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Abstract

We investigate menu mechanisms: dynamic mechanisms where at each history, an agent selects from 
a menu of his possible assignments. We consider both ex-post implementation and full implementation 
for a strengthening of dominance that covers off-path histories, and provide conditions under which menu 
mechanisms provide these implementations of rules. Our results cover a variety of environments, including 
matching with contracts, labor markets, auctions, school choice, marriage, object allocation, and elections.
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1. Introduction

1.1. Overview

Among the many mechanisms that have been designed by economists, dominant strategy im-
plementations have a striking record for real-world application—from auctions to school choice 
procedures to labor market clearinghouses and more. For every problem that can be solved with 
such a mechanism, the prototypical example is the direct mechanism, where the agents simul-
taneously report all private information to a central administrator. In practice, however, there 
have been some prominent concerns about miscalculations by these administrators (both delib-
erate and accidental),1 and there are several advantages to using dynamic mechanisms instead: 
for example, they can reduce the volume of bits that must be communicated for implementation 
(Segal, 2010), make it easier for agents who have trouble with contingent reasoning to identify 
dominant strategies (Li, 2017), and improve credibility and transparency when the administrator 
might deliberately miscalculate outcomes such as by shill bidding in auctions (Akbarpour and 
Li, 2020; Hakimov and Raghavan, 2020). Though these advantages generally come at the cost 
of dominant strategy implementation—after all, a dynamic mechanism generally has many more 
strategies than its associated direct mechanism—the contribution of this paper is to identify a 
broad class of dynamic mechanisms across a variety of environments whose implementations 
are robustly incentive compatible in an even stronger sense.

In particular, for finite environments with private values and no consumption externalities, 
we investigate menu mechanisms: dynamic mechanisms where at each history, an agent se-
lects from a menu of his possible assignments. Every rule has menu mechanisms that imitate 
the direct mechanism. Moreover, many prominent rules are effectively described with a menu 
mechanism—in particular, with an algorithm for calculating outcomes where agents behave de-
sirably in a menu mechanism. Familiar menu mechanisms, and familiar rules with algorithms 
easily associated with menu mechanisms, include

• the cumulative offers process (Hatfield and Milgrom, 2005) in matching with contracts;
• the salary adjustment process (Kelso and Crawford, 1982) in labor markets;
• the Crawford-Knoer auction (Crawford and Knoer, 1981; Demange et al., 1986) for auctions 

with unit demand, including the English auction for one-object auctions;
• student-proposing deferred acceptance (Gale and Shapley, 1962) in school choice, including 

male- and female-proposing deferred acceptance in marriage environments;
• Gale’s top trading cycles (reported in Shapley and Scarf, 1974), serial dictatorship (see, for 

example, Svensson, 1999), the broader class of hierarchical exchange rules (Pápai, 2000), 
and the even broader class of trading cycles rules (Pycia and Ünver, 2017; Bade, 2020) in 
object allocation; and

• direct menu mechanisms in a variety of environments, including for voting by committees 
(Barberà et al., 1991) in two-candidate elections.

1 For example, a prominent lawsuit alleged that the central clearinghouse for the resident labor market in the United 
States had the purpose and effect of allowing hospitals to collude to suppress wages (Jung v. Association of American 
Medical Colleges, 2002), and the City of Boston unintentionally miscalculated school choice outcomes due to a coding 
error (Dur et al., 2018).
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We emphasize that for many of these examples, while the algorithm is not novel, and while the 
direct mechanism that gathers all private information and then calculates outcomes by simulating 
desired behavior in the menu mechanism is not novel, the incentive compatibility of the menu 
mechanism itself has not been considered previously. Our main results imply that all of the menu 
mechanisms given above—or naturally derived from the algorithm of a rule given above—are 
robustly incentive compatible; see Section 5.

To capture robust incentives in a dynamic mechanism, we use the solution concept of 
everywhere-dominance: a strengthening of dominance that covers off-path histories. This so-
lution concept, which to our knowledge is novel, requires that from each history—even if the 
history shares an information set with other histories—the continuation strategies form a dom-
inant strategy equilibrium. This is a very demanding solution concept, requiring each agent’s 
strategy to always be a best response—regardless of his beliefs about how his peers have played 
thus far, how his peers will play henceforth, and any other information he might lack about his 
current history—even if he has already deviated from this strategy (for example, due to error).

