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� Sleep apnea syndrome (SAS) screening AI-based on R-R interval data was validated with a large clin-
ical polysomnography dataset.

� AUC of 0.92, a sensitivity of 0.80 and a specificity of 0.84 were achieved.
� The SAS screening algorithm is easy to implement into a smartphone app.

a b s t r a c t

Objective: Easily detecting patients with undiagnosed sleep apnea syndrome (SAS) requires a home-use
SAS screening system. In this study, we validate a previously developed SAS screening methodology using
a large clinical polysomnography (PSG) dataset (N = 938).
Methods: We combined R-R interval (RRI) and long short-term memory (LSTM), a type of recurrent neu-
ral networks, and created a model to discriminate respiratory conditions using the training dataset
(N = 468). Its performance was validated using the validation dataset (N = 470).
Results: Our method screened patients with severe SAS (apnea hypopnea index; AHI � 30) with an area
under the curve (AUC) of 0.92, a sensitivity of 0.80, and a specificity of 0.84. In addition, the model
screened patients with moderate/severe SAS (AHI � 15) with an AUC of 0.89, a sensitivity of 0.75, and
a specificity of 0.87.
Conclusions: Our method achieved high screening performance when applied to a large clinical dataset.
Significance: Our method can help realize an easy-to-use SAS screening system because RRI data can be
easily measured with a wearable heart rate sensor. It has been validated on a large dataset including sub-
jects with various backgrounds and is expected to perform well in real-world clinical practice.
� 2022 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Sleep apnea syndrome (SAS) is a disorder in which frequent
apnea and hypopnea occur during sleep. Its severity is quantified
in accordance with the apnea hypopnea index (AHI: respiratory
events per hour of sleep), wherein SAS is an AHI of 5 or more, mod-
erate SAS is 15–30, and severe SAS is 30 or more. Although SAS is a
common disease, 80–90% of patients with SAS remain undiagnosed
(Young et al, 1997). Continuous positive airway pressure (CPAP)
has been shown to reduce the risk of lifestyle-related diseases
(Jose et al, 2005), particularly in patients with AHI � 30.
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Many potential patients are undiagnosed because polysomnog-
raphy (PSG), which is the gold standard test for SAS diagnosis, is
costly and has limited access (Hassan and Haque, 2017). Instead,
portable monitoring devices, which measure nasal pressure, chest
and abdominal respiratory inductance plethysmography, and satu-
ration in peripheral oxygen (SpO2) (Kapur et al, 2017), have been
used for SAS diagnosis (Kadotani et al, 2011). Although these meth-
ods and devices can be used at home, they require operational
skills, and their diagnostic performance is not sufficiently high
(Chesson et al, 2003). Thus, a simple and highly accurate SAS
screening system that can be used easily at home is in need.

When apnea occurs during sleep, there is a decrease in SpO2,
which affects sympathetic nerve activities and induces changes
in heart rate variability (HRV) (Somers et al, 1995; Qin et al,
2021; Pathinarupothi et al, 2017). As demonstrated
(Guilleminault et al, 1984), apnea periods are usually accompanied
by short periods of respiration, in which higher heart rates are
observed (Fig. 1). During apnea periods, there are more evident
fluctuations of heart rate compared to during normal respiration;
this characteristic can be used to discriminate apnea from normal
respiration (Fig. 2). Apnea detection based on HRV has a great
advantage over PSG and portable monitoring devices because
HRV can be easily and accurately measured with a simple wearable
device (Yamakawa et al, 2020). Based on this mechanism, we pre-
viously developed a method for detecting apnea using only electro-
cardiogram (ECG) data (Iwasaki et al, 2021). In our developed
method, R-R intervals (RRIs) are extracted from ECG data and are
used as input of long short-term memory (LSTM), which is a type
of recurrent neural network. The trained model screened
moderate-to-severe SAS patients with a sensitivity of 100% and a
specificity of 100% in a clinical PSG dataset (N = 59), collected at
Shiga University of Medical Science Hospital, Japan (Iwasaki et al,
2021). The Limitation of our previous study was that the number
of subjects was not large enough to validate the algorithm and,
accordingly, that the relationship between various complications
with SAS and the performance could not be sufficiently
investigated.

