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Abstract

We study the eigenvalue distributions for sums of independent rank-one k-fold tensor
products of large n-dimensional vectors. Previous results in the literature assume
that k = o(n) and show that the eigenvalue distributions converge to the celebrated
Marčenko-Pastur law under appropriate moment conditions on the base vectors. In
this paper, motivated by quantum information theory, we study the regime where k

grows faster, namely k = O(n). We show that the moment sequences of the eigenvalue
distributions have a limit, which is different from the Marčenko-Pastur law, and the
Marčenko-Pastur law limit holds if and only if k = o(n) for this tensor model. The
approach is based on the method of moments.

Keywords: large k-fold tensors; eigenvalue distribution; Marčenko-Pastur law; quantum infor-
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1 Introduction

For n ∈ N, let {ξ1, . . . , ξn} be a family of i.i.d. centered complex random variables

with unit variance. Denote y = 1√
n

(ξ1, . . . , ξn) ∈ Cn. Let {y(l)
α : 1 ≤ α ≤ m, 1 ≤ l ≤ k} be

a family of independent copies of y, and let Yα = y
(1)
α ⊗ · · · ⊗ y

(k)
α for 1 ≤ α ≤ m. Let

{τ1, τ2, . . .} be a sequence of real numbers, and Y = (Y1, . . . , Ym) be a nk × m matrix.
Consider the nk × nk Hermitian matrix

Mn,k,m =

m∑
α=1

ταYαY
∗
α . (1.1)
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Spectral distribution of sample covariance matrices from large tensor products

Therefore, each nk-dimensional vector Yα is a k-fold tensor product of n-dimensional i.i.d.
vectors, and Mn,k,m is a sum of m independent rank-1 Hermitian matrices of dimension
nk.

The simplest case of k = 1 was studied in the seminal paper [8] where the celebrated
Marčenko-Pastur law was derived under appropriate moment conditions on the entries
of the base vector y and the limiting scheme where n → ∞ and m/n → c > 0. Many
subsequent improvements on the Marčenko-Pastur law appeared in the literature, in-
cluding [10], [3] and [9]. Notably, the latter paper extended the law to a broad family of
y-vectors, called good vectors, that includes the current setting with i.i.d. components.
Later, for the setting τα ≡ 1, the necessary and sufficient conditions on Y1 that the
Marčenko-Pastur law serves as the limiting spectral distribution (LSD) of Mn,1,m were
carried out in [11].

Recently, [6] considered the k-fold tensor model Mn,k,m and established a LSD for
its nk real-valued eigenvalues. For the special case τα ≡ 1, the LSD is exactly the
Marčenko-Pastur law. A central limit theorem (CLT) is also established for a class of
linear spectral statistics following the approach of [7]. The main setup [6] is that the
tensor product number k must be small enough compared to the space dimension n.
Precisely, k/n→ 0 is required for the validity of the LSD while k ≡ 2 is required when
n→∞ for the validity of the CLT. It is natural to consider the setting where k is large.
Note that larger values of k produce more dependence among the entries of the vector
Y1: one expects that the LSD of Mn,k,m does not obey the Marčenko-Pastur law when k
is large enough. However, the martingale moment bound employed in [6] is less useful
when k is large, and the method cannot extend directly to the case k = O(n). The present
paper deals with the case k = O(n) for the model (1.1) and shows that the empirical
spectral distribution (ESD) of Mn,k,m with τα ≡ 1 converges to the Marčenko-Pastur law
if and only if k = o(n). Therefore, the matrix Mn,k,m with k = O(n) is a new example of
bad vectors, for which the necessary and sufficient condition in [11] does not hold.

Another motivation for studying the model (1.1) is from quantum information theory.
In [1], the model Mn,k,m was introduced as a quantum analog of the classical probability
problem of allocating r balls into s bins. The random vector Y1 was interpreted as random
product states in (Cn)⊗k. When k is fixed and m = cnk for some c > 0, [1] established
the convergence in expectation of the normalized trace of moments n−kTrMp

n,k,m, which
coincide with the corresponding moments of the Marčenko-Pastur law. In quantum
physics and quantum information theory, it is natural to investigate the behavior of a large
number of quantum states. The paper [12] characterizes the quantum entanglement of
structured random states and studies the spectral density of the reduced state when the
number of the quantum states k is large. Likewise, [4] studies the asymptotic behavior
of the average entropy of entanglement for elements of an ensemble of random states
associated with a graph when the dimension of the quantum subsystem is large.

This paper considers the scenario where k grows to infinity quickly. Namely, we
assume that there exist constants c, d ∈ (0,∞), such that

k

n
→ d,

m

nk
→ c. (1.2)

Let us add one more word of motivation for the choice of regime k = O(n). This is
a natural threshold in our quest for limiting theorems, and from the point of view of
probability theory, our result extends existing results. However, the need for large k is
real in Quantum Information Theory. Actually, a typical real-world scenario would be n
fixed (the dimension of the system) and k would go to infinity – the system can be used
many times, i.e., one works on regularized quantities. In practice, we do not know how
to fix n and send k to infinity, so we take this scenario as our next model.
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Spectral distribution of sample covariance matrices from large tensor products

Our approach is based on the method of moments. Under appropriate moment
conditions on the base variable ξ1 and the sequence of coefficients {τα}, we derive the
limits for the spectral moments of Mn,k,m under the limiting scheme (1.2). A striking
fact from our result is that contrary to [6], the limiting spectral moments found here
involve the 4th moment of the base variable ξ1.

2 Almost sure convergence of spectral moments

We use [s] to denote the set of integers from 1 to a positive integer s. For α =

(α1, . . . , αp) and each value t in α, we count its frequency by

degt(α) = |{j ∈ [p] : αj = t}| . (2.1)

The main result of the paper is the following theorem.

Theorem 2.1. Assume d > 0 and the following moment conditions hold.

1. For all p ∈ N, the p-th moment mp = E[|ξ1|p] <∞.

2. For all q ∈ N,

1

m

m∑
j=1

τ qj → m(τ)
q , m→∞. (2.2)

We have

(i)

lim
n→∞

1

nk
E
[
TrMp

n,k,m

]
=

p∑
s=1

cs
∑
α∈C(1)

s,p

(
s∏
t=1

m
(τ)
degt(α)

)
exp

(
d(m4 − 1)

s∑
t=1

(
degt(α)

2

))
.

(2.3)

Here C(1)s,p is a special class of graphs that will be defined in the course of the proof
(see Lemma 3.1).

(ii) For all fixed p ∈ N+, if k ≥ 2, we have

∞∑
n=1

Var

(
1

nk
TrMp

n,k,m

)
<∞.

In particular, (i) and (ii) imply that n−kTrMp
n,k,m converge almost surely to the limit given

in the r.h.s. of (2.3).

The proof of the theorem is given in Section 3.

