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A B S T R A C T   

Study region: The Sirikit Dam in the Nan River Basin is located on a main tributary of the Chao 
Phraya River in Thailand. 
Study focus: This study investigates forecasting river flows and real-time optimization of dam 
release using a distributed hydrological model with ensemble weather forecasting for reservoir 
operations which provide hydropower and irrigation facilities in Thailand during a case study of 
the 2019 drought event. Medium-range ensemble precipitation forecasts were employed using a 
hydrological model to predict the real-time reservoir inflow. Real-time optimization of the water 
release strategy determined a week in advance with an effective initial condition for hydropower 
generation and irrigation was conducted with different scenarios using dynamic programming 
considering inflow predictions. 
New hydrological insights for the region: The medium-range ensemble precipitation forecast con
ducted by the European Centre for Medium Range Weather Forecasts was used to quantify pre
cipitation for the study basin. The ensemble precipitation forecast with the hydrological model 
was employed for inflow prediction of the study basin which was located in a tropical climate 
with a distinct wet and dry season. The initial conditions of the hydrological model largely 
influenced the real-time inflow forecast. To determine the initial conditions of the model, the 
empirical data assimilation considering a drainage area factor was utilized and observed pre
cipitation data were used for model input forcing data during the initial analysis period. This 
method improved the reservoir inflow prediction and real-time reservoir optimization using 
dynamic programming with considering ensemble forecasts provided more efficient operating 
decisions than employing historical data. The resulting information will be useful for water 
resource management, which may be adapted to other basins in the study region.   

1. Introduction 

The Sirikit Dam is one of the two large reservoirs in the Chao Phraya River Basin (CPRB) that is the largest (158,000 km2) and most 
important in Thailand. The Sirikit reservoir, containing 9510 million m3 of the total storage volume, has a significant role in effectively 
managing the water resources of the basin. However, the dam is located in a tropical climate with significant seasonal differences and 
uncertainty regarding the basin’s hydrological condition influenced by both the Indian and Pacific Oceans (Nguyen et al., 2020). In 
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turn, these conditions cause both floods and droughts (Sayama et al., 2015), like the 2011 flood event, and the 2015 and 2019 drought 
events, which proved to be very challenging for reservoir operators. These uncertainties regarding the basin’s hydrological condition 
have a primary effect on reservoir operation, increasing the risk of water disaster (Tingsanchali and Boonyasirikul, 2006). In addition, 
climate change complicates future water resource management in CPRB because of increasing extreme weather fluctuations (Kotsuki 
et al., 2014; Wichakul et al., 2015). 

Incorporating weather forecast may improve the efficiency of decision making (Hamlet et al., 2002; Lettenmaier and Wood, 1993; 
Zhu et al., 2002). However, the forecast has limitations in accuracy (forecast uncertainty) with increasing forecast lead time. The 
optimum solution to capture and reduce this forecast error (uncertainty) is to use an ensemble forecast rather than a single (deter
ministic) forecast, because the ensemble forecast produces a set of randomly-equally-likely (independent) solutions for the future (Zhu, 
2005). 

In recent decades, ensemble forecast techniques have been rapidly developed. Ensemble forecast techniques are now generally 
accepted as a reliable approach for estimating forecast confidence, especially for high-impact weather (Bougeault et al., 2010). Based 
on these advantages, several studies have been conducted using ensemble forecast data, such as storm track prediction (Lin et al., 2020; 
Nishimura and Yamaguchi, 2015; Weber, 2003), reservoir inflow prediction (Fan et al., 2015), river flow prediction, and flood 
forecasting (Alfieri et al., 2012; Bao et al., 2011; He et al., 2010; Sayama et al., 2020). 

Combining with using ensemble forecast information in a reservoir operation study, the dynamic programming (DP) is a well- 
known method to construct a mathematical model for decision support (Alemu et al., 2011). A number of studies have been con
ducted regarding ensemble streamflow predictions (ESP) with DP to improve reservoir operation efficiency. Faber and Stedinger 

Fig. 1. Location of study basin and the Sirikit Reservoir (SK).  
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(2001) demonstrated that using ESP forecasts in a real-time DP reservoir system optimization model provides more efficient operating 
decisions than employing historical time series. Kim et al. (2007) reported that updating operation policy using ESP forecasts with DP 
is appropriate for the Geum River multi-reservoir system in Korea. In addition, operational ensemble hydrometeorological predictions 
have been used with a hydrological model to predict a reservoir inflow and adapted it to real-time reservoir optimization using DP for 
water use in a drought event (Nohara and Hori, 2018). The study reported that this approach generally mitigates drought damage 
compared with considering historical flow time series. Although these studies indicated that association of ensemble forecast infor
mation with DP for reservoir optimization can improve the operation efficiency, information regarding the methods for performing 
reservoir inflow forecasts using ensemble hydrometeorological predictions with hydrological model (reservoir inflow prediction 
approach) such as real-time state update produce is scarce. This procedure becomes more important for a reservoir located in a 
tropical-climate basin with distinct wet and dry hydrological conditions, such as the CPRB. 

