H, Okonogi N, Nakano T (2020) Rationale of combination of anti-PD-1/PD-L1 antibody 460 therapy and radiotherapy for cancer treatment. Int J Clin Oncol 25:801-809 461 66. Sato H, Niimi A, Yasuhara T, et al (2017) DNA double-strand break repair pathway regulates PD-462 L1 expression in cancer cells. Nat Commun 8:1751 463 67. Kachikwu EL, Iwamoto KS, Liao Y-P, et al (2011) Radiation Enhances Regulatory T Cell 464 Representation. Int J Radiat Oncol Biol Phys 81:1128-1135 465 68. Muroyama Y, Nirschl TR, Kochel CM, et al (2017) Stereotactic Radiotherapy Increases 466 Functionally Suppressive Regulatory T Cells in the Tumor Microenvironment. Cancer Immunol 467 Res 5:992-1004 468 69. Zappasodi R, Serganova I, Cohen IJ, et al (2021) CTLA-4 blockade drives loss of Treg stability 469 in glycolysis-low tumours. Nature 591:652-658 470

- 70. Demaria S, Kawashima N, Yang AM, et al (2005) Immune-mediated inhibition of metastases
 - 27


after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer.

- 472 Clin Cancer Res 11:728–734
- 473 71. Formenti SC, Rudqvist N-P, Golden E, et al (2018) Radiotherapy induces responses of lung
- 474 cancer to CTLA-4 blockade. Nat Med 24:1845–1851
- 475 72. Sia J, Hagekyriakou J, Chindris I, et al (2021) Regulatory T Cells Shape the Differential Impact
- 476 of Radiation Dose-Fractionation Schedules on Host Innate and Adaptive Antitumor Immune
- 477 Defenses. Int J Radiat Oncol Biol Phys 111:502–514
- 478 73. Gunderson AJ, Young KH (2018) Exploring optimal sequencing of radiation and immunotherapy
- 479 combinations. Adv Radiat Oncol 3:494–505
- 480 74. Siddiqui I, Schaeuble K, Chennupati V, et al (2019) Intratumoral Tcf1+PD-1+CD8+ T Cells with
- 481 Stem-like Properties Promote Tumor Control in Response to Vaccination and Checkpoint
- 482 Blockade Immunotherapy. Immunity 50:195–211
- 483 75. Pomeranz Krummel DA, Nasti TH, Izar B, et al (2020) Impact of Sequencing Radiation Therapy
- 484 and Immune Checkpoint Inhibitors in the Treatment of Melanoma Brain Metastases. Int J Radiat
- 485 Oncol Biol Phys 108:157–163
- 486 76. Munn DH, Mellor AL (2007) Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J Clin
- 487 Invest 117:1147–1154
- 488 77. Metz R, Rust S, Duhadaway JB, et al (2012) IDO inhibits a tryptophan sufficiency signal that

490		Oncoimmunology 1:1460–1468
491	78.	Chen B, Alvarado DM, Iticovici M, et al (2020) Interferon-Induced IDO1 Mediates Radiation
492		Resistance and Is a Therapeutic Target in Colorectal Cancer. Cancer Immunol Res 8:451-464
493	79.	Thomas SR, Stocker R (1999) Redox reactions related to indoleamine 2,3-dioxygenase and
494		tryptophan metabolism along the kynurenine pathway. Redox Rep 4:199–220
495	80.	Ju J-M, Nam G, Lee Y-K, et al (2021) IDO1 scavenges reactive oxygen species in myeloid-
496		derived suppressor cells to prevent graft-versus-host disease. Proc Natl Acad Sci U S A
497		118:e2011170118
498	81.	Watanabe T, Gaedicke S, Guffart E, et al (2020) Adding Indoximod to Hypofractionated
499		Radiotherapy with Anti-PD-1 Checkpoint Blockade Enhances Early NK and CD8+ T-Cell-
500		Dependent Tumor ActivityEffects of Indoximod on Radiotherapy plus Anti-PD-1. Clin Cancer
501		Res 26:945–956

stimulates mTOR: A novel IDO effector pathway targeted by D-1-methyl-tryptophan.

- 502 82. Van den Eynde BJ, van Baren N, Baurain J-F (2020) Is There a Clinical Future for IDO1
- 503 Inhibitors After the Failure of Epacadostat in Melanoma? Annu Rev Cancer Biol 4:241–256