Remark 2.2. Here, we require the random variable ξ1 to have finite moments of any
order. For most matrix models, one can remove such moment conditions by a standard
truncation argument. However, the centralization step in the truncation argument fails
for our matrix model. More precisely, let ŷ(l)

α be the truncated vector for all 1 ≤ α ≤ m
and 1 ≤ l ≤ k, then we have the following identity

ŷ(1)
α ⊗ · · · ⊗ ŷ(k)

α −
(
ŷ(1)
α − E

[
ŷ(1)
α

])
⊗ · · · ⊗

(
ŷ(k)
α − E

[
ŷ(k)
α

])
=

k∑
l=1

ŷ(1)
α ⊗ · · · ⊗ ŷ(l−1)

α ⊗ E
[
ŷ(l)
α

]
⊗
(
ŷ(l+1)
α − E

[
ŷ(l+1)
α

])
⊗ · · · ⊗

(
ŷ(k)
α − E

[
ŷ(k)
α

])
. (2.4)
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Note that for 1 ≤ l ≤ k, the nk ×m matrix, whose α-th column is

ŷ(1)
α ⊗ · · · ⊗ ŷ(l−1)

α ⊗ E
[
ŷ(l)
α

]
⊗
(
ŷ(l+1)
α − E

[
ŷ(l+1)
α

])
⊗ · · · ⊗

(
ŷ(k)
α − E

[
ŷ(k)
α

])
,

has rank at most nk−1. Thus, the nk ×m matrix, whose α-th column is (2.4), has rank
at most knk−1. Hence, by [2, Theorem A.44], the sup norm of the difference of the
cumulative distribution functions in the centralization step does not exceed k/n, which
is not negligible when d > 0.

Let θ = ed(m4−1). The limit moments in (2.3), say γp, are polynomial functions of θ.
The first four moments are

γ1 = 1,

γ2 = cθ + c2,

γ3 = cθ3 + 3c2θ + c3,

γ4 = cθ6 + 4c2θ3 + 2c2θ2 + 6c3θ + c4.

However, for higher exponent p, some computing code is needed to find an explicit
expression for γp.

Remark 2.3. The limiting moment sequence (γp) grows to infinity extremely fast with p.
To see this, let τα ≡ 1. Then γp is lower bounded by the first term (s = 1) in (2.3), namely

cθp(p−1)/2. Thus the Carleman’s condition, that is,
∑∞
p=1 γ

−1/(2p)
2p = ∞, is not satisfied

(see also [5]). In particular, it is not clear whether the moment sequence (γp) uniquely
determines a limiting distribution. However, by the convergence of the moments, we
know that the sequence of eigenvalue distributions is tight (almost surely).

As a byproduct of our moment method, we give an alternative method for deriving a
limiting spectral distribution in the case of d = 0, a result already given in [6] using the
method of Stieltjes transform.

Proposition 2.4. Assume d = 0. We have

(i)

lim
n→∞

1

nk
E
[
TrMp

n,k,m

]
=

p∑
s=1

cs
∑
α∈C(1)

s,p

(
s∏
t=1

m
(τ)
degt(α)

)
. (2.5)

Here C(1)s,p is a special class of graphs defined later in Lemma 3.1.

(ii) For all fixed p ∈ N+, if k ≥ 2, we have

∞∑
n=1

Var

(
1

nk
TrMp

n,k,m

)
<∞.

In particular, (i) and (ii) imply that n−kTrMp
n,k,m converge almost surely to the limit given

in the r.h.s. of (2.5).

The proof of the proposition is given in Section 4.
Finally, comparing the two cases d > 0 and d = 0, it is worth noticing that the fourth

moment m4 contributes to the limiting spectral moments only in the case of d > 0

(Theorem 2.1).

3 Proof of Theorem 2.1

We first introduce some preliminaries on graph combinatorics. We call α = (α1, . . . ,

αp) ∈ [m]p a sequence of length p with vertices αj for 1 ≤ j ≤ p. We denote by |α| the
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number of distinct elements in α. If s = |α|, then we call α an s-sequence. Let Js,p(m)

be the set of all s-sequences α ∈ [m]p. Then

[m]p =

p⋃
s=1

Js,p(m). (3.1)

Two sequences are equivalent if one becomes the other by a suitable permutation on
[m]. The sequence α is canonical if α1 = 1 and αu ≤ max{α1, . . . , αu−1} + 1 for u ≥ 2.
We denote by Cs,p the set of all canonical s-sequences of length p. From the definition
above, one can see that the set of distinct vertices of a canonical s-sequence is [s].
Denote by Is,m the set of injective maps from [s] to [m]. For a canonical s-sequence α
and a map ϕ ∈ Is,m, we call ϕ(α) the s-sequence (ϕ(α1), . . . , ϕ(αp)). For each canonical
s-sequence, its image under the maps in Is,m gives all its equivalent sequences, and
hence its equivalent class of sequences in [m]p has exactly m(m−1) · · · (m−s+1) distinct
elements.

Let α = (α1, . . . , αp) ∈ [m]p be a fixed canonical s-sequence. For i1 = (i
(1)
1 , . . . , i

(p)
1 ) ∈

[n]p, draw two parallel lines referred as the α-line and the i-line, respectively. Plot

i
(1)
1 , . . . , i

(p)
1 on the i-line and α1, . . . , αp on the α-line. Draw p down edges from αu to

i
(u)
1 and p up edges from i

(u)
1 to αu+1 for 1 ≤ u ≤ p. Here, we use the convention that

α1 = αp+1. We call a down edge from αu to i
(u)
1 a down innovation if i(u)1 is different

from i
(1)
1 , . . . , i

(u−1)
1 . We also call an up edge from i

(u)
1 to αu+1 an up innovation if αu+1

is different from α1, . . . , αu. We denote the graph by g(i1, α) and call such graph a
∆(p;α)-graph. Two graphs g(i1, α) and g(i′1, α) are called equivalent if the two sequences
i1 and i′1 are equivalent, and we write g(i1, α) ∼ g(i′1, α) for this equivalence. For each

equivalent class, we choose the canonical graph such that i1 = (i
(1)
1 , . . . , i

(p)
1 ) ∈ [n]p

is a canonical r-sequence for some r ∈ N+. A canonical ∆(p;α)-graph is denoted by
∆(p, r, s;α) if it has r noncoincident i-vertices and s noncoincident α-vertices. We classify
∆(p, r, s;α)-graphs into the following five categories.

• ∆1(p, s;α). ∆(p;α)-graphs in which each down edge must coincide with one and
only one up edge. If we glue the coincident edges, the resulting graph is a tree of p
edges and p+ 1 vertices, which implies r + s = p+ 1.

• ∆2(p, r, s;α). ∆(p;α)-graphs that contain at least one single edge.