Recently, the CPRB frequently faces drought conditions since 2011 massive flooding occurred in the basin. The accumulated annual 
inflow of two major dams–Bhumibol and Sirikit–during 2012–2019 is 17.1% lower than the historical 30-year average, which means 6 
in 8 years of annual inflow are lower than the historical mean. Especially the severe drought in 2015 and 2019, the accumulated annual 
inflow of two dams is 48.5% and 40.0% lower than the historical mean, respectively. Regarding the downstream water requirement, 
this resulted in a low storage volume of the reservoirs as a result of the imbalance between inflows and outflows. The events resulted in 
difficulties in water management for the coming years as a result of insufficient reservoir water storage. In Thailand, the drought 
problem over the long-term develops into a primary social and economic issue (Zenkoji et al., 2019). 

Therefore, this study aims to introduce the forecast information for water resources management to mitigate the impact of drought. 
The main objectives are as follows: (1) to investigate the ability of river flows forecasting using a distributed hydrological model with 
ensemble precipitation forecasts (EPF), and (2) to utilize the river flow prediction for real-time reservoir optimization using DP to 
mitigate the drought event for a case study in 2019. For this purpose, a physically-based distributed hydrological model is adopted. An 
adaptive mode of operation (state variable update) with different update procedures to assess the effect of the model’s initial state 
condition is also utilized on the results of river flow forecasts. Medium-range EPFs are used to determine the reservoir inflow 2 weeks in 
advance of reservoir inflow forecast. Then, the optimization of reservoir release is examined in different scenarios of optimization 
using the 2-week inflow forecasts. In Section 2, a case study of the difficulties for reservoir operation of the Sirikit Dam during the 
drought event in 2019 has been proposed. In Section 3, the hydrological model is calibrated and validated in offline mode prior to its 
application and its use for forecasting. In Section 4, the methodology of implementing the real-time inflow forecast using ensemble 
precipitation forecasts is described, and the effect of the model’s initial conditions with different model state update procedures on the 
inflow forecast results is evaluated. In Section 5, real-time reservoir optimization for 1-week advanced release strategy using forecast 
inflows is examined with different scenarios regarding future long-term inflow assumptions. In Section 6, the advantages of 

Fig. 2. Operation record of Sirikit Reservoir in 2019 (a) reservoir inflow compared to historical record (b) release compared to the historical record 
and (c) reservoir storage (p0.0 is minimum, p0.25 is 25th percentile, p0.75 is 75th percentile and p1.0 is maximum). 
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introducing ensemble hydrometeorological forecasts are demonstrated for real-time optimization of Sirikit reservoir operation during 
2019. 

2. Current dam operation at the Sirikit dam 

The Sirikit Dam contains 6660 million m3 of effective storage and 500 MW of power generation capacity located on the Nan River, 
one of the four main tributaries of the Chao Phraya River. The dam controls 13,130 km2 of drainage area. The main functions of the 
dam include irrigation purposes, domestic and industrial use, flood control, ecological conservation, and power generation (Amnatsan 
et al., 2018). The location of the study basin is shown in Fig. 1. 

Fig. 2 shows the operation records of the Sirikit reservoir during 2019 compared to the 30 years historical data in the percentile of 
each 7 days unit. Fig. 2a and b show the comparison of accumulated reservoir inflow and release, respectively. Fig. 2c show the 
comparison of reservoir storage between 2019 and historical data. Due to unpredicted inflow, reservoir operation faces significant 
challenges in controlling water for society. The reservoir storage level was higher than the lower rule curve (LRC) at the beginning of 
the year (see Fig. 2c), whereas the released volume is relatively high (close to the 75th percentile) because of the downstream demand 
and power supply requirement during the dry season, as shown in Fig. 2b. However, the low inflow volume from the beginning to the 
middle of the wet season was unexpected. Compared to the 30 years historical data, the reservoir inflow volume is low (lower than the 
25th percentile), as shown in Fig. 2a. This event presented difficulties for reservoir operation and resulted in a low storage level (lower 
than LRC) after mid-August and led to a low level of reservoir storage at the end of the year (significantly less than the LRC), as shown 
in Fig. 2c. 

For effective basin water management, reservoir operation requires forecasting information. The dam reservoir water level in 2019 
is historically low and to investigate the precipitation forecast to reduce the drought disaster is an urgent issue. Therefore, we selected 
this period as a case study to evaluate the performance of release strategy estimation forecasting 1-week in advance using medium- 
range weather forecast information and the reservoir optimization process. 

3. Reservoir inflow prediction model 

The 1K-DHM is a distributed hydrological model based on kinematic wave flow approximation that considers surface–subsurface 
flow. The elevation and flow direction are determined using topographical data provided by HydroSHEDS (Lehner et al., 2006) in 
digital elevation models with a resolution of 30 s (approximately 1 km). Each cell of the hydrological process consists of river and slope 
flow components (Tanaka and Tachikawa, 2015). Meema and Tachikawa (2020) incorporated unconfined bedrock aquifers into the 
slope flow component of the original model to improve the long-term river flow simulation in a tropical-climate basin and this 
improved model was used as an inflow. The continuity and momentum equations for the surface soil layer are as follows: 

∂hs
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(2)  

where qs is the runoff per unit slope width, hs is the water depth, r is the rainfall intensity, e is the evapotranspiration, pu is the vertical 
infiltration rate from the surface soil layer into the bedrock aquifer, dm is the maximum water content in the capillary pore, km is the 
hydraulic conductivity when the capillary pore is saturated, β is an exponent parameter that describes the relationship between hy
draulic conductivity and water content, da is the maximum water content in the effective porosity, ka is the saturated hydraulic 
conductivity, ns is the Manning’s roughness coefficient for surface flow, i is the slope gradient, and m = 5/3. 

