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ABSTRACT
Objectives: This study investigated neuronal sources of slow cortical potentials (SCPs) evoked during vagus nerve stimulation
(VNS) in patients with epilepsy who underwent routine electroencephalography (EEG) after implantation of the device.

Materials and Methods: We analyzed routine clinical EEG from 24 patients. There were 5 to 26 trains of VNS during EEG. To extract
SCPs from the EEG, a high-frequency filter of 0.2 Hz was applied. These EEG epochs were averaged and used for source analyses. The
averaged waveforms for each patient and their grand average were subjected to multidipole analysis. Patients with at least 50%
seizure frequency reduction were considered responders. Findings from EEG analysis dipole were compared with VNS responses.

Results: VNS-induced focal SCPs whose dipoles were estimated to be located in several cortical areas including the medial
prefrontal cortex, postcentral gyrus, and insula, with a significantly higher frequency in patients with a good VNS response than in
those with a poor response.

Conclusions: This study suggested that some VNS-induced SCPs originating from the so-called vagus afferent network are
related to the suppression of epileptic seizures.
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INTRODUCTION

Epilepsy is a common disorder with multiple etiologies.1

Although the best antiepileptic drug treatment is administered,
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approximately 30% of patients still have seizures.2 For such
patients, neurosurgery or neuromodulation techniques, such as
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epilepsy,3–5 the precise mechanisms of its inhibitory action on
seizures are largely unknown.6,7 Previous neuroimaging studies
revealed that some brain areas become active during VNS, and
some were more frequently or strongly activated in patients with
good responses to VNS than in those with poor responses. These
brain areas included the bilateral thalamus and right posterior
central sulcus.8 This information is useful for understanding the
mechanisms of VNS action.
In a previous study,9 we examined VNS-induced slow cortical

potentials (SCPs) in patients with epilepsy and found an association
between the presence of SCPs and seizure reduction, suggesting
that alterations on electroencephalography (EEG) because of VNS
reflect the efficacy of VNS against seizures. Because SCPs reflect
repetitive firing of cortical neurons during VNS, SCPs from specific
brain areas may be involved in the suppression of seizures.
Therefore, in this study, we investigated the neural sources of SCPs
during VNS.

MATERIALS AND METHODS
Participants
A total of 24 patients (11 men) with intractable epilepsy aged

28 ± 17 (mean ± standard deviation) years, ranging from 6 to 66
years, at the time of EEG who underwent VNS implantation
between November 2010 and August 2014 were examined. This
study was approved by the ethics committees of the institutions of
all authors. The change in seizure frequency after implantation was
assessed as ([number of seizures after VNS per month] − [baseline
seizure per month])/(baseline seizure per month). The baseline
monthly seizure frequency before VNS was calculated on the last
visit before VNS implantation; for patients with more than one visit,
the average of up to three monthly visits immediately before the
implantation was used. To calculate seizure frequency at the last
follow-up visit, the monthly average in the two consecutive months
before and in the month of the last follow-up visit was calculated.
Depending on the seizure outcome at the time of the last follow-up
visit, patients were divided into two groups: responders (≥50%
seizure reduction) and nonresponders (<50% seizure reduction).
They all participated in our previous study and their clinical char-
acteristics were described in detail.9 At the last follow-up visit
(mean 24.1, range 11.7–43.0 months), 12 patients became seizure-
free. Patient demographics are briefly described in Supplementary
Data Table S1.

VNS Parameters
VNS was carried out intermittently with VNS ON and VNS OFF

times. The VNS ON time was 30 seconds with a ramp-up and ramp-
down of two seconds, except in one case in which the VNS ON time
was 21 seconds. The VNS OFF time was five minutes, three minutes,
or 1.8 minutes. The stimulation intensity ranged from 0.75 to 2.00
mA, and stimulation frequency and width were 30 Hz and 500 μs,
respectively. In two cases, the stimulation intensity was not avail-
able (Table S1).

EEG Recordings
We analyzed 30-minute routine EEG from patients who were

followed up after VNS implantation. EEG was recorded using
EEG1100 or EEG2100 (Nihon Kohden, Tokyo, Japan). Depending on
the examining institution, 19 or 21 scalp electrodes and two
earlobe electrodes were placed according to the International
10–20 system. EEG recording was performed after a mean of 12.2
www.neuromodulationjournal.org © 2022 The Authors. Published by E
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(range 4.2–36.7) months from VNS implantation. The sampling rate
was 200 or 500 Hz, and the time constant was 2 or 10 seconds.