• ∆3(p, s;α). ∆(p;α)-graphs such that the number of the edges between two vertices
is 0 or 2. If we glue the coincident edges, the resulting graph is a connected
graph with exactly one cycle. The graph has p edges and p vertices, which implies
r + s = p.

• ∆4(p, s;α). ∆(p;α)-graphs having two up edges and two down edges with the same
endpoints, and all other down edges coincide with one and only one up edge. If
we glue the coincident edges, the resulting graph is a tree of p − 1 edges and p

vertices, implying r + s = p.

• ∆5(p, r, s;α). ∆(p;α)-graphs that do not belong to the categories above. In this
case, the graph has at most p− 1 vertices, since the in-degree equals to out-degree
and at least 2 for all vertices. Thus, r + s ≤ p− 1.

Next, we determine the number of sequence i1 ∈ Cp+1−s,p such that g(i1, α) ∈
∆1(p, s;α) for a given sequence α ∈ Cs,p. We have the following lemma, which is
motivated by [2, Lemma 3.4].

Lemma 3.1. For any sequence α ∈ Cs,p, there is at most one sequence i1 ∈ Cp+1−s,p

such that g(i1, α) ∈ ∆1(p, s;α). We denote by C(1)s,p the set of such canonical sequences α.
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Then the number of the elements in C(1)s,p is

1

p

(
p

s− 1

)(
p

s

)
.

Proof. Let

∆1(p, s) =
⋃

α∈Cs,p

∆1(p, s;α).

We define a pair of characteristic sequences {u1, . . . , up} and {d1, . . . , dp} by

ul =

{
1, αl+1 = max{α1, . . . , αl}+ 1,

0, otherwise,
(3.2)

and

dl =

{
−1, αl /∈ {1, αl+1, . . . , αp},
0, otherwise.

(3.3)

By definition, we always have up = 0 and d1 = 0 because α1 = 1.
For a graph in ∆1(p, s), there are exactly s− 1 up innovations and hence there are

s−1 u-variables equal to 1 and s−1 d-variables equal to −1. From its definition, one sees
that dl = −1 means that after plotting the l-th down edge (αl, i

(l)
1 ), the future path will

never revisit the vertices αl, which means that the edge (αl, i
(l)
1 ) must coincide with the

up innovation leading to the vertex αl. Since there are r = p+ 1− s down innovations to
lead out the r i1-vertices, dl = 0 implies that the edge (αl, i

(l)
1 ) must be a down innovation.

Therefore, dl = −1 must follow a uj = 1 for some j < l, which leads to the restriction of
the pair of characteristic sequences to satisfy

u1 + · · ·+ ul−1 + d2 + · · ·+ dl ≥ 0, 2 ≤ l ≤ p. (3.4)

Next, we show that each pair of characteristic sequences satisfying (3.4) defines a
graph in ∆1(p, s) uniquely.

Firstly, we have i
(1)
1 = 1. Besides, α2 = 1 if u1 = 0 and α2 = 2 if u1 = 1. We use

induction to determine the unique graph in ∆1(p, s). Suppose that the first l pairs of
the down and up edges are uniquely determined by the two sequences {u1, . . . ul} and
{d1, . . . dl}, and the subgraph of the first l pairs of down and up edges satisfies the
following properties:

(a1) The subgraph is connected, and the unidirectional noncoincident edges form a
tree;

(a2) If αl+1 = 1, then each down edge coincides with an up edge, which means that the
subgraph has not any single innovation;

(a3) If αl+1 6= 1, then from the vertex α1 to αl+1, there is only one path (a chain without
cycles) of down-up-down-up single innovations and all other down edges coincide
with an up edge.

We consider the following four cases to determine the (l + 1)-th pair of down and up
edges.

Case 1. dl+1 = 0 and ul+1 = 1. Then both edges of the (l + 1)-th pair are innovations,

which implies that i(l+1)
1 = |{j ≤ l+ 1 : dj = 0}| and αl+2 = 1 + |{j ≤ l+ 1 : uj = 1}|.

After adding the two edges, the subgraph with the first l + 1 pairs of down and up
edges satisfies the properties (a1)–(a3).
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Case 2. dl+1 = 0 and ul+1 = 0. Then the down edge (αl+1, i
(l+1)
1 ) is an innovation so

i
(l+1)
1 = |{j ≤ l + 1 : dj = 0}|. The up edge (i

(l+1)
1 , αl+2) is not an innovation so

αl+2 coincides with some vertex αj for 1 ≤ j ≤ l + 1. If αj 6= αl+1, then there is a

path i
(l)
1 → αl+1 → i

(l+1)
1 → αj . Also note that there should be a path connecting

αj and i
(l)
1 in the subgraph of first l pairs of down and up edges. The two paths

with undirected noncoincident edges will lead to a circle, which is a contradiction.
Hence, αl+2 = αj = αl+1 and the (l + 1)-th up edge coincide with the (l + 1)-th
down edge. After adding the two edges, the subgraph with the first l + 1 pairs of
down and up edges satisfies the properties (a1)–(a3).

Case 3. dl+1 = −1 and ul+1 = 1. By (3.4), we have

u1 + · · ·+ ul + d2 + · · ·+ dl ≥ 1.

Hence, there is at least one vertex in {α2, . . . , αl+1} which is not α1, such that
the vertex will be visited in the last p− (l + 1) pairs of down and up edges. Thus,
by property (a1) and (a2), we have αl+1 6= α1. Hence, there must be a single up

innovation leading to the vertex αl+1. We denote the up innovation by (i
(j)
1 , αl+1)

for some 1 ≤ j ≤ l. Hence, we choose i(l+1)
1 = i

(j)
1 , which means that the down

edge starting from αl+1 coincides with the up innovation leading to αl+1. Besides,

the (l + 1)-th up edge is an innovation, which starts from i
(l+1)
1 and ends in αl+2 =

1 + |{j ≤ l + 1 : uj = 1}|. After adding the two edges, the subgraph with the first
l + 1 pairs of down and up edges satisfies the properties (a1)–(a3).

Case 4. dl+1 = −1 and ul+1 = 0. As discussed in Case 3, the (l + 1)-th down edge
coincides with the only up innovation ended at αl+1. Before this up innovation,
there must be a single down innovation by property (a3). Then the up edge can be
drawn to coincide with this down innovation. If the path of single innovations of the
subgraph with the first l pairs of down and up edges has only one pair of down-up
innovations, then αl+2 = 1, and hence the subgraph with the first l + 1 pairs of
down and up edges has no single innovations, which implies that the properties
(a1) and (a2) hold. Otherwise, αl+2 6= 1 and the subgraph with first l + 1 pairs of
down and up edges satisfies properties (a1) and (a3).

By induction, it is shown that two characteristic sequences {u1, . . . , up} and {d1, . . . ,
dp} satisfying (3.4) determine a graph in ∆1(p, s) uniquely.