The continuity and momentum equations for bedrock aquifer layer are as follows: 

∂hu

∂t
+

∂qu

∂x
= pu (3)  

qu(hu) = αuhu
2 (4)  

where du is the total effective depth of rock fracture in the unconfined bedrock aquifer, hu is the total water depth in the fracture of the 
aquifer, and αu = kui/du, where ku is the hydraulic conductivity that corresponds to the actual cross-sectional area of flow in the rock 
fracture, and i is the gradient of the hillslope. 

The discharge from the slope flow component on both sides of the river channel contributes to the river channel component as the 
lateral discharge per unit length. The discharge from the upper cells is assigned to the river channel component of the cell as the 
boundary condition. The river flow of the river channel component is computed by the following 1D kinematic wave equations: 
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Q = αAm (5)  

∂A
∂t

+
∂Q
∂x

= 2(qs + qu) (6)  

where Q is the river discharge, A is the cross-sectional area, m = 5/3 and α =
̅̅
i

√
/(nB)2/3 in which the river channel (B) is assumed to 

be a wide rectangle and vary each grid based on the grid drainage area determined by B = aAgrid
b (where Agrid is grid drainage area, a 

and b are constant parameters). 
The model was calibrated and validated before applying it to the inflow forecast. To apply the model for long-term forecasting, the 

calibration periods was set to contain the seasonal hydrological characteristics of the basin (wet and dry seasons). The SCE-UA al
gorithm (Duan et al., 1994) was applied to optimize the model parameters by searching for the parameter with the smallest root mean 
square error (RMSE) when compared with observations. Designing the range of the parameters is important to identify the parameter 
set. The model calibration method was described by Meema and Tachikawa (2020). To determine the parameter of the total effective 
depth of rock fracture (du) for the study basin, the hydrogeological map of the study basin was used and resulted in most of the area is 
shale. Considering the porosity of 0.0− 0.1 (Freeze and Cherry, 1979), the total storage of bedrock aquifer may be ranged from 0.0 to 
3.0 m. 

The inflow of the Sirikit reservoir in 2014, which is considered a normal hydrological year, was selected as the calibration period. 
The optimized model parameters are listed in Table 1. The optimal parameter such as the total effective depth of rock fracture (du) 
agreed with the hydrogeological map which the aquifer productivity is quite small. This indicates that the effective depth may be much 
smaller than the maximum of the designed range. The same parameter set was applied to the validation periods in 2008 and 1998, 
which were considered wet and dry, respectively. 

The model performed well in both calibration and validation periods with an RMSE less than 63.9 million m3 (1.1% relative 
difference using mean annual inflow) and Nash–Sutcliffe efficiency (NSE) coefficient greater than 0.82, as shown in the comparison 
between simulated and observed inflow of the reservoir in Fig. 3. The model efficiently represents the inflow characteristics of the 
basin for both the wet and dry seasons for all simulation periods. This model, with the optimized parameter set, was applied to produce 
real-time inflow forecasts for the 2019 Sirikit reservoir. 

4. Ensemble inflow prediction using European Centre for Medium Range Weather Forecasts (ECMWF) precipitation 
forecast 

4.1. Ensemble Precipitation Forecast used in the study 

TIGGE (THORPEX Interactive Grand Global Ensemble) is a database of ensemble medium-range forecasts conducted by different 
forecasting centers worldwide for conducting scientific research (Bougeault et al., 2010). Ensemble Prediction System data are 
available from approximately ten of these forecasting centers. 

Among all data on TIGGE, ECMWF has advantages in a number of forecast members (associated with high forecast uncertainty) and 
spatial resolution (applicable for the study basin) compared to other forecasting systems. Regarding these advantages, it was selected 
as the EPF data for generating reservoir inflow forecasts in this study. The ECMWF forecasts consist of 51 members of precipitation 
with approximately 0.5◦ resolution for the whole globe. Initial uncertainties are considered using a singular vector technique. A 
stochastic scheme is used to model uncertainties resulting in possible variations in physical parameterizations (Buizza et al., 2007). The 
data are available twice a day at 00:00 UTC and 12:00 UTC with time steps of 6 h and 15 d of forecast lead time. 

4.2. Real-time state update of hydrological model 

The update procedure of the model state variables is based on observed errors in river flow, and empirical methods or Kalman 
filtering has been used (Moore et al., 2005; Romanowicz et al., 2006). Using Kalman filtering with complex distributed and nonlinear 
models results in highly complex computations (O′Connell and Clarke, 1981). A cost-effective approach has been developed for 
computation using an empirical data assimilation procedure and applied to a large-scale hydrological model (Collischonn et al., 2005). 

Therefore, we adopted this empirical data assimilation procedure to incorporate the large-scale distributed hydrological model (as 

Table 1 
Optimized parameters of the hydrologic model.  