SCP Analysis
The analysis window was a period from two seconds before to 34

seconds after the onset of each VNS. The two-second period before
VNS was used as the baseline. Epochs with the following artifacts
were excluded from analyses9:

• initial 10 minutes of recording if baseline shifts >150 μV were
observed during the initial 60 seconds of the recording;

• recording reset because of pausing of recording or montage
change in certain EEG systems;

• large movement artifacts >400 μV; and
• temporally overlapping eye movement potentials observable on

raw EEG.

To focus on slow potentials, a low-pass filter of 0.2 Hz was
applied to EEG.

Dipole analysis
EEG epochs of VNS were averaged for each participant and the

averaged waveforms were used for dipole source analysis using
brain electrical source analysis (BESA Research 5.3; BESA GmbH,
Gräefelfing, Germany), as described previously.10 In brief, model
adequacy was assessed by examining: 1) the percentage of vari-
ance and 2) the F ratio (ratio of reduced χ2 values before and after
adding a new source).11 New dipoles with an F ratio of p values
<0.05 were considered significant. Because activities near the eye
and in the occipital region were frequent but considered to be
nonspecific to VNS, they were excluded before the dipole analysis
using a principal component analysis, if present. We continued to
add dipoles until the additional dipole did not significantly improve
the fit.

We analyzed waveforms for each participant and grand-
averaged waveforms across all participants. To average EEG
recordings with slightly different electrode configurations, spatial
interpolation to 81 standard electrodes re-referenced to the
average reference was used.

RESULTS

After the application of our criteria, 135 VNS epochs were
selected from 24 participants (5.6 ± 3.7 epochs for each partici-
pant). The grand-averaged waveforms across participants are
shown in Figure 1a. The most frequent dipolar pattern field distri-
bution across all time periods is presented in the isocontour map in
Figure 1bi. The main generator to explain the field was estimated to
be located in the lateral part of the right central sulcus corre-
sponding to the primary somatosensory and motor cortex (dipole
1). The theoretical electric field caused by the model is shown in
the right panel in Figure 1bi. After subtraction of waveforms that
were explained by the first dipole, a dipolar pattern distribution
remained in the left parietal region. The best second dipole to
explain the residual waveforms was estimated to be located in the
left central gyrus (dipole 2). The second dipole covered a wide
range of recorded data and by adding the second dipole, goodness
of fit was significantly improved, for example, from 62.7% to 79.5%
at 16,000 ms from the VNS onset (Fig. 1bii, F = 1.68, p = 0.014).
Clear dipolar pattern fields that were unable to be explained by the
lsevier Inc. on behalf of the
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Figure 1. Dipole analyses. a. Grand-averaged waveforms across 24 participants. b. Scalp electric field distributions of recorded data (left) and models (right). c. Source
strength waveforms for each dipole. d. Location of estimated dipoles superimposed on sagittal and transverse slices of a standard brain. M1, primary motor cortex;
mPFC, medial prefrontal cortex; Lt, left; Rt, right; S1, primary somatosensory cortex. [Color figure can be viewed at www.neuromodulationjournal.org]

NEURAL SOURCES OF VNS-INDUCED SLOW POTENTIAL
two-dipole model remained (Figs. 1biii and 1biv). After similar
procedures, dipole 3 and dipole 4 were estimated in the right
medial prefrontal gyrus (F = 2.10, p = 0.0013) and left insula (F =
1.27, p = 8.5 × 10−5). The time course of each cortical source and
the dipole location are shown in Figure 1c,d. The x, y, and z
coordinates of each dipole are listed in Table 1.
Similar analyses were performed for each patient. The plots of all

estimated dipoles in responders and nonresponders are shown in
Figure 2. Significant dipoles were estimated in 9 of 12 responders
and 3 of 12 nonresponders. Dipoles were more frequent in
responders (p = 0.039, Fisher exact test). The most frequent dipole
was that in the right central sulcus (four in responders and one in
nonresponders). The remaining dipoles were localized in the left
central sulcus, medial prefrontal cortex, left insula, and dorsal
prefrontal cortex. Sex, VNS parameters (stimulation interval, pulse
intensity, and pulse width), interval from implantation to EEG, and
age did not significantly affect VNS effectiveness or the presence of
dipoles (Table 2). Although statistical analyses were not performed,
VNS effectiveness was equal for all types of epilepsy (Table 3).
Table 1. Dipole Location.