For a given sequence α = (α1, . . . , αp) ∈ Cs,p, the two characteristic sequences are
uniquely determined by (3.2) and (3.3). This shows that there is at most one sequence
i1 ∈ Cp+1−s,p such that g(i1, α) ∈ ∆1(p, s;α). More precisely, there is exactly one sequence
i1 ∈ Cp+1−s,p such that g(i1, α) ∈ ∆1(p, s;α) if and only if the pair of two characteristic
sequences satisfies (3.4).

Moreover, by [2, Lemma 3.5], the number of the elements in C(1)s,p equals to the number
of graphs in ⋃

α∈Cs,p

∆1(p, s;α),

which is

1

s

(
p

s− 1

)(
p− 1

s− 1

)
=

1

p

(
p

s− 1

)(
p

s

)
.

Remark 3.2. There exists α ∈ Cs,p\C(1)s,p , such that the u-sequence and the d-sequence de-
fined by (3.2) and (3.3) respectively satisfy the restriction (3.4). Consider the canonical
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2-sequence α = (1, 2, 1, 2), the corresponding u-sequence is {1, 0, 0, 0} and the corre-
sponding d-sequence is {0, 0, 0,−1}, which satisfy (3.4). However, the graph of α belongs

to ∆3(4, 2;α), which means that α ∈ C2,4 \ C(1)2,4 . Indeed, the α-sequence of the graph in
∆1(4, 2;α) corresponding to the pair of characteristic sequences is (1, 2, 2, 2).

3.1 Proof of (i)

We will use α, β ∈ [m] to index the columns of Y . We will also use a multiple index i

of the form i = (i1, . . . , ik) for the rows of Y . Then i should be in [nk]. For any p ∈ N, we
compute the moment

1

nk
E
[
TrMp

n,k,m

]
.

By convention, αp+1 = α1. We have

1

nk
E
[
TrMp

n,k,m

]
=

1

nk

m∑
α1,...,αp=1

(
p∏
t=1

ταt

)
E
[
Tr
(
Yαp+1Y

∗
α1
· · ·YαpY ∗αp

)]

=
1

nk

m∑
α1,...,αp=1

(
p∏
t=1

ταt

)
E

[
nk∑

i(1),...,i(p)=1

p∏
t=1

Yi(t)αtYi(t)αt+1

]

=
1

nk

m∑
α1,...,αp=1

(
p∏
t=1

ταt

)
E

[
nk∑

i(1),...,i(p)=1

p∏
t=1

k∏
l=1

((
y
(l)
αt

)
i
(t)
l

(
y(l)
αt+1

)
i
(t)
l

)]

=
1

nk

m∑
α1,...,αp=1

(
p∏
t=1

ταt

)
E

[
k∏
l=1

n∑
i
(1)
l ,...,i

(p)
l =1

p∏
t=1

((
y
(l)
αt

)
i
(t)
l

(
y(l)
αt+1

)
i
(t)
l

)]

=
1

nk

m∑
α1,...,αp=1

(
p∏
t=1

ταt

)E
 n∑
i
(1)
1 ,...,i

(p)
1 =1

p∏
t=1

((
y
(1)
αt

)
i
(t)
1

(
y(1)
αt+1

)
i
(t)
1

)

k

.

(3.5)

We used the i.i.d. setting in the last equality.
For two sequences α = (α1, . . . , αp) ∈ [m]p and i1 = (i

(1)
1 , . . . , i

(p)
1 ) ∈ [n]p, let

E(i1, α) = E

[
p∏
t=1

((
y
(1)
αt

)
i
(t)
1

(
y(1)
αt+1

)
i
(t)
1

)]
. (3.6)

Observe that E(i1, α) = E(i′1, α
′) if the two sequences i1 and α are equivalent to i′1 and

α′, respectively. By (3.5) and (3.1), we have

1

nk
E
[
TrMp

n,k,m

]
=

1

nk

p∑
s=1

∑
α∈Js,p(m)

(
p∏
t=1

ταt

) p∑
r=1

∑
i1∈Jr,p(n)

E(i1, α)

k

=
1

nk

p∑
s=1

∑
α∈Cs,p

 ∑
ϕ∈Is,m

p∏
t=1

τϕ(αt)

 p∑
r=1

n · · · (n− r + 1)
∑

i1∈Cr,p

E(i1, α)

k

.

(3.7)

We first compute the sum on i1 in (3.7). For any sequences α ∈ Cs,p, we can split the
sum according to the category of the graph g(i1, α) as follows:∑

i1∈Cr,p

E(i1, α) =
∑

i1∈Cr,p
g(i1,α)∈∆1(p,s;α)

E(i1, α) +
∑

i1∈Cr,p
g(i1,α)∈∆3(p,s;α)

E(i1, α)
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+
∑

i1∈Cr,p
g(i1,α)∈∆4(p,s;α)

E(i1, α) +
∑

i1∈Cr,p
g(i1,α)∈∆5(p,r,s;α)

E(i1, α) (3.8)

We deal with the four terms on the right hand side, respectively. For i1 ∈ Cr,p with
g(i1, α) ∈ ∆1(p, s;α), by the definition of ∆1(p, s;α), we have E(i1, α) = n−p and p =

r + s− 1. Hence, ∑
i1∈Cr,p

g(i1,α)∈∆1(p,s;α)

E(i1, α) = n1−r−s
∑

i1∈Cr,p
g(i1,α)∈∆1(p,s;α)

1. (3.9)

For i1 ∈ Cr,p with g(i1, α) ∈ ∆3(p, s;α), by the definition of ∆3(p, s;α), we have E(i1, α) =

n−p and p = r + s. Hence,∑
i1∈Cr,p

g(i1,α)∈∆3(p,s;α)

E(i1, α) = n−r−s
∑

i1∈Cr,p
g(i1,α)∈∆3(p,s;α)

1. (3.10)

For i1 ∈ Cr,p with g(i1, α) ∈ ∆4(p, s;α), by the definition of ∆4(p, s;α), we have E(i1, α) =

n−pm4 and p = r + s. Hence,∑
i1∈Cr,p

g(i1,α)∈∆4(p,s;α)

E(i1, α) = n−r−sm4

∑
i1∈Cr,p

g(i1,α)∈∆4(p,s;α)

1. (3.11)

For i1 ∈ Cr,p with g(i1, α) ∈ ∆5(p, r, s;α), by the definition of ∆5(p, r, s;α), we have
E(i1, α) = O(n−p) and p ≥ r + s+ 1. Hence,∑

i1∈Cr,p
g(i1,α)∈∆5(p,r,s;α)

E(i1, α) = O(n−p)
∑

i1∈Cr,p
g(i1,α)∈∆5(p,r,s;α)

1. (3.12)