Parameter Units Value 

ns m− 1/3/s 0.975 
ka m/s 1.14 × 10− 4 

da m 3.179 
dm m 2.984 
β – 19.906 
ku m/s 8.46 × 10− 5 

du m 0.323 
kv m/s 1.08 × 10− 7  
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explained in Section 3) to obtain the initial state of the basin (at t0) using observed and ensemble precipitation forecasts as the model 
input prior to performing reservoir inflow forecasts. The updating correction factor (FCA) is calculated at gauge station k using the 
following equation: 

FCAk =
Qobs, k

Qcal, k
(7)  

where Qobs, k and Qcal, k are the observed and calculated river discharges at gauge station k. 
To evaluate the updating procedure during the initial analysis period, different empirical equations were investigated in this study. 

First (model states update type 1), the correction factor is directly applied to update the state variables for any cell i located upstream of 
gauge station k as expressed in Eq. (8). Second (model states update type 2), the correction factor is applied to correct the state 
variables for any cell i located upstream of gauge station k considering a drainage area factor of the upstream grids at each cell, as 
expressed in Eq. (9). 

Sup, i,k = FCAk∙Scal, i (8)  

Sup, i,k = FCAk∙Scal, i∙
(

Ai

Ak

)

+Scal, i∙
(

1 −
Ai

Ak

)

(9)  

where Sup, i, k are the updated model state variables at cell i located upstream of gauge station k, Sup, i, k can be substitute with the 
variables of the hydrological model such as river discharge (Q), lateral discharge from the surface soil layer (qs), and the bedrock 
aquifer layer (qu); Ai and Ak are the drainage areas upstream of cell i and gauging station k. 

4.3. Real-time reservoir inflow forecast algorithm 

Fig. 4 illustrates the procedure of the reservoir inflow forecast using the EPF. The simulation can be divided into two periods: the 
initial analysis and forecast periods. For real-time forecasting, it is necessary to operate the model in adaptive mode (Moore et al., 
2005) for which the model output is based on previous model inputs as well as previously observed information that is used to update 
the model prior to a new forecast. Thus, this study proposes an initial analysis period to account for uncertainties in the model initial 
conditions before the forecast period is performed. For this purpose, data assimilation (as explained in Section 4.2) is adopted to 
improve the estimate of the initial states of the model and to reduce the simulation errors in the forecast period (Madsen and Skotner, 
2005). 

Fig. 3. Comparison between simulated and observed inflow at the Sirikit dam (a) during the calibration period (b) validation period 1 (c) validation 
period 2 (RMSE [million m3] and NSE [-]). 
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We not only considered model state variables for the data assimilation implementation, but also the errors due to model input. To 
assess the errors due to input data during the initial analysis period, two procedures of input precipitation data for the model were 
considered. First, a single pattern of observed data was applied to the model. Second, a combination of observed data and ensemble 
forecasts with 52 patterns (one pattern of observation + 51 patterns of ensemble forecasts) of precipitation was applied to the model. 
Fig. 4a describes the procedure of using observed precipitation and model state updates up to the starting time of the forecasts (t0). 
Then, the EPFs were applied to the model as forcing input data up to the lead time (t + 15) for the 15-d reservoir inflow forecasts. 
Fig. 4b describes the procedure of using a combination of observed and ensemble forecast data and the update procedure of the model 
states up to the starting time of the forecasts (t0). Using 52 precipitation patterns during the initial analysis period, 52 flow patterns 
were obtained. To select the flow pattern that represents the model states at the starting time of the forecasts (t0), the highest NSE 
coefficient computed from the comparison between each simulated flow pattern with the observation during the initial analysis period 
was selected. 

Data assimilation methods used during the initial analysis period to reproduce the initial state of the model at the initial time of the 
forecast (t0) are summarized in Table 2. The model state variables were updated in forecast methods 1 and 2 using Eq. (8) and in 
forecast methods 3 and 4 using Eq. (9). A single pattern of observed precipitation was used in forecast methods 1 and 3 (Fig. 4a). For 
forecast methods 2 and 4, 52 precipitation patterns were used (Fig. 4b). For the forecast period (all methods), precipitation forecasts 
were used, and the observed precipitation was applied in this study to evaluate the inflow forecast procedures as a possibly perfect 
forecast of precipitation. 

Fig. 4. Schematic of inflow forecast procedure using (a) observed rainfall and (b) a combination between observed and end ensemble forecasts up to 
the starting time of the forecasts (t0), and ensemble precipitation forecast up to the lead time. 

Table 2 
Description of data assimilation methods used in the initial analysis period and input forcing data for each simulation period.  

Method Initial analysis period (t-7 − t0) Forecast period (t0 − t + 15) 

State update type Input data No. input pattern Input data No. input pattern  

1  1 Obs.  1 Obs. + Ens. Forecast  52 
2  1 Obs. + Ens. Forecast 52 
3  2 Obs. 1 
4  2 Obs. + Ens. Forecast 52  
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5. Reservoir optimization with ensemble inflow forecast in Sirikit Dam 

5.1. Application of DP for reservoir optimization 

To interpret the results of the ensemble inflow forecast, the general method is to consider the mean value (ensemble mean) or 
median, which represents the tendency of all ensemble forecast members. To optimize the operation strategy of the reservoir using the 
ensemble mean or median of the ensemble inflow forecast, the deterministic DP (DDP) can be applied (Nohara and Hori, 2018). 