In this study, we evaluated the precise screening performance
of our previously proposed model training procedure through its
application to another large clinical PSG dataset (N = 938), col-
lected at the Nakamura clinic in Okinawa, Japan. Using a large
number of subjects with various backgrounds, we further exam-
ined the impact of subject comorbidities on results.
ECG
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Fig. 1. An example of an electrocardiogram and respiratory waves f
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2. Methods

We divided the clinical PSG dataset into a training dataset and
validation dataset and retrained a machine learning model from
the training dataset following our previously proposed method
(Iwasaki et al, 2021). Finally, the screening performance of the
retrained model was evaluated using the validation dataset.

2.1. Long short-term memory

Below, we briefly explain LSTM, which plays an important role
in our SAS screening method.

Modern neural networks have been adopted in various fields,
such as image analysis, text mining, and audio recognition, and a
variety of network architectures have been developed. A recurrent
neural network (RNN), focusing on time-series data analysis,
receives output from a previous time point in addition to the cur-
rent measurement. Thus, RNN can utilize past information as well
as current information for time-series data analysis.

LSTM is a modification of RNN and can handle long-term depen-
dencies by introducing a memory cell that holds long-term mem-
ory (Gers et al, 2000). As illustrated in Fig. 3, the input, forget, and
output gates can be trained to learn which information to store in
the memory, for how long, and when to read it out, respectively.
Since LSTM can achieve a higher performance than the original
RNN, LSTM has been used for speech recognition, natural language
processing, and video analysis (Van Houdt et al, 2020). In our
developed SAS screening method, LSTM is used for training an
apnea/normal respiration (A/N) discriminant model, to which are
input RRI data during sleep.

2.2. Sleep apnea screening method

The following is an overview of the screening method. The RRIs
of subjects are extracted from an ECG signal in PSG data and
divided into one-minute segments without overlap (see Fig. 4).
The length of the segment was determined based on the validation
in our previous paper (Iwasaki et al, 2021). Since the raw RRI data
are not sampled at equal intervals, the length of the vector is not
constant. The PSG data were annotated with respiratory status
every second, and segments containing apnea or hypopnea of more
than x seconds was labeled as apneic (where x is an integer greater
than or equal to zero), while others were labeled as normal respi-
ration. x is set to 0 by default based on a previous study showing
ort period of respiration 
with tachycardia

rom a patient (30 years old, apneal-hypopnea index; AHI = 86).



Fig. 2. Whole R-R interval (RRI) data collected from (a) healthy subject (20 years old, apnea-hypopnea index; AHI = 0.9) and (b) patient (male, 46 years old, AHI = 22.2). (c) and
(d) are their zoomed RRI data. The colored bands denote periods including a lot of apnea or hypopnea events.

Fig. 3. An internal state of long short-term memory (LSTM) at timepoint t. LSTM receives the output from the previous point ht�1 to handle time-series as well as the current
measurement xt . In addition, LSTM introduces a cell memory C to handle long-term dependencies. The input gate i, the forget gate f , and the output gate o can be trained to
learn which information to store in the memory, how long, and when to read it out, respectively. g is a new memory added to the memory cell (Saito, 2018).

Fig. 4. Feature extraction framework. The R-R interval (RRI) is extracted from electrocardiogram (ECG) data and then split into periods of one-minute. The numbers in the
figure indicate RRIs expressed in millisecond. Each interval is labeled as apnea (1) or normal respiration (0) based on the annotations made by technicians, and an input vector
of the screening model is built by clipping the RRI data.
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that heart rate changes not only during apnea periods but also
before and after them (Vanninen et al, 1996). A model using LSTM
is trained to determine whether the respiration condition of each
RRI segment is apneic or normal (A/N) respiration. The trained A/
82
N discriminant model is a network with three layers: an input
layer, a hidden layer (LSTM with 32 units), and an output layer.
It was trained using an Adam optimizer with a learning rate of
0.01, batch size of 50, and run at 250 epochs. These hyperparame-
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ters of the LSTM model were determined by means of 5-fold cross-
validation using the training dataset.