Substituting (3.9), (3.10), (3.11) and (3.12) to (3.8), and noting that

n · · · (n− r + 1) = nr
(

1− r(r − 1)

2n
+O(n−2)

)
,

we have

p∑
r=1

n · · · (n− r + 1)
∑

i1∈Cr,p

E(i1, α)

=n1−s
(

1− (p+ 1− s)(p− s)
2n

+O(n−2)

) ∑
i1∈Cp+1−s,p

g(i1,α)∈∆1(p,s;α)

1

+ n−s
(

1− (p− s)(p− s− 1)

2n
+O(n−2)

) ∑
i1∈Cr,p

g(i1,α)∈∆3(p,s;α)

1

+ n−s
(

1− (p− s)(p− s− 1)

2n
+O(n−2)

)
m4

∑
i1∈Cr,p

g(i1,α)∈∆4(p,s;α)

1

+

p−s−1∑
r=1

nr
(

1− r(r − 1)

2n
+O(n−2)

) ∑
i1∈Cr,p

g(i1,α)∈∆5(p,r,s;α)

O(n−p)

=n1−s
(

1− (p+ 1− s)(p− s)
2n

) ∑
i1∈Cp+1−s,p

g(i1,α)∈∆1(p,s;α)

1
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+ n−s

 ∑
i1∈Cr,p

g(i1,α)∈∆3(p,s;α)

1 +m4

∑
i1∈Cr,p

g(i1,α)∈∆4(p,s;α)

1

+O(n−s−1) (3.13)

=

{
O(n1−s), α ∈ C(1)s,p ,

O(n−s), α ∈ Cs,p \ C(1)s,p ,
(3.14)

where the last equality follows from Lemma 3.1. Hence, by (3.13), (3.14) and Lemma
3.1, (3.7) can be written as

1

nk
E
[
TrMp

n,k,m

]
=

1

nk

p∑
s=1

∑
α∈Cs,p

 ∑
ϕ∈Is,m

p∏
t=1

τϕ(αt)

 p∑
r=1

n · · · (n− r + 1)
∑

i1∈Cr,p

E(i1, α)

k

=

p∑
s=1

(m
nk

)s
(1 + o(1))

∑
α∈C(1)

s,p

 1

ms

∑
ϕ∈Is,m

p∏
t=1

τϕ(αt)


1− (p+ 1− s)(p− s)

2n
+

1

n

 ∑
i1∈Cr,p

g(i1,α)∈∆3(p,s;α)

1 +m4

∑
i1∈Cr,p

g(i1,α)∈∆4(p,s;α)

1



k

. (3.15)

Recall the definition of degt(α) given in (2.1). Then the sequence α has exactly degt(α)

vertices that equals to t. Thus, we have the following identity

s∑
t=1

degt(α) = p.

The following lemma computes the size of ∆4(p, s;α) for given α ∈ C(1)s,p .

Lemma 3.3. For fixed α = (α1, . . . , αp) ∈ C(1)s,p , the number of i1 ∈ Cr,p such that g(i1, α) ∈
∆4(p, s;α) is

s∑
t=1

(
degt(α)

2

)
. (3.16)

Proof. We sort the graphs in ∆4(p, s;α) into two classes. We will show that graphs
in ∆4(p, s;α) can be transferred to graphs in ∆1(p, s;α) by splitting the vertex in the
sequence i1 which has multiple edges.

The first class consists of graphs whose first l − 1 up edges are distinct, and the l-th
down edge (αl, i

(l)
1 ) coincide with the j-th down edge for some 1 ≤ j < l ≤ p. Hence,

αl = αj and i
(l)
1 = i

(j)
1 . Since the subgraph of the path from αj to αl does not have a

cycle, one can find 1 ≤ j′ < l, such that the j′-th up edge is from i
(l)
1 to αl. Another up

edge from i
(l)
1 to αl belongs to the set of the last p− (l − 1) up edges. Hence, the edge

(αl, i
(l)
1 ) is not a down innovation. Now we split the vertex i(l)1 into two vertices i(l,1)1 and

i
(l,2)
1 . The new vertex i(l,1)1 is still labeled by the value of i(l)1 and the first l − 1 pairs of

up and down edges which connect i(l)1 are plotted to connect the new vertex i(l,1)1 . The

l-th down edge connect i(l)1 is plotted to connect the new vertex i(l,2)1 , which is a down
innovation. The rest of the edges can be plotted such that the new graph belongs to
∆1(p, s;α). See Figure 1.

The second class consists of graphs whose first l down edges are distinct, and the
l-th up edge (i

(l)
1 , αl+1) coincides with the j-th up edge for some 1 ≤ j < l ≤ p− 1. This
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−→

Figure 1: A graph in the first class of ∆4(p, s;α) (left column) and corresponding
∆1(p, s;α) graph (right column).

means that i(l)1 = i
(j)
1 and αl+1 = αj+1. Since the subgraph of the path from i

(j)
1 to i(l)1

does not have a cycle, one can find j < j′ ≤ l, such that the j′-th down edge is from αl+1

to i(l)1 , which means that αj′ = αl+1, i
(j′)
1 = i

(l)
1 and the j′-th down edge is not a down

innovation. Another down edge from αl+1 to i(l)1 belongs to the set of the last p− l down

edges. Now we split the vertex i(l)1 into two vertices i(l,1)1 and i(l,2)1 . The new vertex i(l,1)1

is still labeled by the value of i(l)1 and the first j′ − 1 pairs of up and down edges which

connect i(l)1 are plotted to connect the new vertex i(l,1)1 . The j′-th down edge connect

i
(j′)
1 = i

(l)
1 is plotted to connect the new vertex i(l,2)1 , which is a down innovation. The l-th

up edge starts from i
(l,2)
1 . The rest of the edges can be plotted such that the new graph

belongs to ∆1(p, s;α). See Figure 2.

−→

Figure 2: A graph in the second class of ∆4(p, s;α) (left column) and corresponding
∆1(p, s;α) graph (right column).

Therefore, for any graphs in ∆4(p, s;α), one can split the vertex in the sequence i1
associated to the multiple edges to get a graph in ∆1(p, s;α). Equivalently, any graphs
in ∆4(p, s;α) can be obtained from graphs in ∆1(p, s;α) by gluing two vertices of the
sequence i1 that have a same neighborhood. Moreover, gluing different pairs of vertices
of the sequence i1 leads to different graphs in ∆4(p, s;α).

For fixed α ∈ C(1)s,p , by Lemma 3.1, there exists a unique sequence i1, such that the
graph g(i1, α) ∈ ∆1(p, s;α). Note that for a vertex t on the α-line, the number of its
neighborhoods on the i-line is degt(α). Hence, the number of choices of gluing two
vertices of the sequence i1 with the same neighborhood t on the α-line is(

degt(α)

2

)
.