Source Tal (x) Tal (y)

Dipole 1 44 −21
Dipole 2 −41 −14
Dipole 3 10 44
Dipole 4 −41 20

M1, primary motor cortex; S1, primary somatosensory cortex; Tal, Talairach coord
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DISCUSSION

This study investigated neural sources responsible for VNS-
induced SCPs using multiple dipole analysis. Dipoles were esti-
mated to be located in the postcentral gyrus, insula, dorsolateral
prefrontal cortex, and medial prefrontal cortex and were signifi-
cantly more frequent in the responder group. In particular, insular
activation was exclusive to the responder group. Therefore, we
considered at least some of the VNS-induced SCPs to reflect activity
related to the inhibition of seizures.

There are several known SCPs in humans, including sustained
brain responses to repeated sensory stimuli, contingent negative
variations (CNV), and readiness potentials.12 Unlike readiness
potentials and CNV that are induced by internal cues, such as
expectancy, sustained cortical responses to repeated sensory
stimuli are elicited by external inputs. The sustained potential
following sensory stimuli can be recorded during sleep or without
the participants’ attention and is therefore considered an exoge-
nous sensory response.13 Because the SCPs in this study were
Tal (z) Region

37 Postcentral gyrus (S1)/precentral gyrus (M1)
36 Postcentral gyrus (S1)/precentral gyrus (M1)
25 Medial prefrontal cortex
−1 Anterior insula

inates.
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Figure 2. Location of all estimated dipoles. Dipoles in red, blue, green, and
brown indicate dipoles in the postcentral gyrus, medial prefrontal cortex, lateral
prefrontal cortex, and insula, respectively. Lt, left; Rt, right. [Color figure can be
viewed at www.neuromodulationjournal.org]
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elicited by VNS without the participants’ awareness, they may have
an electrophysiological nature similar to that of sustained SCPs
evoked by sensory stimuli. The VNS activating the lateral part of the
postcentral gyrus and insula is consistent with previous studies
reporting that the sensory cortex of each modality is the origin for
sustained cortical responses to auditory,14 somatosensory,15 and
visual16 stimuli. In addition to these well-known measures in the
research field of event-related potentials, focal SCPs accompanying
epileptic seizures17,18 are important for understanding the neural
mechanisms of SCPs. Several cellular mechanisms are involved in
epilepsy-related SCPs, including hyperpolarization of glial cells and
increased extracellular K+ concentration.19 A similar role of glial
cells also is known in stimulus-evoked SCPs20 and may therefore be
related to the VNS-induced SCPs. We considered the SCPs in this
study to reflect prolonged focal activation in several cortical areas.
Table 2. Patient Demographics and VNS Effectiveness.

Variables VNS effectiveness

Resp Non

Age at EEG 33.2 ± 19.2 24.4
Sex
Male 5 6
Female 7 6

VNS interval (min)
1.8 or 3 7 4
5 5 8

Pulse intensity
>1.5 mA 5 2
≤1.5 mA 7 8

Interval from implantation to EEG (months) 14.1 ± 9.7 10.3
Interval from implantation to last follow-up (mo) 28.3 ± 8.0 20.3
Dipole estimation
Present 9 3
Absent 3 9

Nonresp, nonresponders; Resp, responders.
*t-test.
†Fisher exact test.
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Physiological Significance of Each Cortical Source
The exact inhibitory mechanisms of VNS that regulate epilepsy

are not known. One approach is to examine brain regions that
respond to VNS. Ideally, this may reveal brain regions connected to
the clinical effectiveness of VNS. Previous studies using noninvasive
imaging techniques, such as functional magnetic resonance
imaging (fMRI), positron emission tomography (PET), and single-
photon emission computed tomography (SPECT), demonstrated
significant activation in some brain regions including the thalamus,
limbic system, insula, and prefrontal cortex.21–28 Although this
study was unable to provide a definite conclusion, similar to pre-
vious studies, there were several regions activated by VNS more
frequently in responders that may reflect the antiepileptic action of
VNS.
Primary Somatosensory Cortex
The most frequent dipole in the analyses of each participant was

in and around the central sulcus in the right hemisphere. As shown
in Table 1, its location corresponded to the visceral region of the
primary somatosensory cortex (S1), one of the regions activated by
the stimulation of digestive organs.8,29–32 Similar regions were
reported to be activated by VNS.8,25 A PET study measured brain
blood flow just after the start of VNS and three months later and
found that the right postcentral gyrus was activated in both scans.8