To determine whether a subject is a potential SAS patient, the
apnea sleep ratio (AS ratio) A is calculated for each subject
(Nakayama et al, 2015).

A ¼ ta
t

where ta is the apneic periods determined by the model and t is
the total sleep time (TST). A subject is considered to be a potential
SAS patient if the AS ratio is greater than a predetermined thresh-

old A
�
.

The AS ratio defined above requires the TST for each subject;
however, measuring TST requires sleep scoring based on electroen-
cephalogram (EEG) data analyzed by a technician. Thus, the aver-
age sleep latency in the training dataset was used instead to
calculate the TST for simplification.

After training the LSTM-based A/N discriminant model, the RRI
segments of the training dataset were input to the model to calcu-
late the AS ratios. Using these AS ratios, we plotted a receiver oper-
ating characteristic (ROC) curve and defined the threshold of AS

ratio A
�
so that the Youden index (Youden 1950) is maximized. In

addition, the AS ratio was calculated for each subject in the valida-
tion dataset. A subject was judged as a potential patient with SAS if

the AS ratio was greater than A
�
.

2.3. Dataset

PSG recordings during sleep (6–7 hours) were collected from
patients and healthy persons at the Nakamura clinic in Okinawa,
Japan (N = 938). A PSG system (Alice6LDe or Alice5) included
EEG, ECG (lead I or II, sampling frequency: 200 or 500 Hz), elec-
tromyography (EMG), SpO2, chest and abdominal wall movements
for respiratory efforts, nasal airflow, and a thermistor for respira-
tory monitoring. The study was approved by the Shiga University
of Medical Science Research Ethics Committee (R2019-204).

After the removal of PSG data with strong artifacts in the ECG
data, the dataset included 1015 subjects (original PSG dataset).
Considering that the diagnostic criteria for obstructive sleep apnea
(OSA) in children differ from those in adults (Seteia 2014; Berry
et al, 2020), we excluded children under 12 years of age (N = 77)
and created an adult PSG dataset (N = 938).

Each segment was labelled apnea or normal respiration based
on the PSG data. The annotations were made by certified
polysomnographic technologists of the Japanese Society of Sleep
Research.

We extracted ECG data from PSG recordings and detected R
waves using the Pan-Tompkins algorithm (Pan and Tompkins,
1985). RRIs were obtained from the detected R waves and divided
into one-minute segments. Segments containing RRIs longer than
2,000 msec were deleted as invalid data. Then, each segment was
normalized with a zero mean and a unit variance for each subject.
In addition, each RRI segment was labeled as apnea or normal res-
piration based on annotations in the PSG data by technicians.

To validate the screening performance of the model, we evalu-
ated the results when it was applied to two other clinical datasets.
One is a collection of PSG data from Shiga University of Medical
Science Hospital (SUMS dataset, N = 59) whose subjects are Japa-
nese, and the other is the Physionet apnea-ECG database (N = 69,
Penzel et al, 2000).

2.4. Statistical analysis

The training of the SAS screening model was conducted using
Python 3.6.6 and TensorFlow 1.10.0. We used the Welch’s t test
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for comparison of the ages between subjects who tested negative
correctly and subjects with false positive. The significance level
was set to p < 0.05, and computation was performed in Python
3.6.6 with SciPy 1.1.0. We calculated Spearman rank-order correla-
tion coefficients between AHI and sleep parameters with Python
3.6.6 and Scipy 1.5.4.
3. Results

3.1. Screening performance

Subjects were classified into patients with severe SAS (AHI �
30), moderate SAS (30 > AHI � 15), or control (subjects with no
or mild SAS: AHI < 15). Central and mixed apnea patients, as well
as those with obstructive sleep apnea, were also included in this
dataset. Subjects in the adult PSG dataset (N = 938) were randomly
split into training (N = 468) and validation (N = 470) datasets. A
summarized profile and clinical characteristics of the subjects are
shown in Tables 1 and 2, respectively. An example of ECG, RRI
and respiratory status obtained from a patient is shown in Fig. 1.

