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Abstract

A ductile fracture model is implemented to an elastoplastic constitutive model of

steel material for large-scale finite element analysis of steel frames. The stress

modified critical strain model is extended to simulate the structural response

after initiation of ductile fracture. The yield stress, Young’s modulus, as well as

the stress are reduced using the fracture variable. Positive definiteness of the

material tangent stiffness matrix is always maintained, and the unbalanced loads

are carried over to the succeeding step to analyze the responses in the range of

degrading strength using an implicit finite element analysis. It is shown using a

notched rod model and a double notched plate that the proposed model can sim-

ulate steep stiffness degradation due to strain localization after ductile fracture.

Applicability to a large-scale finite element analysis is investigated using a com-

ponent frame of moment frame subjected to cyclic forced deformation.
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1. Introduction

Precise simulation of collapse behavior of a steel frame under
cyclic deformation is necessary to be carried out for investiga-
tion of hazard and risk under unexpectedly large seismic
motions. Especially, the fracture behavior at the beam-to-
column joints is important for accurate evaluation of seismic
performance of a steel frame,1 because frame collapses after
ductile stiffness degradation at the joints. Although various
studies can be found for collapse analysis of building frames
considering fracture at joints and members, most of them uti-
lize frame and hinge models,2,3 and accuracy of the structural
behavior after strength degradation strongly depends on the
quality of the hinge model. The adaptively shifted integration
(ASI) model developed by Isobe and Toi4 may be effectively
used for accurate simulation of collapse behavior including the
progressive collapse. However, it is difficult to simulate the
complex ductile fracture at the beam-to-column joints using a
frame model with plastic hinges. The stress distribution in the
section is not considered using the hinge model. Therefore, the
complex behavior due to, for example, effect of local buckling
of flange on the initiation of ductile fracture cannot be simu-
lated accurately using a hinge model.
Recently, finite element (FE) analysis has been applied to

simulate ductile fracture of steel frames.5,6 Mizushima et al.7

predicted initiation of fracture at the beam-to-column joint of a
three-story steel frame subjected to seismic excitation using an
explicit time integration method. Wang et al.8 carried out FE-
analysis for predicting ductile fracture at the joint. In these
studies, however, behavior after fracture cannot be simulated.
Sawamoto and Ohsaki9 proposed a model for incorporating re-
contact after fracture under cyclic deformation by placing a
nonlinear spring element in the region where fracture is
expected to occur. Removing elements is possible if an explicit
time integration method is used. However, it is generally not
possible to predict the locations of fracture a priori, and simu-
lation of strength reduction after fracture is very difficult when
an implicit FE-analysis is used. The deformation will concen-
trate at the fractured part with degrading stiffness, and the
reaction force decreases in the process of forced displacement
analysis. Consequently, Newton–Raphson iteration stops
because convergence cannot be achieved. Therefore, analysis
cannot continue even the fractured part is very small.
Various models have been proposed for ductile fracture and

ultra-low cycle fatigue of steel material. Simple models such
as Manson–Coffin law are based on the number of cycles of
plastic deformation, and a modified law has been proposed by
Huang and Mahin.10 Since the damage leading to fracture is
accumulated in a tensile stress state, the stress triaxiality
should be taken into consideration for simulating ductile
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fracture.11,12 For example, stress modified critical strain
(SMCS) criterion13-16 defines the critical value of accumulated
plastic strain based on the stress triaxiality. Ohsaki and Naka-
jima17 optimized the locations of stiffener plates for improving
the performance of an eccentrically braced frame under cyclic
deformation using the SMSC criterion. Various criteria have
been proposed for ductile fracture of steel material under cyc-
lic loading. Kanvinde et al.18 simulated fracture initiation of
link member of an eccentrically braced frame using a failure
index based on stress triaxiality. However, most of the criteria
for ductile fracture are used for predicting initiation of the
fracture, and analysis after fracture is very difficult.
An FE-analysis program called E-Simulator is under devel-

opment at the Hyogo Earthquake Engineering Research Center
of the National Research Institute for Earth Science and Disas-
ter Resilience (NIED), Japan, which has world’s largest shak-
ing table called E-Defense. E-Simulator is based on the
software called ADVENTURECluster19 that is developed for
large-scale and high-precision FE-analysis. Ohsaki et al.20 pro-
posed a simple semi-implicit plastic constitutive model for
large-scale FE-analysis of steel structures. They implemented
the model in E-Simulator, and applied it to simulation of E-
Defense experiment of total collapse behavior of a four-story
frame.21,22 It has also been shown that the collapse behavior of
a composite beam can be precisely simulated using the semi-
implicit model.23,24 However, ductile fracture of steel material
has not been incorporated. Note that stiffness degradation due
to necking can be simulated using an elastoplastic constitutive
low without considering ductile fracture.25,26