This activation may come from the somatosensory events of the
cervical region during VNS, but in this study and in a previous fMRI
study,25 activation was observed bilaterally. Therefore, we consid-
ered S1 activation to be caused by the stimulation of vagus afferents.
It also may reflect the effective activation of the thalamocortical
pathway during VNS. Of note, Mithani et al33 recorded somatosen-
sory evoked fields (SEFs) following median nerve stimulation in
patients with epilepsy and found that responders to VNS had more
widespread SEF localization and greater functional connectivity
within the limbic and sensorimotor networks than nonresponders.
Therefore, this study may reflect more widespread projections to S1
from the thalamus in responders.
p Value Dipoles estimated p Value

resp Present Absent

± 13.7 0.68* 29.8 ± 16.4 27.9 ± 17.2 1.00*

1.00† 6 5 1.00†

6 7

0.41† 6 4 0.68†

6 8

0.38† 5 2 0.37†

6 9
± 5.8 1.00* 13.9 ± 10.0 10.5 ± 6.2 0.32*
± 6.4 0.04*

0.04†
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Table 3. Correlation Between Response to VNS and Estimated Dipoles
and Diagnosis and Seizure Types.

Diagnosis/seizure
type

VNS responsiveness Dipoles estimated

Resp Nonresp Present Absent

Diagnosis
FLE 2 2 2 2
SGE 1 2 2 1
SPE 3 4 4 3
LGS 4 2 2 4
TLE 2 1 2 1
OLE 0 1 0 1

Seizure type*
CPS 5 9 6 8
GTCS and sGTCS 6 3 6 3
SPS 2 4 3 3
AAS 3 0 1 2
TS 3 1 1 3
MS 0 1 1 0
Spasms 1 2 2 1
HD 2 0 0 2
AS 1 0 0 1

AAS, atypical absence seizures; AS, atonic seizures; Bil, bilateral; CPS,
complex partial seizures; FLE, frontal lobe epilepsy; GTCS, generalized
tonic-clonic seizures; HD, head drop; L, left; LGS, Lennox-Gastaut
syndrome; MS, myoclonic seizures; N/A, not available; Nonresp,
nonresponders; OLE, occipital lobe epilepsy; R, right; Resp, responders;
SGE, symptomatic generalized epilepsy; sGTCS, secondarily generalized
tonic-clonic seizures; spasms, spasm seizures; SPE, symptomatic partial
epilepsy; SPS, simple partial seizures; TLE, temporal lobe epilepsy; TS, tonic
seizures.
*Because of multiple seizure types for a single patient, the total number
exceeds 24.

NEURAL SOURCES OF VNS-INDUCED SLOW POTENTIAL
Medial Prefrontal Cortex
The medial prefrontal cortex is one of the cortical regions that

receive visceral inputs and participate in controlling autonomic
functions.34,35 Therefore, its activation in this study is reasonable
and consistent with previous studies measuring cerebral blood flow
during VNS8,21 and during anal canal stimulation.31 Ibrahim et al36

examined thalamocortical connectivity using resting-state fMRI
before VNS implantation in children with intractable epilepsy and
found that patients with a good response to VNS exhibited
significantly stronger connectivity of the thalamus with the bilateral
insula and anterior cingulate/ventromedial prefrontal cortex than
those with a poor response, suggesting that this region is involved
in the suppressive effects of VNS on epileptic seizures.
411
Insula
The insula is a part of the central autonomic network37 and

receives visceral information through the nucleus of the solitary
tract and parabrachial nucleus. In addition to animal studies,
noninvasive neuroimaging techniques revealed its important
position in the brain organization related to visceral afferent inputs
in humans.34 In imaging studies, activation of the insula was
observed following stimulation of the digestive tract29–31 and
following VNS.8,23,25,27 The insula is part of the orbital network of
the prefrontal cortex subserving the visceral control.38 Although
several imaging studies reported bilateral activation of the
insula,8,25 insular dipoles were predominant for the left side based
www.neuromodulationjournal.org © 2022 The Authors. Published by E
International Neuromodulation Societ
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on both the averaged and individual data. In addition, insular
activation was not observed in the nonresponder group, suggest-
ing that left-sided VNS activates the ipsilateral insula and may be an
indication of good responsiveness to VNS.