We built an LSTM model for screening severe SAS (AHI � 30)
from the training dataset and validated its performance through
application to the validation dataset. The threshold of the AS ratio
was 0.16. The ROC curves shown in Fig. 5a, in which blue and
orange lines indicate the ROC curve of the training and validation
datasets, respectively. There is little difference between the two,
which suggests that overfitting might not occur. Of the 470 sub-
jects in the validation dataset, 163 subjects (35%) tested positive
while 307 subjects (65%) tested negative. The model distinguished
patients with severe SAS (N = 138) from subjects with AHI < 30
(N = 332) with an area under the curve (AUC) of 0.92, a sensitivity
of 0.80, and a specificity of 0.84. 279 subjects (59%) with AHI < 30
correctly tested negative while 53 (11%) were false positives in the
validation dataset. 110 severe SAS patients (23%) correctly tested
positive while 28 (6%) were false negatives.

We also built an LSTM model for screening moderate-to-severe
SAS (AHI � 15) from the training dataset and validated its perfor-
mance through application to the validation dataset. The threshold
of the AS ratio was 0.13. The ROC curves are shown in Fig. 5b; there
is little difference between the ROC curve of the training and vali-
dation datasets, which suggests that overfitting also might not
occur in this model. In the validation dataset, the model distin-
guished patients with moderate-to-severe SAS (N = 221) from sub-
jects with AHI < 15 (N = 249) with an AUC of 0.89, a sensitivity of
0.75, and a specificity of 0.87.

In addition, we built a model for mild SAS (AHI � 5) in the same
way; and the screening performance in the validation dataset was
AUC of 0.83, sensitivity of 0.66, and specificity of 0.87.

3.2. Robustness of the performance

To validate the robustness of the trained severe SAS screening
model (AHI � 30), we randomly rearranged the training dataset
and the validation dataset, trained models, and plotted the ROC
for each trial (Fig. 6). This procedure was repeated five times. The
averages of the AUCs in the five trials were 0.92 � 0.01, suggesting
the steady performance of this method.

3.3. Change of the definition of apneic segments

In the above experiments, we labeled segments including
apneas or hypopneas of one second or more as apneic. This may
cause labeling of mostly normal breathing segments as apneic
and normal breathing may be more likely to be identified as
apneic. To explore this possibility, we modified the threshold to



Table 1
Subject profile in the adult polysomnography dataset.

a)Training dataset (N = 468)

Age Male Female

AHI 0–15 15–30 30- 0–15 15–30 30-

13–30 48 6 7 18 0 1
31–60 98 53 81 45 8 7
61- 19 17 22 20 5 13

b) Validation dataset (N = 470)

Age Male Female

AHI 0–15 15–30 30- 0–15 15–30 30-

13–30 38 4 8 15 1 0
31–60 125 50 94 44 6 9
61- 13 12 20 14 10 7

Age and sleep apnea severity (apnea-hypopnea index; AHI) distribution in the training and validation datasets collected at Nakamura clinic in Okinawa, Japan.

Table 2
Clinical and demographic characteristics of the subjects in the adult polysomnogra-
phy dataset.