Ductile damage and degradation of stiffness and strength due
to initiation and growth of voids can be simulated using various
models of damage plasticity, or damaged plasticity, in the field
of continuum damage mechanics (CDM).27,28 Damage plasticity
model has also been developed for concrete material.29 Devel-
opment of theories and methods for ductile fracture analysis in
the field of CDM is summarized in Ref. [30] The process of
stiffness degradation due to ductile damage and fracture can be
simulated using the Gurson model.31,32 The consistent tangent
matrix for FE-analysis based on the Gurson model has been
derived.33 However, because the Gurson model simulates the
growth of void, it inherently involves stiffness degradation;
therefore, it is difficult to achieve convergence using an implicit
time integration method. By contrast, substantial computational
cost is required if explicit time integration method is used for
nonlinear response history analysis of a frame subjected to a
long-term seismic motion. Therefore, a method of ductile frac-
ture needs to be developed for application to large-scale implicit
FE-analysis. However, the response after fracture is difficult to
simulate by simple application of implicit time integration,
because the Newton–Raphson iteration for achieving equilib-
rium cannot converge in the range of degrading stiffness.
In this paper, a method is proposed for precisely predicting

the stiffness deterioration behavior of steel frames due to ductile
fracture of material. The authors incorporate a ductile fracture
model based on the SMCS criterion considering the stress triaxi-
ality into the semi-implicit elastoplastic constitutive model pro-
posed by the authors previously.20 The fracture model is
implemented to ADVENTURECluster as a user function. Using
the proposed procedure, positive definiteness of the material tan-
gent stiffness matrix is always maintained, and unstable response
after fracture is simulated by carrying over the unbalanced force
to the next step, while maintaining stability during Newton–
Raphson iteration. Uniaxial tension analysis is carried out for a
notched rod and a double notched plate to verify the accuracy

and ability of simulating degrading stiffness and strength after
fracture. Applicability of the model to a large-scale FE-analysis
is investigated by static cyclic analysis of a beam-column model.

2. Ductile Fracture Model for FE-analysis

The elastoplastic cyclic constitutive model20 developed by the
authors is extended to incorporate the ductile fracture. The
model is based on a piecewise-linear isotropic-kinematic hard-
ening. In the similar manner as the standard approach of
CDM, a fracture variable is defined as a function of the equiv-
alent plastic strain. Here, we use the SMCS criterion consider-
ing the stress triaxiality to detect the initiation of ductile
fracture, and extend it to the analysis after fracture.
Let σm and σe denote the mean and equivalent stresses,

respectively. The variable T representing the stress tri-axiality
is defined as follows:

T ¼ σm
σe

(1)

Note that T ¼ 1=3 for the uniaxial tension state and T ¼ 2=3
for the uniform biaxial tension state. Although T diverges to
infinity for the hydrostatic state, such situation is not expected
for steel members composed of thin plates, which may be
approximated by the plane stress state, that is, the out-of-plane
stress components are zero.
It should be noted here that ductile fracture of steel material

is related to the void growth exhibited in a tensile state. There-
fore, fractured state is determined using the representative
plastic strain ε̂p obtained by integrating the equivalent plastic
strain rate _εp in the tensile state with σm > 0 (T > 0). The criti-
cal value of ε̂p for ductile fracture, which is denoted by εc and
simply called fracture strain, is defined using T as in Ref. [13]

εc ¼ βexp −1:5Tð Þ (2)

where β is a material parameter. Hence, the fractured state is
determined by

ε̂p ≥ εc ¼ βexp −1:5Tð Þ (3)