By using DDP in reservoir problems, the reservoir storage at time t is divided into decision-making stages (St). The optimized water 
release (Rt) at each state is selected based on the minimum value of the sum of the current drought damage (Bt(Rt)) and future drought 
damage function (Ft+1(St+1)). The computation is started at the end of the optimization time (the final stage) and then moved backward 
to the beginning stage (Louoks and Falkson, 1970). The recursive equation for optimization can be defined by the following equation: 

Ft(St) = min⁡[Ht(Rt)+Ft+1(St+1) ] (10)  

where t is the time period, and Ht(‧) is the drought damage function of period t and Ft+1(St+1) is the future drought function which 
represents the minimal drought damage expected after time step t when the storage state is St at time step t. 

5.2. Implementation with the optimized strategy and scenarios 

We assume that the simulation for 1-week in advance released strategy performs every Sunday. The volume of water released from 
the reservoir follows the simulated strategy throughout the week. A total of 52 weeks in 2019 was the target period of this study. 

Fig. 5 presents the optimization scheme for a target week (t) release strategy using DP. To adopt DP, the penalties must be utilized at 
lower reservoir storage levels after the final time step of optimization. This is to ensure that the reservoir will not draw down to low 
storage levels by releasing excess water to generate quantified benefits during the optimized period. For this purpose, the sum of future 
benefits was applied to each storage level after the final time step of the optimization (Ft+2) as losses or penalties. 

To calculate penalties at the stage of t + 2 (Ft+2) for each storage level, the next year’s benefits (possible future benefit in 2020) 
were also considered. However, to begin the calculation of the DP recursive equation, as expressed in Eq. (10), the initial assumption is 
that all future benefits (losses or penalties) will be zero at some point of time (Loucks et al., 2005). For this purpose, a dummy year was 
proposed to quantify the benefits or penalties at the end of 2020 (FT’’+1), avoiding the assumption of terminating operation. The 50th 
percentile of the 30-year historical data was used for the reservoir inflow in the dummy year. Thus, all future benefits (losses or 
penalties) after the final stage of the dummy year (FT*+1) were defined as 0. Following Eq. (10), we can start calculating the penalties 
(F) in each stage progressing backward to the stage after the optimization period (t + 2). Finally, the penalties at the stage after the 
optimization period (Ft+2) for each storage level were obtained. 

According to the limitation of forecast information (approximately 2 weeks), the future long-term reservoir inflow that is used to 
calculate the penalties after the optimization period (t + 2) was proposed with different assumptions, which is summarized in Table 3. 
The general method for future inflow assumptions is to use the 50th percentile of historical data for all remaining periods (up to the end 
of 2020). This is proposed in Scenario 1. The 25th percentile of historical data was adopted in Scenario 2, assuming drought conditions. 

To assess the effect of the future inflow assumption, it was assumed that the assumption is perfect, as proposed in Scenario 3. A 
combination of perfect forecasting and future assumptions was proposed in Scenario 4. To assess the effect of the use of forecast inflow 
in optimization, Scenario 5 was introduced with the general procedure using the 50th percentile of historical data as the future inflow 
assumption. 

Fig. 5. Optimization scheme for any target week release strategy (Rt) and calculation of ending storage penalties (F(t+2)) using DP.  
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The 1-week advanced release strategy (Rt) obtained from the optimized process can be implemented for any initial reservoir storage 
level (St) at the target time (t). This signifies that this strategy can be implemented under different flow patterns using linear inter
polation among the release tables obtained from the optimization process. 

To determine the strategy performance, the strategies were utilized on observed flow patterns (using a forward calculation). The 
strategy performance is evaluated based on the sum of the drought damage function from the present to the future. Storage of the target 
time (St+1) can be estimated using the continuity equation of the reservoir routing, which will be the initial storage of the following 
time step. The same procedure will be repeated with the next operation strategy. 

5.3. Objective function 

The objective function for the reservoir operation optimization in the drought problem may be defined as a minimization of the 
total drought damage over the study period. The objective function for this problem is expressed as follows: 

min
∑T

t=1
Ht (11)  

where T is the number of optimization stages, and Ht is the drought damage function at stage t. A drought damage function proposed by 
Ikebuchi et al. (1990) was employed in this case study for the objective function of optimization. The function is defined by the 
following equation: 

Ht(Rt) =
[max(Dt − Rt, 0) ]2

Dt
(12)  

Where Dt is water demand required from the reservoir. This function represented the absolute value of the water gap multiplied by the 
rate of the gap to the demand, giving equal weight to both the absolute value and the rate of the gap when the drought damage is 
evaluated. 

Water demand from the Sirikit reservoir generally depends on the correlation between irrigation demand and hydropower gen
eration as well as the amount of water supply from other sources (such as release from the Bhumibol reservoir and side flows from other 
tributaries. For this purpose, huge information is required leading to the huge dimension of analysis. To simplify this, the amount of 
historical release from the reservoir might specify as the target for the water requirement from the reservoir. This assumption is based 

Table 3 
Description of optimization scenarios with different future long-term inflow assumptions for each period. (Hist. is historical data, p50 and p25 are 
50th and 25th percentile respectively).  