Training
(N = 468)

Validation
(N = 470)

All subjects
(N = 938)

Apnea hypopnea index 25.3 (28.5) 25.5 (29.8) 25.4 (29.2)
Age – yr 46.4 (16.2) 46.7 (14.9) 46.6 (15.6)
Female sex – no. (%) 117 (25.0) 106 (22.6) 223 (23.8)
Body mass index (kg/m2) 27.7 (5.3) 28.3 (5.1) 28.0 (5.2)
Hypertension – no. (%) 125 (26.7) 128 (27.2) 253 (27.0)
Myocardial infarction – no. (%) 3 (0.6) 1 (0.2) 4 (0.4)
Arrhythmia – no. (%) 21 (4.5) 20 (4.3) 41 (4.4)
Diabetes – no. (%) 39 (8.3) 41 (8.7) 80 (8.5)
Depression – no. (%) 14 (3.0) 16 (3.4) 30 (3.2)
Allergic rhinitis – no. (%) 45 (9.6) 50 (10.6) 95 (10.1)
Asthma – no. (%) 43 (9.2) 34 (7.2) 77 (8.2)
COPD – no. (%) 9 (1.9) 11 (2.3) 20 (2.1)
Restless leg syndrome – no. (%) 52 (11.1) 50 (10.6) 102 (10.9)
Migraine – no. (%) 4 (0.9) 8 (1.7) 12 (1.3)
OAB – no. (%) 0 (0.0) 2 (0.4) 2 (0.2)

COPD: chronic obstructive pulmonary disease, OAB: overactive bladder.
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five seconds, which leads to a decrease in the number of apneic
segments in the dataset by 4%. We retrained the model using the
modified dataset and determined the subjects with AHI of 30 or
higher, which resulted in an AUC of 0.93, sensitivity of 0.78, and
specificity of 0.89 in the validation dataset. It is thought that, as
Fig. 5. Diagnostic performance of the Apnea/Sleep ratio (AS ratio) to detect severe (apne
Receiver operating characteristics curves (ROC) were constructed for training (N = 468,

84
a result of stricter judgments of apnea segments, the sensitivity
of apnea detection is reduced.
3.4. Screening performance with children

In order to validate the performance when children were
applied to this method, we constructed a model using the original
PSG dataset. The profile of children added in the dataset is shown
in Table 3. The method screened patients with severe SAS in the
validation dataset with an AUC of 0.92, a sensitivity of 0.77, and
a specificity of 0.87, and moderate or severe SAS with an AUC of
0.87, a specificity of 0.70, and a specificity of 0.88, which were
slightly worse results than Fig. 5.
3.5. Gender difference

In order to evaluate the effect of gender on the screening perfor-
mance, we trained the model and validated the data separately for
males (N = 715) and females (N = 223) with an AHI threshold of 30
(Fig. 7). As a result, the validation data showed an AUC of 0.92, a
sensitivity of 0.79, and a specificity of 0.84 for males (N = 364),
and an AUC of 0.95, a sensitivity of 0.88, and a specificity of 0.84
for females (N = 106). The performance for females was improved
compared to Fig. 5a, while the performance for males was almost
the same.
a-hypopnea index; AHI � 30) (a) or moderate-to-severe (AHI � 15) sleep apnea (b).
blue line) and validation (N = 470, orange line) datasets.



Fig. 6. Robustness of the proposed model to detect severe sleep apnea (apnea-
hypopnea index; AHI � 30). The training and validation datasets were randomly
replaced five times and a receiver operating characteristics curve (ROC) was plotted
for each trial using the validation dataset (N = 470).
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3.6. Validation using another clinical dataset

There may be a potential bias in the tendency of diagnosis and
the attributes of the subject. To evaluate this point, we used
another clinical dataset collected at Shiga University of Medical
Science Hospital (SUMS), whose profile was shown in Table 4.
When we applied the model trained from the Nakamura clinic data
to the SUMS dataset, it was able to screen severe SAS (AHI � 30)
with an AUC of 0.94, a sensitivity of 0.93 and a specificity of
0.80, and moderate or severe SAS (AHI � 15) with an AUC of
0.93, a sensitivity of 0.92 and a specificity of 0.89. These results
suggest that our method is applicable to datasets collected at dif-
ferent institutions.