Formally, we provide sufficient conditions for a menu mechanism to provide either (i) an 
ex-post everywhere-dominant implementation, or (ii) both an ex-post everywhere-dominant im-
plementation and a full everywhere-dominant implementation. Both implementation notions 
require that each type profile has an everywhere-dominant strategy equilibrium that achieves the 
desired outcome; loosely, ex-post moreover requires that each agent’s strategy only depends on 
his own private information, while full moreover requires that all equilibria achieve the desired 
outcome.

In order to guarantee these robust everywhere-dominant implementations, we use the follow-
ing conditions:

• For the environment, richness requires that each agent might have any strict ranking of his 
assignments (though he may also have other rankings), and strictness requires that agents 
are never indifferent.

• For the rule, strategy-proofness has the usual definition, and group strategy-proofness is the 
usual strong version requiring that no coalition of agents can jointly misreport to make one 
member better off without making another member worse off.

• For the menu mechanism, non-repeating requires that each agent can either never select a 
previous choice or never select a previous rejection, and reaction-proofness loosely requires 
that whenever one agent can deduce something about another agent’s choices, the latter’s 
assignment has already been determined.

• For the type-strategy profile—which we refer to as the convention—preferential requires 
that each agent always selects a most-preferred assignment and breaks ties consistently, and 
compatibility with the rule requires that the desired outcome is always achieved if all agents 
conform.

We discuss these conditions in the context of our illustrative example in Section 1.2. Our main 
results state that (i) if all of our conditions are satisfied except possibly strictness and group 
strategy-proofness, then we have an ex-post everywhere-dominant implementation, and (ii) if 
all of our conditions are satisfied, then we have both an ex-post and full everywhere-dominant 
implementation:

Theorem 1. For each rich environment, each strategy-proof rule, each non-repeating and 
reaction-proof menu mechanism, and each preferential convention that is compatible with the 
3
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rule, the menu mechanism is an ex-post everywhere-dominant implementation of the rule via the 
convention.

Theorem 2. For each rich and strict environment, each group strategy-proof rule, each non-
repeating and reaction-proof menu mechanism, and each preferential convention that is compat-
ible with the rule, the menu mechanism is both an ex-post everywhere-dominant implementation 
of the rule via the convention and a full everywhere-dominant implementation of the rule.

We remark that if either theorem applies to a given menu mechanism, then it also applies to 
any associated menu mechanism that simply conceals some information from the agents. For 
example, if either theorem applies to a menu mechanism that satisfies perfect recall, then it also 
applies to the associated menu mechanism where no actions are observable. Indeed, there is a 
tension between everywhere-dominance and obvious dominance (Li, 2017), in the sense that 
concealing information facilitates the former while revealing information facilitates the latter; 
see Section 2.5 for details.

As corollaries, our theorems provide novel results for matching with contracts, labor mar-
kets, auctions, school choice, marriage, object allocation, and elections; see Section 5.2 Taken 
together, our results show that like direct mechanisms, menu mechanisms can systematically 
provide robust dominant strategy implementations, but unlike direct mechanisms, they may be 
able to realize the various advantages of dynamic mechanisms—such as privacy, simplicity, cred-
ibility, and transparency. Indeed, we formalize the observation that menu mechanisms improve 
upon the privacy of direct mechanisms (Appendix B), while recent experiments provide evidence 
that menu mechanisms are simpler for participants than direct mechanisms (see Section 1.3).

Before proceeding, we caution that even though switching from direct mechanisms to menu 
mechanisms can realize the above benefits at no cost in terms of incentives, that does not mean 
that there are no costs at all. Perhaps most importantly, menu mechanisms generally process 
messages serially, and may therefore lead to bottlenecks of the kind that were documented in the 
decentralized telephone market for clinical psychologists (Roth and Xing, 1997). Whether or not 
the advantages of dynamic mechanisms are more desirable than the speed of direct mechanisms 
ultimately must depend on context; our results simply show that dominant strategy implementa-
tions are widely available for both choices.

1.2. Illustrative example

In this section, we illustrate our model and main results in the context of serial dictatorship for 
object allocation environments. In particular, suppose that there are at least as many (indivisible) 
objects as agents, suppose that each agent must consume one object, and suppose that monetary 
transfers are not possible. Suppose moreover that the environment is both rich and strict: each 
agent’s private information type could specify any strict preference ranking over the objects, but 
could not specify a ranking with indifference between multiple objects. A serial dictatorship rule 
is associated with a priority order over the agents, and its outcomes are calculated inductively 
as follows: at each type profile, each agent receives his favorite object among those that are not 
assigned to an agent with higher priority. It is well-known that these rules are not only strategy-
proof, but group strategy-proof (Svensson, 1999; Pápai, 2000).