Thus, for fixed α ∈ C(1)s,p , the number of i1 ∈ Cr,p such that g(i1, α) ∈ ∆4(p, s;α) is given
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by (3.16).

The following lemma is a property of the sequences in C(1)s,p .

Lemma 3.4. For α ∈ Cs,p, if there exist different integers t1, t2 ∈ [s], such that αj1 =

αj′1 = t1 and αj2 = αj′2 = t2 for some 1 ≤ j1 < j2 < j′1 < j′2 ≤ p, then α /∈ C(1)s,p .

Proof. We prove by contradiction. Suppose α ∈ C(1)s,p . Then there exists a w ∈ Cp+1−s,p,
such that g(w,α) ∈ ∆1(p, s;α). Note that the path from αj1 to αj2 and the path from αj′1
to αj′2 are two paths from the vertex on the α-line with label t1 to the vertex on the α-line
with label t2. The two paths will lead to multiple directed edges or undirected cycle,
which contradicts the definition of ∆1(p, s;α).

The following corollary is a direct consequence of Lemma 3.4.

Corollary 3.5. For α ∈ C(1)s,p , graphs in ∆3(p, s;α) are the ∆(p;α)-graphs in which each
down edge must coincide with one and only one up edge. If we glue the coincident edges,
the resulting graph is a connected graph with exactly one cycle.

The following lemma computes the size of ∆3(p, s;α) for a given α ∈ C(1)s,p .

Lemma 3.6. For α = (α1, . . . , αp) ∈ C(1)s,p , the number of i1 ∈ Cr,p such that g(i1, α) ∈
∆3(p, s;α) is (

p+ 1− s
2

)
−

s∑
t=1

(
degt(α)

2

)
. (3.17)

Proof. Recall that in a graph from ∆3(p, s;α), each down edge coincides with exactly
one up edge, and the graph is connected with exactly one cycle after gluing coincident
edges.

We also sort the graphs in ∆3(p, s;α) into two classes. We will show that graphs in
∆3(p, s;α) can be transferred to graphs in ∆1(p, s;α) by splitting an appropriate vertex
in the sequence i1.

The first class consists of graphs whose subgraph with first l − 1 up and down edges
has no cycle when orientation is removed and multiple edges are glued, but has a cycle
when adding the l-th down edge. Hence, we have 3 ≤ l ≤ p, and both αl and i

(l)
1 are

not new vertices. Now we split the vertex i(l)1 into two vertices i(l,1)1 and i(l,2)1 . The new

vertex i(l,1)1 is still labeled by the value of i(l)1 , and the first l − 1 pairs of up and down

edges which connect i(l)1 are plotted to connect the new vertex i(l,1)1 . The l-th down edge

(αl, i
(l)
1 ) is replaced by the new down edge (αl, i

(l,2)
1 ), which is a down innovation. The

l-th up edge starts from i
(l,2)
1 . The rest of the edges can be plotted such that the new

graph belongs to ∆1(p, s;α), see Figure 3.

−→

Figure 3: A graph in the first class of ∆3(p, s;α) (left column) and corresponding
∆1(p, s;α) graph (right column). The dashed line describes the existence of a cycle.
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The second class consists of graphs whose subgraph with first l− 1 up edges and first
l down edges has no cycle when orientation is removed and multiple edges are glued,
but has a cycle when adding the l-th up edge. Thus, there exists a 1 ≤ j < l, such that
αl+1 = αj and the j-th down edge belongs to the cycle. Since the subgraph with first
l − 1 up edges and first l down edges has no cycle, we have αu 6= αj for all j < u < l + 1.
By Lemma 3.4, the first j − 1 pairs as well as the last p− l pairs of down and up edges
never visit the vertex αu for all j < u < l + 1. Hence, along the path from i

(j)
1 to i(l)1 , all

down edges are paired with exactly one up edge. Note that along the path from αj to

i
(l)
1 , there must be a single edge, which can only be (αj , i

(j)
1 ). If i(j)1 6= i

(l)
1 , then in the

subgraph of path from αj to αl+1, the degree of the vertices i(j)1 and i
(l)
1 are both odd

number. This is impossible. However, i(j)1 = i
(l)
1 implies that the l-th up edge (i

(l)
1 , αl+1)

coincides with the j-th down edge (αj , i
(j)
1 ). This contradicts the assumption that the

subgraph with first l pairs of down and up edges has a cycle but has no cycle if the l-th
up edge is deleted while removing the orientation and gluing multiple edges. Thus, the
second class is empty.

Therefore, for any graphs in ∆3(p, s;α), one can split an appropriate vertex in the
sequence i1 to get a graph in ∆1(p, s;α). Equivalently, any graphs in ∆3(p, s;α) can be
obtained from graphs in ∆1(p, s;α) by gluing two vertices of the sequence i1 without
common neighborhood. Moreover, gluing different pairs of vertices of the sequence i1
leads to different graphs in ∆3(p, s;α).

For a fixed α ∈ C(1)s,p , by Lemma 3.1, there exists a unique sequence i1, such that the
graph g(i1, α) ∈ ∆1(p, s;α). Moreover, the sequence i1 has p + 1 − s different vertices.
Hence, the number of choices of gluing two vertices in the sequence i1 is

(
p+1−s

2

)
. By

Lemma 3.3, the number of choices of gluing two vertices in the sequence i1 that have
different neighborhoods is given by (3.17).

By Lemmas 3.3, 3.6 and Equation (3.15), we have

1

nk
E
[
TrMp

n,k,m

]
=

p∑
s=1

(m
nk

)s
(1 + o(1))

∑
α∈C(1)

s,p

 ∑
ϕ∈Is,m

s∏
t=1

1

m
τ
degt(α)
ϕ(t)

×
[

1− (p+ 1− s)(p− s)
2n

+
1

n

((
p+ 1− s

2

)
−

s∑
t=1

(
degt(α)

2

)
+m4

s∑
t=1

(
degt(α)

2

))]k

=

p∑
s=1

(m
nk

)s
(1 + o(1))

∑
α∈C(1)

s,p

 ∑
ϕ∈Is,m

s∏
t=1

1

m
τ
degt(α)
ϕ(t)

[1 +
m4 − 1

n

s∑
t=1

(
degt(α)

2

)]k

=

p∑
s=1

(m
nk

)s
(1 + o(1))

∑
α∈C(1)

s,p

s∏
t=1

 1

m

m∑
j=1

τ
degt(α)
j

[1 +
m4 − 1

n

s∑
t=1

(
degt(α)

2

)]k
, (3.18)

where we use the following equality in the last equality

∑
ϕ∈Is,m

s∏
t=1

1

m
τ
degt(α)
ϕ(t) =

m∑
j1,...,js=1
∀p6=q,jp 6=jq

s∏
t=1

1

m
τ
degt(α)
jt

=

s∏
t=1

 1

m

m∑
j=1

τ
degt(α)
j

 (1 + o(1)).
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Letting m,n, k →∞ in (3.18) with the ratio (1.2) and the limit assumption (2.2), we have

lim
n→∞

1

nk
E
[
TrMp

n,k,m

]
=

p∑
s=1

cs
∑
α∈C(1)

s,p

(
s∏
t=1

m
(τ)
degt(α)

)
exp

(
d(m4 − 1)

s∑
t=1

(
degt(α)

2

))
.