3.7. Validation using open datasets

Although the nationalities of the subjects were not recorded,
most of the subjects in the dataset are thought to be Japanese. In
order to investigate the effect of nationalities on the performance,
we validated the developed method by using the Physionet apnea-
ECG database (N = 69, Penzel et al, 2000). The subject profile of the
database is summarized in Table 5. When we applied the threshold
of AS ratio we determined using dataset collected at Nakamura
clinic, it resulted in a sensitivity of 0.97 and a specificity of 0.58
with an AHI threshold of 30 and a sensitivity of 0.98 and a speci-
ficity of 0.74 with an AHI threshold of 15. When we determined
the threshold of the AS ratio by using the half of the Physionet
database (Table 5(a), N = 34). As a result, the other half of the Phy-
sionet dataset (Table 5(b), N = 35) showed an AUC of 0.91, a sensi-
tivity of 0.79 and a specificity of 0.95 with an AHI threshold of 30
and an AUC of 0.95, a sensitivity of 0.95 and a specificity of 0.86
with an AHI threshold of 15, which are comparable to results in
Fig. 5.
Table 3
Subject profile of children used in the additional analysis (N = 77).

Age Male

AHI 0–15 15–30 3

0–5 24 4 2
6–12 20 1 2

Age and sleep apnea severity (apnea-hypopnea index; AHI) distribution (under 13) colle
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3.8. Relationship with sleep quality parameters

In order to investigate the relationship between AS ratio and
actual sleep quality, the correlation coefficients between various
sleep indices measured by PSG and the AS ratio were calculated
in the validation dataset; the results are summarized in Table 6.
The correlation coefficients between AS ratio and AHI and arousal
index were 0.74 and 0.60, respectively. Fig. 8 shows a scatter plot
of AS ratio versus AHI and arousal index.
4. Discussion

The proposed method was able to screen severe SAS patients
(AHI � 30) with an AUC of 0.92, and moderate-to-severe SAS
patients (AHI � 15) with an AUC of 0.89. Table 7 summarizes the
performance of the existing screening devices or methods vali-
dated using a large dataset of N > 100 (Mendonça et al, 2019;
Álvarez et al, 2010; Huang et al, 2020, Roche et al, 2003,
Gutiérrez-Tobal et al, 2015; Nakayama et al, 2019). Although
SpO2 measured with PSG data displays a relatively high perfor-
mance to detect SAS (Álvarez et al, 2010), it has been reported that
the performance of SpO2-based methods declines when conducted
in out-of-center sleep testing (OCST) (Ito et al, 2020). On the other
hand, RRI can be measured easily and precisely using an inexpen-
sive wearable RRI sensor (Yamakawa et al, 2020), which realizes
stable data collection in comparison with SpO2, even in OCST.
Table 3 shows that our method achieved results comparable with
existing screening methods. Taking into consideration the fact that
the number of subjects in this study is much larger than that of
previous studies, our method is expected to stably exhibit high
performance.

When screening severe SAS, 279 subjects with AHI < 30 cor-
rectly tested negative while 53 were false positives in the valida-
tion dataset. In the false positives, 23% of the subjects were over
60 years old, while 13% in the true negatives. This resulted in a sta-
tistical significance between the ages of the two groups (p < 0.05).
It has been reported that HRV of an elderly person shows different
patterns from that of a young or middle-aged person, since HRV
decreases with age (Umetani et al, 1998) or is altered with mild
cognitive impairment (Kong et al, 2020). These factors may prevent
elderly persons from being screened correctly.

On the other hand, 110 severe SAS patients correctly tested pos-
itive while 28 were false negatives. Severe SAS patients with a his-
tory of arrhythmia account for 5% of the true positives (5 out of
110) and 11% of the false negatives (3 out of 28), suggesting the
possibility that the existence of arrhythmia may lead to misclassi-
fication. The details in arrhythmia is in Supplementary Table 1.
This result can be associated with the cyclic validation of heart rate
(CVHR), in which the average or variance of RRI fluctuates period-
ically during sleep apnea (Guilleminault et al, 1984). An arrhyth-
mia may mask the cyclic validation pattern and make it difficult
to appropriately detect apnea.