Difference between the integrated absolute values of _εp in ten-
sile and compressive states, respectively, is used in Ref. [15]
for the condition in Equation (3). Lemaitre28 defined the dam-
age variable using the elastic strain energy and two material
parameters, and integrated the variable when the largest princi-
pal stress is positive. In Refs. [9, 10], _εp is integrated when
T >−1=3. However, we use a simple condition σm > 0 that
expresses the tensile state.
For simpler presentation of fracture condition, the deforma-

tion parameter α is defined as

α ¼ ε̂pexp 1:5Tð Þ (4)

and the condition for ductile fracture, which is represented by
Equation (3), is written as

α ≥ β (5)

In the uniaxial state with T ¼ 1=3, α is equal to e0:5ε̂p ¼
1:649ε̂p.
The parameter β depends on the material. In Ref. [18],

β ¼ 2:6 and 1.0 are calibrated for the base metal and the heat
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affected zone, respectively, of A572 Grade 50 steel. The coeffi-
cient 1.5 in Equations (2)–(4) is theoretically derived in Ref.
[11]; however, different values between 1.1 and 2.3 may be rec-
ommended depending on the steel material properties.12 Further-
more, the fracture strain depends on the characteristic length of
the ductile crack, which is between 0.09 mm and 0.38 mm.16

The size of FE-mesh should also be considered for the condition
of ductile fracture when stress concentration exists.
As explained in the introduction, the element can be

removed after fracture when the explicit time integration
method is used.9 However, removal of element during FE-
analysis may lead to more drastic reduction of load bearing
capacity of the structure than the experimental result.9 There-
fore, we reduce the stiffness and strength at each integration
point of the fractured element using the fracture variable D,
and express D as a piecewise linear function of the deforma-
tion parameter α, where D ¼ 0 before fracture, and D takes a
value between 0 and 1. Note that D does not represent the
effect of void growth on stiffness degradation of the material
before fracture. It is used for modeling reduction of the stiff-
ness after initiation of ductile fracture. Degradation of harden-
ing coefficient before fracture is modeled within the
framework of elastoplastic material so that the hardening coef-
ficient does not become negative. For example, for a case with
four segments, the relation between α and D is written as

D ¼

0 α ≤ α1 ¼ βð Þ
D1

α2−α1
α−α1ð Þ, α1 ≤ α ≤ α2ð Þ

α2 þ D2−D1

α3−α2
α−α2ð Þ α2 ≤ α ≤ α3ð Þ

D2 α3 ≤ αð Þ

8>>>>>>><
>>>>>>>:

(6)

which is illustrated in Figure 1. Note that fracture occurs at
α ¼ α1 ¼ β, which is equal to β in Equation (5).
To prevent steep reduction of the nodal loads after fracture,

we gradually increase D in Equation (2) at each integration
point, and reduce Young’s modulus, yield stress, hardening
coefficient, and stress at the integration point. This way,

degradation of the stiffness and strength develops gradually.
The parameter values for modeling cyclic elastoplastic property
are the same as Ref. [20] if not explicitly specified. Note that
the effect of yield plateau is neglected, because it is irrelevant
to a monotonic loading in Sections 3 and 4, and fracture in a
large strain range is investigated in Section 5. The linear hexa-
hedral solid element with selective reduced integration is used;
that is, the integration corresponding to the volumetric strain is
carried out only at the center of the element, while integration
is carried out at the eight integration points for the deviatoric
strain components. The appropriate value of each fracture
parameter depends on the material and mesh size. However, no
experimental investigation has been done for the fracture prop-
erties of materials used in the following numerical examples.
Therefore, we assign the α1 value for initiation of fracture
heuristically. The value of D3 should be close to 1; however,
0.9 or 0.95 is assigned because the convergence may not be
achieved if D3 = 0.99. The values of α2 and D2 are assigned so
that fracture after its initiation proceeds moderately.
It should be noted here that the tangent stiffness matrix used

for Newton–Raphson iteration for achieving equilibrium is
always positive definite in the proposed method, because D is
kept constant during the increment. Thus, convergence is
ensured even at the unstable state after fracture. Young’s mod-
ulus E, yield stress (current radius of the yield surface in the
deviatoric stress space) σY, back stress tensor σ0, hardening
coefficient H, and stress tensor σ are scaled by the ratio 1−D
using the updated value of D after convergence, and the corre-
sponding unbalanced loads are carried over to the next step to
be added to the load increment. Therefore, the equilibrium
state after convergence of Newton–Raphson iteration is a ten-
tative state; however, the unbalanced force is negligibly small
and can be reduced in the next step if a small increment is
adopted. The outline of the algorithm for an incremental pro-
cess of the load vector P is as follows:

Algorithm

1 Newton–Raphson iteration for increment k

1.1 Compute displacement increment.
1.2 For all integration points of all elements:
Compute H, εp, σ, σe, σm, T, and increment Δεp of εp from

the previous step.
1.3 Compute unbalanced forces and go to 1.1 if not con-

verged.

2 Reduction of stiffness and strength after increment k:

For all integration points of all elements:
Update ε̂p to ε̂p þ Δεp if σm > 0, and compute fracture vari-

able Dk.
If Dk >Dk−1:
Compute R ¼ 1−Dkð Þ= 1−Dk−1ð Þ.
σ Rσ, σY  RσY, σ0  Rσ0, E RE, H  RH
Compute internal force vector and the unbalanced force vec-

tor R.
Update the load vector and add the unbalanced force vector

as P Pþ ΔPþ R, k k þ 1 and go back to 1.

3. Notched Rod Model

FE-analysis is carried out for the uniaxial test of a notched rod
in Ref. [34]. The hardening property is identified using the

FIGURE 1. Piecewise linear relation between deformation parameter
α and fracture variable D for a case with four segments
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experimental result of the rod without notch in Ref. [34]. The
relation between the nominal stress σ0 and engineering strain
ε0 is shown in Figure 2(a), which is transformed into the rela-
tion between the true stress σt ¼ 1þ ε0ð Þσ0 and the logarith-
mic strain εt ¼ log 1þ ε0ð Þ as shown in Figure 2B. Note that
ductile fracture was not observed in this test.
The stress–strain relation is modeled as a piecewise linear

relation, and the hardening coefficients are identified using the
curve (experimental result) in Figure 2B. A lower bound is
assigned for the hardening coefficient, and its value beyond
the final strain 0.1304 in the experiment is assumed to be
384 MPa, which is 1/50 of Young’s modulus E = 192 GPa.
The relation between the nominal stress σ0 and engineering
strain ε0 obtained by uniaxial tension analysis of a single ele-
ment is shown in Figure 3, which is close to the relation in
Figure 2A.
The notched rod shown in Figure 4 is stretched in the

axial direction by the forced displacements at both ends.34

The material parameters are the same as the single element
model. The value of α1 ¼ βð Þ at the initiation of fracture is
2.60 based on the result in Ref. [12]. The parameters in Fig-
ure 1 are α1,D1ð Þ ¼ 2:60, 0:0ð Þ, α2,D2ð Þ ¼ 2:65, 0:2ð Þ,
α3,D3ð Þ ¼ 2:70, 0:9ð Þ to prevent sudden decrease of stiffness

and strength of the rod and to continue analysis after initiation
of ductile fracture without divergence of the solution.
By utilizing symmetry of the rod and loading condition, and

accordingly, symmetry of deformation, one of the 1/8 parts is
discretized into hexahedral elements, as shown in Figure 5, in
the similar manner as Ref. [34]. Symmetric boundary condi-
tions are assigned along the internal boundaries, and forced
axial displacements are given at the left end as illustrated in
Figure 5. The nominal size of the mesh for automatic mesh
generation is 0.1625 mm, and the numbers of nodes and ele-
ments are 78 710 and 71 680, respectively. Figure 5C shows
the mesh on the surface, and the corner points and (x, y) coor-
dinates are indicated in the figure, where z-coordinate is per-
pendicular to the plane. The (x, y) coordinates (mm) of points
A, B, C, D, E, and F are (0, 0), (0, 5), (0, 30), (12.5, 25),
(12.5, 3.5), and (5.5, 0), respectively. The displacement in x-
direction and the rotations around y- and z-axes are fixed on
the boundary AC, and the displacement in y-direction and the
rotations around x- and z-directions are fixed on the boundary
AF. A uniform y-directional displacement is given on the free
boundary CD. The axial displacements at points A and B
located on the surface are extracted to obtain the relative dis-
placement U. The displacement increment at the left end is
fixed at 0.001 mm.
The load–displacement relation obtained by the experiment in