2 Though we cannot directly apply our theorems to labor markets or auctions as they violate richness, we can apply 
them indirectly by enriching the environment and then pruning the associated menu mechanism; see Appendix G.
4
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Fig. 1. Serial dictatorship menu mechanisms for two agents and two objects. (a) Both an ex-post perfect implementation 
and a full subgame perfect implementation, but not a dominant strategy implementation. (b) Both an ex-post everywhere-
dominant implementation and a full everywhere-dominant implementation.

We first consider the case where the agents in {1, 2} are to consume the objects in {a, b} and 
agent 1 has top priority. In this case, the simplest menu mechanism asks 1 to select any object, 
then assigns this selection to 1 and assigns the other object to 2. For the purposes of illustration, 
however, we will consider an alternative menu mechanism, which we call G1: 2 publicly selects 
any object (and 1 can observe this choice), then 1 selects any object, and finally 1 is assigned his 
selection while 2 is assigned the other object. Since there is perfect information, we say that G1
is a public menu mechanism, and since no agent can select the same object twice, we say that G1

is non-repeating. (More generally, non-repeating requires that each agent can either never select 
a previous choice or never select a previous rejection; the final example in this section, G4 in 
Fig. 2 (b), features both cases.)

In Fig. 1 (a), there are four identical copies of G1 in the middle row. In each column, the top 
row specifies a type profile and the bottom row specifies the associated outcome according to 
the rule. A convention suggests a strategy to each agent on the basis of his own type, and the 
unique preferential convention suggests that at each history the player should select his most-
preferred object. In each column, the strategy profile suggested by the preferential convention 
for the associated type profile is highlighted over that column’s copy of G1, and it is easy to 
verify that the convention is compatible with the rule: at each type profile, if the convention’s 
suggestion is followed, then the outcome specified by the rule is reached.

What about incentives? In each column, the type profile and the menu mechanism together 
form a game, and it is easy to verify that the strategy profile specified by the convention is 
5
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a subgame perfect equilibrium. Because this occurs while each agent’s strategy depends only 
on his own type, we say that G1 is an ex-post perfect implementation of the rule. Moreover, 
though in each column there is a second subgame perfect equilibrium where 2 deviates from the 
convention, nevertheless at each type profile every subgame perfect equilibrium leads to the rule’s 
outcome; thus we say that G1 is a full subgame perfect implementation of the rule. In fact, we 
establish that this double implementation is not a peculiar feature of serial dictatorship, but rather 
holds far more generally as a logical consequence of the properties that we have highlighted 
with italics previously in this discussion (Proposition 2). This strong conclusion requires group 
strategy-proofness, but ex-post perfect implementation can be guaranteed for any strategy-proof
rule using the other hypotheses even if we do not require all preference rankings to be strict 
(Proposition 1).

To conclude our analysis of G1, notice that at each type profile, the conventional strategy 
profile is not a dominant strategy equilibrium: if 1 selects whatever 2 selects, then 2 can profitably 
deviate from the convention by selecting his less-preferred object. It is therefore certainly not 
what we call an everywhere-dominant strategy equilibrium, which requires that from each history 
the continuation strategies form a dominant strategy equilibrium. That said, notice that 1 is only 
able to select whatever 2 selects because he observes whatever 2 selects.

Let G2 denote the menu mechanism constructed from G1 by placing both histories of agent 1
into the same information set (Fig. 1 (b)). Observe that for each type profile, the strategy profile 
specified by the convention is an everywhere-dominant strategy equilibrium, and though there is 
another such equilibrium where 2 deviates from the convention, nevertheless each everywhere-
dominant strategy equilibrium leads to the rule’s outcome. Thus in the same way that G1 provides 
a double subgame perfect implementation, G2 provides a double everywhere-dominant imple-
mentation.

To what extent does this double everywhere-dominant implementation generalize? A pes-
simist might observe that G2 is effectively just a direct mechanism, and hypothesize that in 
general the only menu mechanisms that achieve such a double implementation are effectively 
direct mechanisms—in the sense that along each play, each agent dynamically reveals a com-
plete strict ranking—with unobservable actions. By contrast, an optimist might hypothesize that 
we can always achieve double everywhere-dominant implementation whenever we start from a 
double subgame perfect implementation and then make all actions unobservable.