Diabetes also may affect the screening results. In the screening
of severe SAS, there were five patients with diabetes in the subjects
with false-negative results and three in the subjects with false-
positive results. Diabetes can cause autonomic neuropathy, and it
Female

0- 0–15 15–30 30-

9 2 1
11 0 1

cted at Nakamura clinic in Okinawa, Japan.



Fig. 7. Comparison between the classification performance when males (a) and females (b) were trained and validated separately. Receiver operating characteristics curves
(ROC) were constructed for training (blue line) and validation (orange line) datasets.

Table 4
Subject profile of the SUMS dataset (N = 59).

Age Male Female

AHI 0–15 15–30 30- 0–15 15–30 30-

13–30 7 0 1 15 0 1
31–60 7 5 7 6 0 0
61- 0 4 4 0 1 1

Age and sleep apnea severity (apnea-hypopnea index; AHI) distribution (under 13) collected at Shiga University of Medical Science Hospital (SUMS) in Otsu, Japan.

Table 5
Subject profile of the Physionet database (N = 69).

a) Dataset used to determine the threshold of AS ratio (N = 34)

Age Male Female

AHI 0–15 15–30 30- 0–15 15–30 30-

13–30 1 0 0 2 0 0
31–60 8 3 17 2 0 0
61- 0 1 0 0 0 0

B) Validation dataset (N = 35)

Age Male Female

AHI 0–15 15–30 30- 0–15 15–30 30-

13–30 1 0 0 4 2 0
31–60 7 6 12 2 0 0
61- 0 1 0 0 0 0

Age and sleep apnea severity (apnea-hypopnea index; AHI) distribution of the Physionet apnea-ECG database (Penzel et al, 2000).

Table 6
Correlation coordinates between Apnea/sleep ratio (AS ratio) and sleep parameters.

Sleep parameters Correlation coordinates P value

AHI 0.74 <0.001
Arousal index 0.60 <0.001
WASO 0.23 <0.001
Sleep efficiency �0.23 <0.001
Total sleep time �0.21 <0.001

AHI: apnea hypopnea index, WASO: wake time after sleep onset.
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has been reported that the highly vulnerable parasympathetic ner-
vous system is affected in the early stage of the disease, followed
by sympathetic dysfunction (Pop-Busui 2010). This disturbance
in the activity of the autonomic nervous system may alter CVHR
patterns and cause misclassifications. It has been reported that
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CVHR did not occur in SAS patients with autonomic neuropathy
including diabetes (Guilleminault et al, 1984).

There is the possibility that subjects with daytime sleepiness
have sleep disorders other than SAS even if they suspect their
SAS. Among these disorders, we examined restless leg syndrome
(RLS) and narcolepsy. There were nine RLS patients with false-
positive results in the validation dataset. It has been reported that
HRV changes are observed in patients with not only RLS (Yıldız
et al, 2018) but also periodic leg movements disorder which is a
disorder closely related to RLS. Patients with these disorders show
HRV with a pattern similar to that of CVHR (Hayano et al, 2011).
The false positives may have been caused by these factors. In addi-
tion, there were three patients with narcolepsy in the validation
dataset, all of whom currently tested negative. This result is consis-
tent with a previous study in which patients with narcolepsy were



Fig. 8. Scatter plot of Apnea/Sleep ratio (AS ratio) versus apnea-hypopnea index (AHI) (a) and arousal index (b). The red line indicates the regression line where AHI or arousal
index is a predictor variable and AS ratio is a response variable. ‘‘r” represents a correlation coordinate between the two variables.

Table 7
Summary of the performances of various screening methods using a large dataset.