Scenarios Periods 

Optimization Remaining 2019 2020 Dummy 

Scenario 0 Baseline scenario (actual operation) 
Scenario 1 Forecast mean Hist. p50 Hist. p50 Hist. p50 
Scenario 2 Forecast mean Hist. p25 Hist. p25 
Scenario 3 Forecast mean 2019 2020 
Scenario 4 2019 2019 2020 
Scenario 5 Hist. p50  

Fig. 6. Optimization of dam release strategy for long-term reservoir operation using EPF.  
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on the assumption that a particular amount of water is released from the Sirikit reservoir supplying the existing demand in the CPRB. 
Water allocation from the reservoir to irrigation sector in Thailand varies annually (Takeda et al., 2016). Regarding the drought 

condition in 2019, the downstream water requirement such as from the irrigation sector may require more water from the reservoir 
than usual. Thus, we assumed that the actual release during 2019 could supply the downstream demand. For the future assumption 
demand (for calculating future drought damage), the downstream water demand may consider as the usual. Thus, the average releases 
during 2004− 2018 (except the unusual release in 2011) from the reservoir was used. 

5.4. Optimization framework for dam release strategy using DP 

The objective of this study is to develop a future release strategy for large-scale reservoirs using weather forecasts. For this purpose, 
the optimization process of the released strategy for long-term reservoir operation using EPF is illustrated in Fig. 6. 

For real-time river flow forecasting, an initial condition setting of the hydrological model is necessary. The previous week’s (t-1) 
flow condition (initial analysis period) was simulated with observed rainfall (forecast method 3 was selected, discussed in Section 6.2) 
to determine initial condition of the model using adaptive mode (data assimilation is associated). The model state variables at the 
beginning of the forecast period obtained from the simulation in the initial analysis period (t-1) were assigned to the model as the 
initial state condition (see Section 4). 

The 2-week inflow forecast (Qt and Qt+1) obtained from the hydrological model (simulated with 2-week advanced EPF) was input 
into the DP to optimize the 1-week advanced release strategy (Rt) at any storage level. To optimize the release strategy, the future 
benefit at the end of the target period (Ft+2) is required to associate the penalties to lower storage levels of the reservoir (see Section 
5.2). Objective function of the drought damage is required for the optimization process (see Section 5.3). Reservoir information such as 
elevation-storage-area, maximum–minimum storage, evaporation rate from the water body at any stage, and generated power capacity 
are required. Furthermore, the minimum and maximum released capacities are assigned to the DP algorithm as the constraint for the 
reservoir release condition. For the reservoir release constraint in this study, two release functions were adopted for DP. Firstly, the 
maximum total release (turbine release and spillway release) was used for unusual release such as flood events considering the capacity 
of the downstream river channel. Secondly, the constraint for usual release (power generation and downstream water requirement) 
regards the historical maximum and minimum demands varying monthly. 

6. Results and discussion 

6.1. Performance of EPF 

Fig. 7a and b present the comparison of accumulated basin-averaged precipitation between forecasts and observations for accu
mulated 1 week (days 1–7) and accumulated 2 weeks (days 1–14), respectively. The forecast is capable of estimating precipitation 
during the dry season (around weeks 1–17 and weeks 45–52). However, during the wet season, there are some differences between 
precipitation forecasts and observation, especially during the start to mid of the wet season (around weeks 18–29), which resulted in an 
overestimation of the accumulated precipitation for both 1 week and 2 weeks. 

In contrast, using the mean of forecast ensembles for accumulated basin precipitation, the forecast performed well, when compared 

Fig. 7. Comparison of accumulated basin-averaged precipitation between observed and forecasts (a) 1 week of forecast (b) 2 weeks of forecast.  
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to the observation, with an RMSE value of 22.6 mm (2.0% relative difference using annual precipitation) and 43.6 mm (3.9% relative 
difference using annual precipitation) for 1 week and 2 weeks, respectively. 

6.2. Performance of inflow forecasting 

Figs. 8 and 9 present the reservoir inflow comparison between forecasts (box plot) and observations in different forecast methods 
for 1 and 2 weeks accumulated inflows, respectively. Precipitation forecasts were used during the forecast period, and the observed 
precipitation was adopted to evaluate the forecast procedure as a possible perfect forecast. The performances of inflow forecasts such 
as RMSE and NSE in different forecast methods were calculated by comparing the mean of the forecast ensembles with the obser
vations, as summarized in Table 4. 

According to the results obtained from different forecast methods, the model initial state condition (including its spatial distri
bution) has a primary effect on inflow forecasts. This results in a significant difference in the forecast inflow volume. Using the state 
update a type 1 scenario (applied same ratio to all upstream grids), the forecast inflow had a significant fluctuation among the forecast 
members compared to using the state update type 2. The use of forecast and observed precipitation resulted in a significant difference 
in the forecast volume, especially during high flow (see Fig. 8a, b, a, and b). Moreover, the 2-week accumulated inflow forecast resulted 
in a significant overestimation throughout the year compared to the observations (see Fig. 9a and b). 

Using the state update type 2 (considered grid drainage area), the inflow forecast had more stable results among the members 
compared to the results obtained from the type 1 state update. There is no primary difference in the simulated results obtained using 
forecasts and observed precipitation (see Fig. 8c, d, c, and d). Furthermore, the accumulated forecast inflow for 1 and 2 weeks cor
responded well with observations. 