Ref. [34] is plotted with dotted line in Figure 6, which shows
that the load has the peak around the displacement U = 0.7 mm
and decreases until fracture occurs at around U = 2 mm. The

FIGURE 2. Relation between stress and strain of rod without notch; (A) nominal values,34 (B) true values

FIGURE 3. Tensile stress–strain relation of a single element FIGURE 4. A notched rod model with thickness 12.7 mm
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analysis result is plotted with solid line in Figure 6, where the
axial reaction force is multiplied by 4 to obtain the load on the
whole section of the rod. The maximum load obtained by analy-
sis is 66.674 kN at U = 0.544 mm, which is close to the experi-
mental result, and rapid decrease of load occurs at
U = 2.12 mm. It is notable that the analysis can continue to
trace the degrading load–displacement relation after the fracture.
The deformed shapes at the initial state (Step 0), the maxi-

mum load (Step 1 080), and the initiation of fracture (Step
2 950) are shown in Figure 7, where the black part is due to
overlap of the mesh lines. The displacement and force at Step
2 950 is indicated in Figure 6 with + mark. The results show
that the necking behavior can be successfully simulated by the
linear hexahedral solid element with selective reduced integra-
tion for the volumetric strain. However, the purpose of this
analysis is not to show that necking can be simulated, but to
present a method for simulating the stiffness deterioration after
fracture using an implicit time integration method.
Close view at the center is shown in Figure 8 for several

steps after fracture, where the displacements and forces at

FIGURE 5. FE-mesh of notched rod model

FIGURE 6. Load–displacement relation of notched rod; solid line:
analysis, dotted line: experiment34
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FIGURE 7. Deformed shapes at initial state, maximum load, and initiation of fracture

FIGURE 8. Close view of deformation after fracture
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these steps are indicated in Figure 6 with + marks, where
Steps 2 950 and 2 960, and Steps 2 970 and 2 980, respec-
tively, are almost duplicate in the figure. It is seen that large
deformation propagates from the notch surface to the center of
the rod. The stress strain relation in Figure 2B ensures increase
of the true stress during the progress of deformation, and the
reduction of the force before Step 2 960 is due to the reduction
of cross-sectional area of the center section (right side of the
1/8 model) associated with the necking, and the rapid reduc-
tion of the force after Step 2 960 is due to the fracture. History
of the fracture variable is plotted in Figure 9A for the element
connected to node C indicated in Figure 8. Note that the aver-
age value among eight integration points is plotted in the Fig-
ure. A close view at the initiation of fracture is plotted in
Figure 9B, which shows the stepwise increase of fracture vari-
able D to the upper bound 0.9 at the initiation of fracture.

4. Double Notched Plate

To verify the proposed ductile fracture model and further
demonstrate the ability of simulating stiffness degrading pro-
cess due to ductile fracture, a forced displacement analysis is
carried out for a double notched plate as shown in Figure 10,
which was investigated in Refs. 35 and 36. The plate has cir-
cular notches at the two corners, and its thickness is 1.0 mm.
The boundary conditions are specified in the figure, and forced
y-directional displacement is applied along the upper edge.
The nominal size of the mesh for automatic mesh generation
is 0.1 mm. A bilinear elastoplastic material is assumed, and
Young’s modulus, Poisson’s ratio, yield stress, and hardening
coefficients are 180 GPa, 0.28022, 443.0 MPa, and 300 MPa,
respectively.
Deformation under forced displacement is simulated for var-

ious αi,Dið Þ values listed in Table 1 to investigate the effect
of these parameters on the response properties. Note that frac-
ture is not considered in Case 1. The relations between y-
directional displacement U and the total reaction force are
obtained as shown in Figure 11. The deformed shapes at
U = 0.6 and 1.0 are shown in Figures 12A and B, respectively,
for Case 5, where the contour represents the equivalent plastic
strain. Because no fracture occurs at U = 0.6, the shape in Fig-
ure 12A represents the deformation at U = 0.6 for all cases.