Ref Number of
subjects

Ages Male sex
(%)

Discrimination algorithm Modality Signal AUC (Threshold of AHI)

Álvarez et al (2010) 148 52.9 ± 14.1 78 Logistic regression PSG SpO2 0.97 (10)
Huang et al (2020) 6875 47.8 ± 14.5 76 Support vector machine Questionnaire None 0.82 (5), 0.80 (15), 0.78

(30)
Roche et al (2003) 147 53.8 ± 11.2 69 Classification and Regression

Trees
PSG ECG 0.76 (10)

Gutiérrez-Tobal et al
(2015)

188 - 71 Logistic regression PSG ECG 0.89 (10)

Nakayama et al (2019) 115 42.2 ± 15.4 73 Classification and Regression
Trees

PSG ECG 0.84 (15)

Proposed 938 43.5 ± 18.5 76 LSTM PSG ECG 0.89 (15), 0.92 (30)

AUC: area under the curve, AHI: apnea hypopnea index, PSG: polysomnography, SpO2: saturation of peripheral oxygen, ECG: electrocardiogram, LSTM: long short-term
memory.
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less likely to experience heart rate changes when the wake-up
response occurred during sleep (Sorensen et al, 2013).

HRV is affected by gender as well as diseases and age; males are
reported to have a lower heart rate than females and the distribu-
tion of their RRI is different (Voss et al, 2015). In order to evaluate
such gender difference, we performed experiments separately
(Fig. 7). The performance for females was improved compared to
Fig. 5a, while the performance for males was almost the same. This
may indicate that the male group has stronger heterogeneity than
the female group. The number of males is larger than that of
females, and the standard deviations of AHI in the male and female
were 31.0 and 23.2, respectively, in this validation dataset. This
diversity in males makes it harder for them to be screened
correctly.

When we investigated the association of AS ratio with various
sleep parameters, AHI and arousal index showed strong correla-
tions therewith (Table 6). These results are consistent with the fact
that apnea produces an arousal response (Eckert and Younes,
2014), which suggests that AS ratio is a good indicator of sleep
quality. According to Table 6, there was no clear correlation with
other sleep indices, such as wake after sleep onset, sleep efficacy,
and total sleep time.

Our method exhibited high performance even when applied to
another clinical dataset (SUMS dataset), suggesting that the trained
model is applicable to data collected at other hospitals. We further
applied the model to a dataset whose subjects are not Japanese
(Physionet apnea-ECG database) and got results with low speci-
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ficity while the AUC was preserved. When we took into considera-
tion that there are racial differences in heart rate variability (Hall
et al, 2013) and determined the threshold of AS ratio using half
of the Physionet database, the performance was comparable to
the original results. These data indicate that the developed method
exerts high performance even without re-training the model for
each different race; we need to tune the threshold of the AS ratio
for each race.

The limitation of this study is that the performance of the
method deteriorates when the threshold of AHI is set to 5 for the
screening of mild SAS. This may be because brief periods of apnea
do not cause fluctuations in autonomic function, resulting in apnea
and hypopnea segments with false negative. Another limitation is
that the screening performance for patients with central sleep
apnea (CSA) cannot be appropriately evaluated. Although two out
of the three CSA patients in the validation dataset were screened
correctly, it was difficult to evaluate them due to the very small
number of patients with CSA. Since it has been reported that CVHR
is clearly observed in CSA (Szollosi et al, 2007), the proposed
method is expected to be capable of screening the patients without
problem; however, further investigation is needed by collecting
more data from CSA patients.
5. Conclusion

In this study, we validated our previously developed SAS
screening method through application to a large clinical dataset.
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Our method was able to screen severe SAS (AHI � 30) with an AUC
of 0.92, and moderate or severe SAS (AHI � 15) with an AUC of
0.89. In this study, we validated the proposed method using a large
population with various backgrounds. In addition, we also con-
firmed the applicability of the model to populations of different
institutions and nationalities.

While existing SAS screening devices based on SpO2 were not
appropriate for out-of-center testing due to the difficulty in signal
measurement and analysis, our method is expected to solve the
problems in the future because RRI data can be easily and stably
measured using a wearable sensor (Yamakawa et al, 2013).

Thus, simple screening for SAS can be performed at home,
which provides undiagnosed patients with an opportunity for diag-
nosis and proper treatment. We have developed a smartphone app
implementing the SAS screening method, which can be connected
to a wearable RRI sensor. In the future, we aim to perform a real-
world prospective test using a wearable RRI sensor and the devel-
oped smartphone app.
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