In fact, both the pessimistic hypothesis and the optimistic hypothesis are incorrect. To see this, 
consider the case where the agents in {1, 2} are to consume the objects in {a, b, c} and agent 1 has 
top priority. The pessimist is incorrect because menu mechanism G3 (Fig. 2 (a)) achieves double 
everywhere-dominant implementation, but is not effectively a direct mechanism. The optimist is 
incorrect because G4 (Fig. 2 (b)) does not achieve double everywhere-dominant implementation, 
even though all actions are unobservable and the associated public menu mechanism achieves 
double subgame perfect implementation. (Indeed, for G4 agent 1 is able to infer the selection of 
2 at the initial history even though he cannot observe it, creating the same issue discussed for G1.)

To distinguish between G3 and G4, let us say that a mechanism is reaction-proof if and only 
if whenever one agent (the “observer”) can infer that another agent (the “deviator”) has deviated 
from an agreed upon strategy, at this point the deviator is safe from retaliation in the sense that 
his assignment has already been determined. More precisely, the observer’s inference involves a 
pair of histories for the observer that do not share an information set, and we require only that the 
deviator’s assignment has already been determined at one of these histories; see Section 2.3 for 
the formal definition. Observe that G3 is reaction-proof while G4 is not. In fact, we establish that 
whenever we satisfy the hypotheses for double subgame perfect implementation, and whenever 
6
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Fig. 2. Serial dictatorship menu mechanisms for two agents and three objects. (a) Double everywhere-dominant im-
plementation, but not effectively a direct mechanism. (b) Not double everywhere-dominant implementation, but the 
associated public menu mechanism provides double subgame perfect implementation.

we are able to then thicken information sets to achieve reaction-proofness, the resulting menu 
mechanism is a double everywhere-dominant implementation (Theorem 2). As with our result 
for public menu mechanisms, this strong conclusion requires group strategy-proofness, but ex-
post everywhere-dominant implementation can be guaranteed for any strategy-proof rule using 
the other hypotheses even if we do not require all preference rankings to be strict (Theorem 1).

1.3. Literature

Our paper is closely related to the literature on our leading examples; see Section 5. Moreover, 
our paper is related to recent results on special classes of menu mechanisms, implementation 
theory, and recent experiments.

First, our results complement recent results in the literature, which we describe using our lan-
guage. First, Kawase and Bando (2021) prove that for each deferred acceptance proposal game 
associated with a public menu mechanism, honesty is a subgame perfect equilibrium; this is 
an implication of our Proposition 1. Interestingly, Kawase and Bando (2021) also consider the 
games where (i) only the side of the market that processes proposals is strategic, and (ii) both 
sides are strategic; though these games can also be described using menu mechanisms, the as-
sociated rules are not strategy-proof, and therefore our results do not apply. Second, Bó and 
Hakimov (2019) prove that for menu mechanisms derived from the deferred acceptance algo-
rithm, honesty is a robust ordinal perfect Bayesian equilibrium, and Bó and Hakimov (2020b)
extend this result to pick-an-object mechanisms for one-sided matching markets; these are menu 
mechanisms with some additional structure where each agent necessarily consumes the last ob-
7
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ject he selected. These results are similar to our Proposition 1, but involve a natural subclass of 
our menu mechanisms and a different implementation notion.

Second, our paper is related to three topics in the broader literature on implementation theory: 
ex-post perfect implementation, double implementation, and obviously strategy-proof implemen-
tation. First, ex-post perfect implementation is a focal notion of robust implementation for dy-
namic mechanisms which has been used to analyze auctions (Ausubel, 2004; Ausubel, 2006; Sun 
and Yang, 2014; Drexl and Kleiner, 2015) and voting (Kleiner and Moldovanu, 2017; Gershkov et 
al., 2017; Kleiner and Moldovanu, 2019). Because we require strictness and strategy-proofness, 
our results only apply to restricted versions of these settings: (i) auctions where agents have unit 
demand, under the restriction that preferences are strict; and (ii) elections with two candidates. 
Indeed, our paper primarily complements these previous contributions by applying to matching 
environments. Second, double implementation refers to two kinds of implementation simultane-
ously (Maskin, 1979), and to our knowledge we are the first to consider full subgame perfect 
implementation (Moore and Repullo, 1988) in this context.3 Third, everywhere-dominance and 
obvious dominance (Li, 2017) both strengthen dominance in the context of dynamic games; we 
compare the two in Section 2.5.