Therefore, a concentrated shear failure can be simulated with-
out using the fracture variable. As seen from Figure 11A, no
steep stiffness degradation occurs if ductile fracture is not

FIGURE 9. History of fracture variable of element C with respect to displacement; (A) whole loading history, (B) close view at initiation of frac-
ture

FIGURE 10. A double notched plate35,36

TABLE 1. Parameter sets for Cases 1–7 of double notched plate

α1,D1ð Þ α2,D2ð Þ α3,D3ð Þ
Case 1 (1.30, 0.0) (1.50, 0.00) (1.70, 0.00)

Case 2 (1.30, 0.0) (1.50, 0.20) (1.70, 0.95)

Case 3 (2.00, 0.0) (2.20, 0.20) (2.40, 0.95)

Case 4 (1.30, 0.0) (3.30, 0.20) (4.30, 0.95)

Case 5 (1.30, 0.0) (2.80, 0.20) (4.30, 0.99)

Case 6 (1.30, 0.0) (2.80, 0.20) (4.30, 0.60)

Case 7 (1.30, 0.0) (2.80, 0.20) (4.30, 0.80)
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considered. Obviously, a larger α1 value leads to a larger dis-
placement at the initiation of fracture, which is also delayed
by assigning a larger value for the difference between α1 and
α2. It is also clearly observed that a larger value of D3 leads to
more rapid decrease of the reaction force. The reaction force
reduces stepwise as strain localization occurs in multiple ele-
ments successively and stops because deformation is controlled
by forced displacement.

5. Component Frame of Moment Frame

FE-analysis is carried out for a beam-column model as shown
in Figure 13. An experiment under cyclic static deformation
was carried out in Ref. [37]. The column has pin supports A
and B, and a forced z-directional displacement (positive for
upward displacement) is applied at the beam end C, where the
out-of-plane displacement and rotations are constrained. All
parts of the beam, column, and joint are divided into linear
hexahedral elements with selective reduced integration. The
sizes of the elements near the access hole are about 2.5 mm,

and the total numbers of nodes and elements are 268 656 and
210 952, respectively.
The rotation angle of beam θ, excluding the rotation of the

connection, is defined as

θ ¼ UC
z − UD

z þ UE
z

� �
=2

� �
= 3000−B=2ð Þ− UD

x −U
E
x

� �
=H 7

where Ui
j is the j-directional displacement at point i, B is the

width of column, and H is the height of beam. Let θP denote
the value of θ when the bending moment at the beam-to-
column connection reaches the fully plastic moment. The value
of θP is 0.0082 according to Ref. [37]. A z-directional forced
displacement is applied at the beam end so that the rotation
angle of beam between the column face of the beam-to-
column connection and the beam end obeys the pattern in Fig-
ure 14.
The sections of beam and column are H-450 × 200 ×

9 × 14 (I-section) and SHS-350 × 12 (square hollow section),
respectively, and the thickness of diaphragm is 19 mm. The
materials are SS400 (JIS G 3101), STKR400 (JIS G 3466),

FIGURE 11. Relations between y-directional displacement (mm) and reaction force (kN); (A) Cases 1–3, (B) Cases 4–7 (close view near fracture)

FIGURE 12. Deformed shape and equivalent plastic strain of Case 5; (A) U = 0.6, (B) U = 1.0
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and SS400 by Japanese specification, respectively, for beam,
column, and diaphragm. The measured thickness t, yield stress
σY, and tensile strength σU of the parts are listed in Table 2.
The hardening coefficients are identified from the result of the
material test for each part.37 The relation between the uniaxial
true stress and strain is plotted in Figure 15 for each compo-
nent of the frame members. Note that the lower bound E/100
is given for the hardening coefficients, and the parameters for

cyclic deformation are assigned based on the results in Ref.
[20]. Although a detailed rule is proposed in Ref. [20] for
incorporating the special characteristics for reloading to the
yield plateau, it is simply ignored here because it is irrelevant
to the fracture in a large strain range. Artificial damping coeffi-
cient is assigned especially in the plastic loading range to
avoid divergence of the Newton–Raphson iteration. Although
the displacement increment varies with the cycles, its value is
approximately 0.27 mm in the elastic range, and 0.1 mm in
the elastoplastic range.
Figure 16 shows the relation between the rotation angle of