(3.19)

3.2 Proof of (ii)

For any p ∈ N, we compute the variance of the moment

Var

(
1

nk
TrMp

n,k,m

)
=

1

n2k
E
[(

TrMp
n,k,m

)2]− 1

n2k

(
E
[
TrMp

n,k,m

])2
. (3.20)

We use the convention that αp+1 = α1 and βp+1 = β1. Recalling the model (1.1), we can
write

1

n2k
E
[(

TrMp
n,k,m

)2]
=

1

n2k

m∑
α1,...,αp=1

m∑
β1,...,βp=1

(
p∏
t=1

ταtτβt

)
E
[
Tr
(
Yαp+1

Y ∗α1
· · ·YαpY ∗αp

)
Tr
(
Yβp+1

Y ∗β1
· · ·YβpY ∗βp

)]

=
1

n2k

m∑
α1,...,αp=1

m∑
β1,...,βp=1

(
p∏
t=1

ταtτβt

)

× E

[
nk∑

i(1),...,i(p)=1

nk∑
j(1),...,j(p)=1

p∏
t=1

Yi(t)αtYi(t)αt+1
Yj(t)βtYj(t)βt+1

]

=
1

n2k

m∑
α1,...,αp=1

m∑
β1,...,βp=1

(
p∏
t=1

ταtτβt

)

× E

[
nk∑

i(1),...,i(p)=1

nk∑
j(1),...,j(p)=1

p∏
t=1

k∏
l=1

((
y
(l)
αt

)
i
(t)
l

(
y(l)
αt+1

)
i
(t)
l

(
y
(l)
βt

)
j
(t)
l

(
y
(l)
βt+1

)
j
(t)
l

)]
. (3.21)

The expectation above can be factorized as follows, using the i.i.d. setting:

E

[
k∏
l=1

n∑
i
(1)
l ,...,i

(p)
l =1

n∑
j
(1)
l ,...,j

(p)
l =1

p∏
t=1

((
y
(l)
αt

)
i
(t)
l

(
y(l)
αt+1

)
i
(t)
l

(
y
(l)
βt

)
j
(t)
l

(
y
(l)
βt+1

)
j
(t)
l

)]

=

E
 n∑
i
(1)
1 ,...,i

(p)
1 =1

n∑
j
(1)
1 ,...,j

(p)
1 =1

p∏
t=1

((
y
(1)
αt

)
i
(t)
1

(
y(1)
αt+1

)
i
(t)
1

(
y
(1)
βt

)
j
(t)
1

(
y
(1)
βt+1

)
j
(t)
1

)

k

. (3.22)

On the other hand, by (3.5), we have

1

n2k

(
E
[
TrMp

n,k,m

])2
=

1

n2k

m∑
α1,...,αp=1

m∑
β1,...,βp=1

(
p∏
t=1

ταtτβt

)E
 n∑
i
(1)
1 ,...,i

(p)
1 =1

p∏
t=1

((
y
(1)
αt

)
i
(t)
1

(
y(1)
αt+1

)
i
(t)
1

)

×E

 n∑
j
(1)
1 ,...,j

(p)
1 =1

p∏
t=1

((
y
(1)
βt

)
j
(t)
1

(
y
(1)
βt+1

)
j
(t)
1

)

k

. (3.23)
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By plugging (3.22) into (3.21) and using (3.23) and (3.20), we have

Var

(
1

nk
TrMp

n,k,m

)
(3.24)

=
1

n2k

m∑
α1,...,αp=1

m∑
β1,...,βp=1

(
p∏
t=1

ταtτβt

)

×


E

 n∑
i
(1)
1 ,...,i

(p)
1 =1

n∑
j
(1)
1 ,...,j

(p)
1 =1

p∏
t=1

((
y
(1)
αt

)
i
(t)
1

(
y(1)
αt+1

)
i
(t)
1

(
y
(1)
βt

)
j
(t)
1

(
y
(1)
βt+1

)
j
(t)
1

)

k

−

E
 n∑
i
(1)
1 ,...,i

(p)
1 =1

p∏
t=1

((
y
(1)
αt

)
i
(t)
1

(
y(1)
αt+1

)
i
(t)
1

)

×E

 n∑
j
(1)
1 ,...,j

(p)
1 =1

p∏
t=1

((
y
(1)
βt

)
j
(t)
1

(
y
(1)
βt+1

)
j
(t)
1

)

k
 .

Denote the sequences α = (α1, . . . , αp), β = (β1, . . . , . . . , βp), i1 = (i
(1)
1 , . . . , i

(p)
1 ) and

j1 = (j
(1)
1 , . . . , j

(p)
1 ). We use the notation α ∩ β = ∅ if the two sequences α and β have no

common vertices. Note that when α ∩ β = ∅, the two random variables

p∏
t=1

((
y
(1)
αt

)
i
(t)
1

(
y(1)
αt+1

)
i
(t)
1

)
, and

p∏
t=1

((
y
(1)
βt

)
j
(t)
1

(
y
(1)
βt+1

)
j
(t)
1

)
are independent, for any sequences i1, j1 ∈ [n]p; they will not contribute to the variance
above. Hence, (3.24) can be written as

Var

(
1

nk
TrMp

n,k,m

)
=

1

n2k

∑
α,β∈[m]p,α∩β 6=∅

(
p∏
t=1

ταtτβt

)

×


 ∑
i1,j1∈[n]p

E

[
p∏
t=1

((
y
(1)
αt

)
i
(t)
1

(
y(1)
αt+1

)
i
(t)
1

(
y
(1)
βt

)
j
(t)
1

(
y
(1)
βt+1

)
j
(t)
1

)]k

−

 ∑
i1,j1∈[n]p

E

[
p∏
t=1

((
y
(1)
αt

)
i
(t)
1

(
y(1)
αt+1

)
i
(t)
1

)]
E

[
p∏
t=1

((
y
(1)
βt

)
j
(t)
1

(
y
(1)
βt+1

)
j
(t)
1

)]k


=
1

n2k

∑
α,β∈[m]p,α∩β 6=∅

(
p∏
t=1

ταtτβt

)