Finally, recent experiments suggest that menu mechanisms may provide simplicity benefits, 
as measured by the likelihood of subjects conforming to the convention. In particular, the evi-
dence suggests that while obviously strategy-proof mechanisms generally outperform both menu 
mechanisms and direct mechanisms (Bó and Hakimov, 2020b), menu mechanisms outperform 
direct mechanisms for both deferred acceptance (Klijn et al., 2019; Bó and Hakimov, 2020a) 
and top trading cycles (Bó and Hakimov, 2020b); thus menu mechanisms can provide simplicity 
benefits even when obviously strategy-proof implementations are not available.

2. Model

2.1. Environments

We begin by introducing a generic environment in our model: a finite setting with incomplete 
information, private values, and no consumption externalities.

Definition. An environment is a tuple (N, (Xi)i∈N, X, (�i)i∈N), where

• N is a nonempty and finite set of agents;
• for each i ∈ N , Xi is a nonempty and finite set of assignments, for which we let

(i) Ri denote the set of (complete and transitive) preference relations on Xi , and
(ii) Pi ⊆ Ri denote the set of those that are strict (that is, antisymmetric);

• X ⊆ ×Xi is a nonempty set of outcomes, where each outcome consists of an assignment for 
each agent; and

3 Double implementation has previously been investigated for full Nash implementation with full undominated Nash 
implementation (Yamato, 1993), full Nash implementation with full dominant strategy implementation (Saijo et al., 
2007), and full dominant strategy implementation with full ex-post Nash implementation (Hagiwara, 2020). We remark 
that a sufficient condition for double dominant implementation, strict strategy-proofness, has recently been considered in 
the context of auctions (Escudé and Sinander, 2020).
8
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• for each i ∈ N , �i is a nonempty set of types, where each type θi ∈ �i determines a prefer-
ence relation Ri(θi) ∈ Ri ; we let Pi(θi) denote the asymmetric part of Ri(θi) and let Ii(θi)

denote the symmetric part of Ri(θi).

We let � denote ×�i , and refer to each θ ∈ � as a type profile; we let R(θ) ≡ (Ri(θi))i∈N

denote the associated preference profile. We assume there are no consumption externalities and 
thus sometimes abuse notation, letting Ri(θi) denote not only a binary relation on Xi but also the 
associated binary relation on X. For convenience, whenever we refer to a generic environment 
we implicitly assume all of this notation.

Many familiar economic settings—such as matching with contracts, labor markets, auctions, 
school choice, object allocation, and two-candidate elections—can be articulated as environ-
ments with additional structure. For our illustrative example (Section 1.2), we define an object 
allocation environment as follows: (i) N is the set of agents, (ii) there are at least as many objects 
as agents, and for each i ∈ N , Xi is the set of objects, (iii) X is the set assignment profiles at 
which no two agents consume the same object, and (iv) for each i ∈ N , �i is the set of strict 
rankings of objects. For details about all of our applications—including how they fit the other 
primitives and hypotheses that we introduce in this section—see Appendix G.

Our results involve two hypotheses about environments, both of which regard the preferences 
an agent might have:

Definition. Hypotheses for environments. We say that an environment is

• rich if and only if for each i ∈ N and each Pi ∈ Pi , there is θi ∈ �i such that Ri(θi)= Pi ; 
and

• strict if and only if for each i ∈ N and each θi ∈ �i , Ri(θi) ∈ Pi .

Richness rules out many preference restrictions by requiring that each agent might have any 
strict ranking of his assignments; this is generally satisfied in matching environments, but vi-
olated in auction environments (where lower payments must be preferred) and labor market 
environments (where higher salaries must be preferred). Strictness rules out indifference, which 
is common in matching environments but uncommon in auction environments. That said, we 
remark that strictness holds for auctions where each admissible valuation is generic, in the sense 
that it belongs to an open ball whose members all induce the same ranking of assignments—for 
example, a single-object auction with an integer bid increment and non-integer valuations.

2.2. Rules

In a given environment, the agents wish to condition the outcome on their collective private 
information according to a (social choice) rule:

Definition. Fix an environment. A rule is a function f : � → X.

For our illustrative example, each priority order over the agents specifies a serial dictatorship 
rule, which assigns to each type profile the outcome determined by the following serial dicta-
torship algorithm: assign the agent with highest priority his most-preferred object, then assign 
the agent with second-highest priority his most-preferred object of those that have not yet been 
9



A. Mackenzie and Y. Zhou Journal of Economic Theory 204 (2022) 105511
assigned, and continue in this fashion until all agents have received objects. We emphasize that 
while the term serial dictatorship is often used interchangeably for the rule and the associated 
algorithm, for our purposes it is important to make a distinction because the algorithm is even 
more closely associated with the mechanism than the rule; the same remark applies to the cu-
mulative offers process (matching with contracts), deferred acceptance (school choice), and top 
trading cycles (object allocation).