This may be described by comparing the spatial distribution of the model’s initial state (the model state at the initial forecast time, 
t0) that resulted in a difference in the forecast inflow. For example, Fig. 10 presents a comparison of the initial model state spatial 

Fig. 8. Comparison of accumulated 1 week reservoir inflow between forecasts (box plot) and observation in different forecast methods (a) method 1 
(b) method 2 (c) method 3 and (d) method 4. 
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distribution for week 31 (July 28, 2019, 00:00 UTC) using different forecast methods. Fig. 10a− d present the distributed grid discharge 
ranged from 0.0 to 265.0 m3/s that emphasize the discharge state in the mainstream. Fig. 10e− h present the distributed grid discharge 
ranged from 0.0 to 1.0 m3/s that emphasize the discharge state for the most of catchment area (small streams). The spatial distribution 
of discharge state at the upstream grids shows a difference in value compared among different update methods (see the procedure in 
Section 4) in contrast to the river discharge at the basin outlet (observed station) having the same value for all methods. Fig. 10a, b, e 
and f present the spatial distribution of the initial model state resulting from update procedure type 1 that the correction factor (FCA) is 
directly applied to update the state variables for any upstream grid of the observed station as expressed in Eq. (8), which exhibited 
greater river discharge at the upstream grids than Fig. 10c, d, g and h resulting from update type 2 that the correction factor (FCA) is 
reduced when updating the state variables for any upstream grid based on a drainage area factor at each cell (the ratio of drainage area 
between any upstream grid and the observed station) as expressed in Eq. (9). 

Fig. 9. Comparison of accumulated 2 weeks reservoir inflow between forecasts (box plot) and observation in different forecast methods (a) method 
1 (b) method 2 (c) method 3 and (d) method 4. 

Table 4 
Performance of inflow forecasts in different forecast methods and input forcing data (RMSE [million m3] and NSE [-]).  

Method One-week Two-week 

Forecasts Observation Forecasts Observation 

RMSE NSE RMSE NSE RMSE NSE RMSE NSE  

1  104.2  0.32  124.0  0.04  236.5 0.07  208.4  0.28  
2  126.6  0.004  103.3  0.34  270.5 –  178.2  0.47  
3  36.1  0.92  33.2  0.93  78.7 0.90  48.5  0.96  
4  43.5  0.88  33.7  0.93  105.9 0.81  58.4  0.94  
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The difference in the initial state value resulted in different inflow forecasts, as shown in Fig. 11. The forecast hydrograph in 
Fig. 11a and b resulting from state updated type 1 presented a higher forecast inflow than those (Fig. 11c and d) from state updated 
type 2. Higher discharge from the upstream grids at the initial state of forecast simulation resulted from the higher update coefficient 
flow to the outlet, when the simulation time was extended. 

There is no primary difference in the forecast results compared to the use of different forcing data during the initial analysis period. 
Using only observed precipitation during the initial analysis period, the inflow forecast resulted in higher performance and lower 
simulation cost. Therefore, it may be considered as a cost-effective procedure for setting the initial states of the model prior to per
forming the forecast. As forecast method 3 resulted in satisfactory performance and reduced simulation cost, the result from this 
method was adopted to optimize the Sirikit Dam release strategy. 

6.3. Reservoir optimization results 

Fig. 12 presents the results of the reservoir operation by adopting the release strategies obtained from different scenarios of the real- 
time optimization process. Fig. 12a shows a comparison of the reservoir releases in different optimization scenarios. The actual release 
(Scenario 0) is significantly larger than the average historical release during May – July (week 18− 30) increased demand for 
downstream water use due to the unexpected drought period. Although the reservoir storage might be considered to be at a high level 
(much higher than the LRC), the storage gradually decreased to low storage levels as a result of the imbalance between reservoir 
inflows and outflows. The water release hydrographs resulting from the optimization process (scenarios 1− 5) have a similar tendency 
to reduce water releases smaller than the actual operation (Scenario 0) to mitigate the drought damage in the future based on different 
scenarios of optimization criteria. 

Fig. 10. Comparison of initial state conditions for the simulation of week 31 among different forecast methods (a) method 1 (b) method 2 (c) 
method 3 and (d) method 4 which value range from 0.0 to 265.0 m3/s, (e) method 1 (f) method 2 (g) method 3 and (h) method 4 which value range 
from 0.0 to 1.0 m3/s. 
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Fig. 11. Comparison of forecast hydrograph for simulation of week 31 among different forecast methods (a) method 1 (b) method 2 (c) method 3 
and (d) method 4. 

Fig. 12. Comparison of the Sirikit reservoir operation by adopting release strategies obtained from different scenarios of real-time optimiza
tion process. 

T. Meema et al.                                                                                                                                                                                                        



Journal of Hydrology: Regional Studies 38 (2021) 100939

15

Fig. 12b shows a comparison of the reservoir storage operated by the release strategies obtained from different optimization 
scenarios. Using an optimization process to determine the reservoir release decision, the reservoir storage at the end of 2019 was 
greater than that observed in operation (Scenario 0) for all scenarios. By associating forecast information in the real-time optimization 
of reservoir operation decision-making, such as scenarios 1− 4, the overall reservoir water storage in 2019 is greater than that when 
predictions had not been considered (Scenario 5). Although Scenario 4 is considered as the perfect inflow forecast, there is no primary 
difference in the results obtained from Scenario 3. The forecast inflow for determining the release strategy in Scenario 3 has a similar 
tendency compared the actual inflow used in Scenario 4. 