beam and the bending moment at the column face of the
beam-to-column connection obtained by the experiment. In the
experiment, a small crack of 0.45 mm was observed at the bot-
tom of access hole in the first negative cycle of the amplitude
4jP, and the maximum load was reached at the first cycle of
the amplitude 6θP. Finally, connection between the flange and
the column ruptured at the first negative cycle of 6θP.
Analysis is first carried out by assigning forced displacement

at node C computed from the target loading angle pattern in
Figure 14, i.e., 0.0164, 0.0286, and 0.0428 rad for 2θP, 4θP,
and 6θP, respectively, neglecting the rotation of the connec-
tion. Then, the rotation angle of beam is computed using
Equation (7), and the difference between the target and com-
puted values is added at each load reversal point to trace the
target angle pattern more accurately.
We consider two cases of fracture parameter. In Case 1, the

same fracture parameters as the notched rod are used. The rela-
tion between the average beam angle and the bending moment is
plotted in Figure 17, which is close to the experimental result up
to the cycles of �4θP. However, in this case, no ductile fracture
is observed. Therefore, in Case 2, the deformation parameters,
α1, α2, and α3 in Figure 1 are reduced to α1,D1ð Þ ¼ 1:30, 0:0ð Þ,
α2,D2ð Þ ¼ 1:35, 0:2ð Þ, α3,D3ð Þ ¼ 1:40, 0:9ð Þ.
The moment-rotation relation for Case 2 is plotted in Fig-

ure 18, which is also close to the experimental result up to the
cycles of �4θP. However, steep degradation of moment
observed in the experiment at the second cycle of −6θP could
not be numerically simulated. Deformation near the beam-to-
column connection at each end of the half cycle is shown in
Figure 19, where the contour represents the equivalent stress.
Note that the same color range is used for contours in all fig-
ures. We can observe clear local buckling in the flanges from
the first cycle of 4θP.
Deformed shape of the beam at the connection (column

face) at each end of the half cycle for Case 2 is shown in
Figure 20, where the contour represents the fracture variable
D. The nodal value of D in the figure is extrapolated from
the integration points; therefore, the value may slightly
exceed the maximum value 0.9. However, the contour is
truncated to the range between 0 and 0.9. Note that the upper
flange, which is compressed by the forced deformation, is
shown in Figure 20A, C, and E, while the lower flange is
shown in Figure 20B, D, and F. Although no steep degrada-
tion of force is observed, fracture is confirmed to exist at the
end of access hole and the corner of the flange connecting to
the diaphragm of the joint. It is notable that very large ten-
sile deformation exists in the web elements at the end of
access hole.
In the experiment, a local buckling of about 30 mm was

observed at the first cycle of +6θP, whereas the value by anal-
ysis was 46 mm. As local buckling is very sensitive to the
material parameters and support conditions, it is very difficult
to have the same value between experiment and numerical

FIGURE 13. Beam-column model (unit: mm)

FIGURE 14. Cyclic loading pattern

TABLE 2. Measured thickness t, yield stress σY, and tensile strength

σU of parts37

t (mm) σY (MPa) σU (MPa)

Beam Flange 13.5 311 465

Beam Web 8.4 381 491

Diaphragm 18.6 319 462

Column 11.1 282 435
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analysis when the cyclic material property is unknown. Also,
there are some uncertainties in the boundary conditions. There-
fore, it is not reasonable to demand exact quantitative agree-
ment between the single experimental result and simulation
without considering uncertainty in the parameters. However, it
is important that the deformation localization at the connection
leading to stiffness deterioration can be simulated, as shown in
Figures 18 and 20, using the proposed method.
To investigate the effect of αi,Dið Þ values on the responses

of the component frame model, for additional analyses are car-
ried out with different parameter sets as shown in Table 3,
where Case 2 is also listed for comparison. Note that the val-
ues of α2 and α3 are greater than α1 by 0.05 and 0.10, respec-
tively, for all cases. The results after second −4θP are plotted
in Figures 21A–C. It is observed from Table 3 and Figure 21A
that a larger value of α1 leads to a larger maximum bending
moment, although the difference between Cases 2 and 4 with
α1 ¼ 1:30 and 1.10, respectively, is not very large. It is also
seen from Figure 21B and C that difference between the cases

FIGURE 15. Relation between true stress and stress of parts; (A) beam web and flange, (B) column and diaphragm

FIGURE 16. Relation between beam angle and bending moment
(kNm): experimental result37

FIGURE 17. Relation between beam angle and bending moment
(kNm): Case 1

FIGURE 18. Relation between beam angle and bending moment
(kNm): Case 2
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with D3 ¼ 0:90 and 0.95 is not significant. However, the anal-
ysis stopped before reaching the final loop if D3 ¼ 0:95.