Our results involve two hypotheses about rules, both of which regard incentive compatibility:

Definition. Hypotheses for rules. Fix an environment and a rule f . We say that f is

• strategy-proof if and only if for each θ ∈ �, each i ∈ N , and each θ ′
i ∈ �i , we have 

f (θi, θ−i ) Ri(θi) f (θ ′
i , θ−i ); and

• group strategy-proof if and only if there is no θ ∈ �, N ′ ⊆ N , and θ ′
N ′ ∈ ×N ′�i such that

(i) for each i ∈ N ′, f (θ ′
N ′ , θN\N ′) Ri(θi) f (θ); and

(ii) there is i ∈ N ′ such that f (θ ′
N ′ , θN\N ′) Pi(θi) f (θ).

Strategy-proofness is the usual requirement that for each type profile, the strategy profile 
where all agents honestly report their types is a dominant strategy equilibrium in the game given 
by the direct mechanism and the type profile. Group strategy-proofness requires that moreover, 
no coalition of agents can ever benefit by deviating from this equilibrium—in the sense that at 
least one member is better off while no member is worse off—through a coordinated misrep-
resentation of their preferences. All of our results require strategy-proofness, and our strongest 
conclusions require group strategy-proofness.

2.3. Menu mechanisms

We are interested in implementing a given rule with a mechanism, or an extensive game 
form with players in N and outcomes in X; see Appendix A for the formal definition, which 
is familiar to most readers. The notation we use throughout the paper is gathered in Table 1. 
For convenience, whenever we refer to a generic mechanism G, we implicitly assume all of this 
notation. Note that a mechanism G and a type profile θ together determine a game (G, R(θ)).

We are now ready to introduce menu mechanisms, where agents iteratively select from menus 
of their assignments. Menu mechanisms are related in spirit to natural implementation, where an 
agent’s strategy can be interpreted as a consumption bundle (Saijo et al., 1996); the difference is 
that with menu mechanisms, an agent’s action can be interpreted as a consumption bundle:

Definition. Fix an environment. A mechanism is moreover a menu mechanism if and only if

• A = ∪Xi ; and
• for each i ∈ N , each h ∈ Hi , and each h′ ∈ σ(h), α(h′) ∈ Xi . We define the menu at h, 

Xi(h) ⊆ Xi , by Xi(h) ≡ {α(h′)|h′ ∈ σ(h)}.

As discussed earlier, many menu mechanisms can be derived naturally from algorithms as-
sociated with familiar rules. For our illustrative example, menu mechanism G3 (Fig. 2 (a)) is 
derived naturally from the serial dictatorship algorithm described earlier. Similarly, the deferred 
acceptance algorithm for school choice yields menu mechanisms where at each history, the player 
is a student who is not tentatively accepted by any school, and the player selects a school that 
10
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Table 1
Notation for a generic mechanism.

Name Notation Representative element

Set of histories H h

Precedence relation over histories �
Set of immediate successors of h σ(h)

Set of plays � π

Set of terminal histories Z z

Player function P
Set of histories that belong to i Hi

Set of actions A
Action function α

Set of actions available at h A(h)

Action taken at h to remain on π αh(π)

Action taken at h to continue toward h′ αh(h′)
Information partition for i Ii Ii

Set of actions available at Ii A(Ii )

Outcome function X

has not yet rejected him. We remark that for the Vickrey rule for one-object auctions, we are less 
interested in menu mechanisms derived from the synonymous algorithm (the simple “second-
price” calculation) and more interested in those derived from an alternative algorithm (given by 
the English auction).