×


 ∑
i1,j1∈[n]p

E′(i1, α; j1, β)

k

−

 ∑
i1,j1∈[n]p

E(i1, α)E(j1, β)

k
 , (3.25)

where E(·, ·) is defined in (3.6), and E′(i1, α; j1, β) is given by

E′(i1, α; j1, β) = E

[
p∏
t=1

((
y
(1)
αt

)
i
(t)
1

(
y(1)
αt+1

)
i
(t)
1

(
y
(1)
βt

)
j
(t)
1

(
y
(1)
βt+1

)
j
(t)
1

)]
.
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We use the notation g(i1, α) ∪ g(j1, β) for the graph obtained from g(i1, α) and g(j1, β)

by joining two graphs together and keep the coincident edges. If the graph g(i1, α) ∪
g(j1, β) has a single edge, then this single edge must belong to one of the graphs g(i1, α)

and g(j1, β). Since the variables have mean zero, only the summation indices i1, j1 such
that the graph g(i1, α) ∪ g(j1, β) has no single edge contribute to (3.25). Note that the
graph g(i1, α) ∪ g(j1, β) is connected with 4p edges, the degrees of the vertices are at
least 4 with at most two exceptions, whose degrees are at least 2. Denote s = |(α, β)|
and r = |(i1, j1)|, then the term E′(i1, α; j1, β) is non-vanishing when r + s ≤ 2p+ 1.

Besides, if α ∩ β 6= ∅, then s ≤ |α| + |β| − 1. Hence, the term E(i1, α)E(j1, β)

is non-vanishing when |i1| + |α| ≤ p + 1 and |j1| + |β| ≤ p + 1, which implies that
r + s ≤ |i1|+ |j1|+ (|α|+ |β| − 1) ≤ 2p+ 1. Hence, for n large,

Var

(
1

nk
TrMp

n,k,m

)

=
1

n2k

2p∑
s=1

∑
(α,β)∈Cs,2p,α∩β 6=∅

 ∑
ϕ∈Is,m

p∏
t=1

τϕ(αt)τϕ(βt)


×


 2p∑
r=1

nr(1 +O(n−1))
∑

(i1,j1)∈Cr,2p

E′(i1, α; j1, β)

k

−

 2p∑
r=1

nr(1 +O(n−1))
∑

(i1,j1)∈Cr,2p

E(i1, α)E(j1, β)

k


≤ 1

n2k

2p∑
s=1

∑
(α,β)∈Cs,2p,α∩β 6=∅

 ∑
ϕ∈Is,m

s∏
t=1

τ
degt(α)+degt(β)
ϕ(t)

× Ckpn(1−s)k
=
Ckp
nk

2p∑
s=1

(m
nk

)s ∑
(α,β)∈Cs,2p,α∩β 6=∅

 ∑
ϕ∈Is,m

s∏
t=1

1

m
τ
degt(α)+degt(β)
ϕ(t)


≤
Ckp
nk

2p∑
s=1

(m
nk

)s ∑
(α,β)∈Cs,2p,α∩β 6=∅

s∏
t=1

 1

m

m∑
j=1

|τj |degt(α)+degt(β)


≤
Ckp
nk

. (3.26)

where Cp is a positive number that depends only on p and may vary in different places.
Therefore, for all fixed p ∈ N+, if k ≥ 2, we have

∞∑
n=1

Var

(
1

nk
TrMp

n,k,m

)
<∞.

4 Proof of Proposition 2.4 (the case of d = 0)

The variance calculation (ii) is identical to the one given in the proof of Theorem 2.1,
see Section 3.2. It remains to establish the moment limit (i).

Note that the moment formula (3.7) is also valid for the case d = 0. We use the
graph g(i1, α) to compute the sum on i1 in (3.7). For any sequences α ∈ Cs,p and i1 ∈ Cr,p
satisfying g(i1, α) ∈ ∆1(p, s;α), we have r + s = p + 1 and E(i1, α) = n−p. Besides,
E(i1, α) = 0 if the graph g(i1, α) ∈ ∆2(p, r, s;α). Moreover, if g(i1, α) /∈ ∆1(p, s;α) ∪
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∆2(p, r, s;α), then r + s ≤ p and E(i1, α) = O(n−p). Hence,

p∑
r=1

n · · · (n− r + 1)
∑

i1∈Cr,p

E(i1, α)

=

p∑
r=1

nr
(
1 +O(n−1)

) ∑
i1∈Cr,p

E(i1, α)

=

p∑
r=1

nr
(
1 +O(n−1)

) ∑
i1∈Cr,p

g(i1,α)∈∆1(p,s;α)

E(i1, α)

+

p∑
r=1

nr(1 +O(n−1))
∑

i1∈Cr,p
g(i1,α)/∈∆1(p,s;α)∪∆2(p,r,s;α)

E(i1, α)

=n1−s
(
1 +O(n−1)

) ∑
i1∈Cp+1−s,p

g(i1,α)∈∆1(p,s;α)

1 +O(n−s). (4.1)

Therefore, by (3.7), (4.1) and Lemma 3.1, we have

1

nk
E
[
TrMp

n,k,m

]
=

1

nk

p∑
s=1

∑
α∈Cs,p

 ∑
ϕ∈Is,m

p∏
t=1

τϕ(αt)


n1−s(1 +O(n−1)

) ∑
i1∈Cp+1−s,p

g(i1,α)∈∆1(p,s;α)

1 +O(n−s)


k

=
1

nk

p∑
s=1

∑
α∈C(1)

s,p

 ∑
ϕ∈Is,m

p∏
t=1

τϕ(αt)

(n1−s(1 +O(n−1)
)

+O(n−s)
)k

+
1

nk

p∑
s=1

∑
α∈Cs,p\C(1)

s,p

 ∑
ϕ∈Is,m

p∏
t=1

τϕ(αt)

(O(n−s)
)k

=
1

nk

p∑
s=1

∑
α∈C(1)

s,p

 ∑
ϕ∈Is,m

p∏
t=1

τϕ(αt)

× nk(1−s)(1 + o(1))

=

p∑
s=1

(m
nk

)s ∑
α∈C(1)

s,p

 1

ms

∑
ϕ∈Is,m

p∏
t=1

τϕ(αt)

 (1 + o(1))

=

p∑
s=1

(m
nk

)s ∑
α∈C(1)

s,p

 s∏
t=1

 1

m

m∑
j=1

τ
degt(α)
j

 (1 + o(1)), (4.2)

where we used k = o(n) in the third equality. Letting m,n, k → ∞ with the ratio (1.2),
we have

lim
n→∞

1

nk
E
[
TrMp

n,k,m

]
=

p∑
s=1

cs
∑
α∈C(1)

s,p

(
s∏
t=1

m
(τ)
degt(α)

)
.

Remark 4.1. In the case τ1 = τ2 = · · · = 1, by Lemma 3.1, we have

lim
n→∞

1

nk
E
[
TrMp

n,k,m

]
=

p∑
s=1

1

p

(
p

s− 1

)(
p

s

)
cs,

which is the p-th moment of the Marchenko-Pastur law.
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