6. Conclusions

A ductile fracture model has been combined to the cyclic
elastoplastic constitutive model of steel material for application
of large-scale implicit finite element analysis. The SMCS rule
considering the stress triaxiality is used for detecting initiation
of fracture, and the degradation after fracture is modeled using
a piecewise linear relation between the fracture variable and
the deformation variable, which is a function of the equivalent
plastic strain. The fracture model is implemented to the E-
Simulator based on ADVENTURECluster as a user function.

Important advantage of the proposed procedure is that posi-
tive definiteness of the material tangent stiffness matrix is
always maintained. Unstable response after deterioration
(degradation) of stiffness and strength due to ductile fracture is
simulated by scaling the stress, yield stress, backstress,
Young’s modulus, and hardening coefficient based on the frac-
ture variable, and carrying over the unbalanced load to the
next step, while maintaining stability during Newton–Raphson
iteration. Although the equilibrium state after convergence is a
tentative state, the unbalance force is negligibly small and can
be reduced in the next step if a small increment is adopted.
Uniaxial tension analysis is carried out for a notched rod to

verify the accuracy and ability of simulating degrading
strength after fracture. It is notable that degradation of the load

FIGURE 19. Deformed shape and equivalent stress (MPa) at beam-to-column connection; (A) 4θP:2nd, (B) −4θP:2nd, (C) 6θP:1st, (D) −6θP:1st, (E)
6θP:2nd, (F) −6θP:2nd
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due to necking corresponding to the reduction of cross-
sectional area can be simulated using the proposed model and
the linear hexahedral solid element with reduced integration of
the volumetric strain.
A method has been proposed for simulating stiffness degra-

dation due to strain localization after ductile fracture. The
strain localization after necking have been successfully

simulated for the monotonic tensile test of a notched bar.
Applicability of the model to a large-scale FE-analysis is
demonstrated by cyclic analysis of a beam-column model in
comparison to the experimental results. It has been shown that
the relation between the bending moment at the column face
of the connection and the rotation angle of beam can be accu-
rately simulated using the proposed model. Although the dras-
tic degradation by ductile fracture could not be simulated, the
fracture near the access hole of the connection clearly appears
as a very large tensile deformation in the web elements. Very
small increments have been adopted for these numerical exam-
ples to ensure accuracy of the responses. The effect of magni-
tude of increment on accuracy of the results may be a subject
of future research.
For application of the proposed method to evaluate the duc-

tile fracture behavior of structure or structural component, the
appropriate values of parameters such as αi and Di should be

FIGURE 20. Deformed shape and fracture variable at beam-to-column connection; (A) 4θP:2nd, (B) −4θP:2nd, (C) 6θP:1st, (D) −6θP:1st, (E)
6θP:2nd, (F) −6θP:2nd

TABLE 3. Parameter sets for Cases 2–6 of component frame

α1,D1ð Þ α2,D2ð Þ α3,D3ð Þ
Case 2 (1.30, 0.0) (1.31, 0.20) (1.32, 0.90)

Case 3 (1.50, 0.0) (1.51, 0.20) (1.52, 0.90)

Case 4 (1.10, 0.0) (1.11, 0.20) (1.12, 0.90)

Case 5 (1.30, 0.0) (1.31, 0.20) (1.32, 0.95)

Case 6 (1.50, 0.0) (1.51, 0.20) (1.52, 0.95)
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determined from a material test or a small scale structural test.
α1 is determined by initiation of fracture, difference between
α1 and α2 as well as the value of D2 is determined by how
rapidly fracture progresses, and α3 and D3 are determined by
the loss of load-bearing capacity. These values depend on the
size of FE-mesh and the distance from the stress-concentration
part as discussed in Refs. [13–16].
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