In general, we are able to draw stronger conclusions when less information is available to the 
agents. We highlight two extreme cases: all actions are observable and no actions are observable. 
The former plays a technical role in our proofs as we begin by analyzing mechanisms with 
perfect information, while the latter is simply convenient for providing examples that meet the 
requirements of our main results:

Definition. Information assumptions for menu mechanisms. Fix an environment. We say that a 
menu mechanism is

• public if and only if for each i ∈ N , Ii = {{h}|h ∈ Hi}; and
• private if and only if for each i ∈ N and each pair h, h′ ∈ Hi , h and h′ share an information 

set if and only if at these histories, i has encountered the same menus and taken the same 
actions in the same order.4

We remark that public and private versions of a given menu mechanism describe dramatically 
different institutions. For example, a public deferred acceptance menu mechanism might describe 
courtship in a ballroom, while a private one might describe courtship through a dating app. As 
another example, a public English auction menu mechanism might describe a sale at an auction 
house, while a private one might describe a sale online (say, on e-Bay). In general, we find it 

4 Formally, for each i ∈ N and each h ∈ Hi , let {h1, h2, ..., ht } denote {h′ ∈ Hi |h′ ≺ h} such that h1 ≺
h2 ≺ ... ≺ ht , and define the experience of i at h to be the list of menus and selections Ei (h) ≡(
(Xi(h1), αh1 (h)), (Xi(h2), αh2 (h)), ..., (Xi(ht ), αht (h)), Xi(h)

)
. We require that for each i ∈ N and each pair h, h′ ∈

Hi , h and h′ share an information set if and only if Ei (h) = Ei (h
′).
11
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convenient to think of private menu mechanisms as apps for electronic devices that occasionally 
notify users that they must select from a given menu.

In order to introduce our hypotheses about menu mechanisms, we first recall the familiar con-
cepts of pure strategy profiles and plays. Moreover, we introduce notation for the play that first 
proceeds from the initial history to a given history, then proceeds according to a given strategy 
profile.

Definition. Strategy profiles, plays, and related notation. Fix an environment and a mechanism.

• For each i ∈ N , a (pure) strategy for i is a mapping si : Hi → A such that
(i) for each h ∈ Hi , si(h) ∈ A(h); and

(ii) for each Ii ∈ Ii and each pair h, h′ ∈ Ii , si(h) = si(h
′).

We let Si denote the set of strategies for i. A strategy profile is a profile of strategies s =
(si)i∈N , and we let S ≡ ×Si denote the set of strategy profiles.

• A play is a maximal chain of histories, which gives a complete description of a sequence of 
choices; we write π for a play and � for the set of plays.

• For each h ∈ H and each s ∈ S, we define πh(s) to be the play that first proceeds from 
the initial history to h and then proceeds according to s. Moreover, we define X h(s) ≡
X (πh(s)), and for each i ∈ N let X h

i (s) denote the associated assignment. When h is the 
initial history, we simply write π(s) and X (s).

Our results involve two hypotheses about menu mechanisms, the first regarding individual 
agents and the second regarding pairs of agents:

Definition. Hypotheses for menu mechanisms. Fix an environment and a menu mechanism G. 
We say that G is

• non-repeating if and only if for each i ∈ N , either
(i) i has non-repeating choices: for each pair h, h′ ∈ Hi such that h ≺ h′, we have that 

{αh(h′)} ∩ Xi(h
′) = ∅, or

(ii) i has non-repeating rejections: for each pair h, h′ ∈ Hi such that h ≺ h′, we have that 
(Xi(h)\{αh(h′)}) ∩ Xi(h

′) = ∅; and
• reaction-proof if and only if for each distinct pair i, j ∈ N , each h ∈ Hi , each s−i ∈ S−i , 

each pair s′
i , s

′′
i ∈ Si , and each pair h′, h′′ ∈ Hj such that

– h′ ∈ πh(s′
i , s−i ) and h′′ ∈ πh(s′′

i , s−i ),
– j plays the same number of times before h′ and h′′, and
– h′ and h′′ are in different information sets,
there is h= ∈ {h′, h′′} at which the assignment for i has already been determined: for each 
pair π1, π2 ∈ � such that h= ∈ π1 ∩ π2, we have Xi(π1) = Xi (π2).

Non-repeating requires that each agent can either never select a previous choice or never 
select a previous rejection. All of the menu mechanisms we have discussed thus far in Section 2
satisfy non-repeating choices for all agents, while non-repeating rejections holds for (i) agent 1
in mechanism G4 (Fig. 2 (b)), and (ii) all agents in Vickrey’s variant of the Dutch auction, where 
prices descend until two agents have entered, at which point the first entrant wins (Vickrey, 
1961).
12
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Reaction-proofness requires that whenever an agent i (the “deviator”) signals something to 
another agent j (the “observer”)—in the sense that if j knows the peers of i have played s−i

since h, then he can distinguish between whether i has played s′
i or s′′

i since h—then by the time 
j acquires this information, i is already safe from any reaction—in the sense that for each pair 
of histories where j acquires this information, in at least one of these histories the assignment i
receives has already been determined. As discussed in Section 1.2, mechanism G3 is reaction-
proof while mechanism G4 is not (Fig. 2).