Of note, a large sample study reported that VNS responders
possessed more robust left-lateralized white matter microstructures
within a specific network.39 Such a network related to VNS treat-
ment effects, the vagus afferent network,40 includes brainstem
structures such as the nucleus of the solitary tract in addition to
subcortical or cortical structures such as the insula, amygdala,
thalamus, prefrontal cortex, anterior cingulate cortex, and S1. Thus,
the dipoles in this study are consistent with the vagus afferent
network.
Clinical Significance
In addition to epilepsy, the efficacy of VNS has been investigated

for a variety of diseases such as depression and headache.41,42

Moreover, because of its cholinergic anti-inflammatory effects,43

VNS has been applied to inflammatory diseases including sepsis,
chronic pain, and bowel diseases.44,45 Some effects of VNS may
originate from the anti-inflammatory properties of vagus nerve
efferents, but VNS should exert its effects through vagus nerve
afferents in many cases. Therefore, VNS-induced brain activation in
this study may be related to diseases other than epilepsy. For
example, the medial prefrontal cortex plays a role in autonomic
control, stress reactivity,35 and inflammation-induced mood
change46 in addition to controlling serotonergic function.47 The
former is related to depression or stress-related psychiatric disor-
ders and the latter to seizures.48 Furthermore, the medial prefrontal
cortex regulates the baroreflex such that it participates in a central
sympathoinhibitory pathway.49 The baroreflex, in turn, induces a
trophotropic state50 including inhibition of sham rage,51 inactiva-
tion of pyramidal tract neurons,52 and suppression of seizures.53

Thus, it is of interest to clarify the roles of the medial prefrontal
cortex–baroreflex arc connection in the VNS action against
different diseases because afferents of the baroreceptor run along
the cervical vagus nerve and must be activated during VNS.
Exploring the neural generators of VNS-induced SCPs is useful not
only for the evaluation of treatment responsiveness in individual
patients but also for understanding the pathophysiology of related
diseases.
Limitations
There are some limitations in this study. First is the method for

source localization. The current method is unique in that we
focused on brain activity in a specific frequency band, namely,
specific brain activity related to VNS. However, there are other
methods for localizing brain activation. The dipole estimation used
in this study is weak in that EEG cannot detect activity from the so-
called closed field, such as the thalamus, and that resolving inverse
problems has a risk of calculation errors. In addition, this study did
not use high-density EEG, which can facilitate dipole localization of
scalp potentials. However, the current method has advantages in
that it provides information from specific frequency bands in a
routine EEG examination. This was important in this study because
we focused on SCPs. In contrast, fMRI, SPECT, and PET can detect
activation in deep brain areas and do not require resolving of
inverse problems. Second, the sample was heterogeneous.
Although we noted no effects of age, sex, or VNS parameters on
the VNS effectiveness, the sample size was insufficient to draw a
lsevier Inc. on behalf of the
y. This is an open access article
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definite conclusion. Third, because this was a multi-institutional
study, procedures were slightly different among patients. For
example, the minimum follow-up period was not consistent among
institutes, which may have affected the results because it is known
that responses to VNS increase over time.

Conclusion
To localize the VNS-induced SCPs, we retrospectively analyzed

EEG from 24 patients with epilepsy who were undergoing VNS
treatment. We performed dipole analyses to localize neural origins
of VNS-induced SCPs. Dipoles were estimated to be located in the
so-called vagus afferent network and were significantly more
frequent in VNS responders, supporting the view that such a
network is related to VNS treatment effectiveness.
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VNS has been found to be effective for treating patients with epi-
lepsy, but the mechanism(s) of the inhibitory action of VNS on seizures
has not been clearly established. This article describes the findings
from an analysis of VNS and slow cortical potentials (SCPs) obtained
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from EEG data collected at one time-point after VNS implantation in an
age-diverse group of 24 patients with various epilepsy subtypes. The
objective of the study is to use a dipole approach for cortical
localization of SCPs and to correlate these dipole locations with
response and nonresponse to VNS. Although the dipole approach
used by the authors is only one possible method for localization, and
the study has a number of methodological limitations, it is hoped that
this study will spur further research on identifying valid mechanisms of
action of VNS.
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engaged by VNS. A series of investigations encompassing different
modalities converge upon similar brain regions that are functionally
connected and engaged by VNS. This so-called “vagus afferent network”
provides a framework to study VNS efficacy and responsiveness to
treatment. The authors show that induced focal slow potentials origi-
nate in the regions of the vagus afferent network, further expanding our
understanding of this network and the mechanisms of action of VNS.
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