Fig. 12c presents a comparison of the accumulated total drought damage of the reservoir operation in different optimization 
scenarios. Although increased releases provided a smaller drought damage at the end of the year as the damage is a function of 
reservoir release, the remaining water budget for the future operation is different (difference in reservoir storage level at the end of the 
year). To compare the effectiveness of the optimization scenarios, the penalty might be considered for each storage level at the end of 
the year. This storage penalty can be calculated based on the future long-term inflow and the future demand assumptions using a 
backward calculation (Eq. (10)). For this study, we used the actual inflow in 2020 and the 50th percentile of the historical data in the 
dummy year. Thus, the penalties based on the end storage level for each scenario are summarized in Table 5. 

The sum of the total drought damage in 2019 and end year storage penalty were the smallest for scenarios 3 and 4 and had the 
lowest value among all scenarios. Regarding the assumption of water demand, Scenario 0 (actual operation) had no damage in 2019. 
Considering end year storage penalty, it had the highest damage compared to all scenarios. Scenario 5 (without considering forecast) 
had the smallest drought damage in 2019 among optimization scenarios (scenarios 1− 5), but resulted in the highest value when 
considering the storage penalty. Furthermore, we considered that the hydropower production was generated following the optimized 
release amount. Considering forecast information also resulted in a better potential of power generation as shown in Table 5. This 
demonstrates that there are advantages when associating forecast information with real-time optimization for decision-making in 
reservoir operation. 

The future long-term inflow assumption (for penalty calculation) has a significant effect on the results of the reservoir operation. To 
improve optimization process efficiency, long-term forecasts with high performance should be utilized. In contrast, although the future 
long-term inflow is practically difficult to predict, the use of historical data, such as in scenarios 1 and 2, provided satisfactory results in 
this study. 

7. Conclusions 

This study presented a methodology to introduce ensemble weather forecast information collected from TIGGE archive data for 
real-time optimization of a 1-week advanced release strategy of the Sirikit reservoir, Thailand. The basin is located in a tropical climate 
region with a distinct wet and dry season, which has high uncertainty regarding hydrological conditions. This uncertainty increases 
challenges for reservoir operation. Despite the reservoir’s operational challenges resulting from the high uncertainty regarding hy
drological conditions in a tropical-climate basin, the case study indicated that reservoir operation would benefit by considering 
ensemble weather forecasts. Such reservoir operation improvements would have positive impacts for long-term hydropower gener
ation and irrigation purposes. This result agrees with previous study in different regions that using forecast information with DP can 
support decision-making in water management (Faber and Stedinger, 2001; Kim et al., 2007; Nohara and Hori, 2018; Nohara et al., 
2009). 

Although this study indicates potential advantages of considering ensemble weather predictions for the 1-week advanced reservoir 
release strategy, there are some limitations. Firstly, the shortest time step of prediction can provide more advantages in reservoir 
operation such as floods control purposes. Secondly, further study may consider the forecast information such as temperature to 

Table 5 
Summary of reservoir operation result using release strategy obtained from different optimization scenarios.  

Scenarios Total release 
[million m3] 

End year storage 
[million m3] 

End year storage 
penalties*[million m3] 

Acc. drought damage [million 
m3] 

Hydropower production [GWh] 

Within 
2019 

Including 
penalties* 

Within 
2019 

Including future 
potential** 

Scenario 
0  

6175.9  4851.0  624.6  0.0  624.6  1023.4  2618.4 

Scenario 
1  

5770.0  5249.8  389.6  39.3  428.8  968.9  2629.7 

Scenario 
2  

4914.4  6088.9  121.4  269.0  390.4  855.9  2681.0 

Scenario 
3  

5289.3  5720.4  216.5  134.8  351.4  907.8  2656.3 

Scenario 
4  

5297.7  5712.1  219.0  130.9  349.9  909.1  2655.6 

Scenario 
5  

5804.8  5215.4  406.4  32.9  439.4  973.6  2628.7 

*Possible min. drought damage at the end year storage level based on actual inflow in 2020 and Hist. p50 in dummy year. 
**Potential of power generation at the end year storage level based on actual inflow in 2020 and Hist. p50 in dummy year. 
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predict the actual evapotranspiration rather than adopt historical data for improving inflow prediction. Thirdly, a real-time down
stream water requirement may take into account for robust decision-making of long-term reservoirs. Fourthly, although this study 
demonstrated the advantages of the real-time reservoir optimization considering inflow predictions for a case study of 2019, the 
evaluation of the real-time scheme should be followed up with the further years. Lastly, this study presented significant differences in 
reservoir operation results driven by future long-term inflow assumptions (for a storage penalty estimation). Further studies might 
introduce long-range weather forecasts for more robust decision-making during reservoir operation. 

By achieving the limitations, the real-time optimization scheme considering inflow predictions would be practically providing the 
benefit to society in terms of water resources management of the CPRB. In addition, this study illustrates the importance of TIGGE, 
which provides forecast data from various centers worldwide, which provides the benefits of research development in regions where 
these advanced products are scarce. 
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