Before proceeding, we illustrate that reaction-proofness holds for three additional examples. 
For simplicity we focus on private menu mechanisms, where if there is a pair of histories h′, h′′ ∈
Hj that satisfy the hypotheses for reaction-proofness, then there is an earliest such pair that j is 
able to distinguish between only because he receives two distinct menus at these histories.

Example 1. Reaction-proofness and direct menu mechanisms. Consider any private menu mech-
anism derived from a direct mechanism (where the first agent fully reveals his ranking by 
selecting his favorite assignment, then his favorite assignment that he has not already selected, 
and so on; then the second agent does so; and so on). The result is reaction-proof because at 
each history, the player’s menu is always the set of assignments that the player has not already 
selected, and is thus determined by the player’s strategy alone.

Example 2. Reaction-proofness and deferred acceptance. Consider any private menu mecha-
nism derived from the deferred acceptance algorithm (where at each history the player selects 
an assignment that has not yet rejected him). Even though the order in which the agents act 
is not trivial, the same argument used for Example 1 establishes that the menu mechanism is 
reaction-proof.

Example 3. Reaction-proofness and top trading cycles. This example involves some nuance. 
For each private menu mechanism derived from the top trading cycles algorithm (where at each 
history the player selects an unassigned object to point toward), let us say that an agent is active
if (i) he has not yet played, or (ii) the object he previously selected has been removed. Let us say 
that there is a simple order if the player is always the active agent with lowest index. We claim 
that any such menu mechanism is reaction-proof.

Indeed, suppose that (i) i is at history h while the other agents play s−i , (ii) if i plays s′
i from 

h onward, then j faces histories h′
1 ≺ h′

2 ≺ ... ≺ h′
t , (iii) if i plays s′′

i from h onward, then j faces 
histories h′′

1 ≺ h′′
2 ≺ ... ≺ h′′

t , and (iv) j faces the same sequence of menus in both cases until the 
end, where the two menus might differ: for each t∗ ∈ {1, 2, ..., t −1} we have Xj(h

′
t∗) = Xj(h

′′
t∗). 

If the object owned by i is missing from Xj(h
′
t ) or Xj(h

′′
t ) (or both), then the assignment of i has 

already been determined at the associated history and we are done. If instead the object owned by 
i belongs to both Xj(h

′
t ) and Xj(h

′′
t ), then i has not completed a cycle before either h′

t or h′′
t , and 

we claim that both menus must be the same. Indeed, both (i) between h and h′
t , and (ii) between h

and h′′
t , each peer of i faces the same sequence of menus in the same sequence of information 

sets after h, and thus necessarily makes the same choices in the same order. It is possible that i
plays at a different number of histories (i) between h and h′

t , and (ii) between h and h′′
t , because i

selects objects that are removed in cycles that do not include him more often along one of the 
two plays, but as i never completes a cycle before either h′

t or h′′
t , thus he does not impact the 

order in which his peers play or the sequence of menus faced by any peer, so Xj(h
′
t ) = Xj(h

′′
t )

as claimed. Altogether, then, the menu mechanism is reaction-proof.
13
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Notice that without a simple order, the menu mechanism may not be reaction-proof : s′
i could 

cause j to play immediately, while s′′
i could cause j to play in a few turns after another cycle has 

been completed, with the assignment of i still undetermined in both cases.

2.4. Conventions

We focus on implementation that is robust, in that it does not rely on any assumptions about 
the beliefs agents have about the private information of their peers. Informally, we say that a 
mechanism implements the rule if and only if regardless of the type profile, the desired outcome 
is a plausible consequence of the strategic choices of the agents. We formalize this in several 
ways, using both type-strategy profiles in a mechanism and strategy profiles in the associated 
games. To ease the discussion, we introduce the term convention as a suggestive shorthand for a 
type-strategy profile—for example, in a direct mechanism, honesty is a convention.

Definition. Conventions. Fix an environment and a mechanism. For each i ∈ N , a type-strategy 
for i is a mapping Si : �i → Si . A convention is a profile of type-strategies S = (Si )i∈N .

For our illustrative example, the convention specifies that at each history, the player should 
select his most-preferred object from the menu (according to his type). More generally, we are 
interested in situations where such a convention yields a calculation algorithm for its rule:

Definition. Hypotheses for conventions. Fix an environment, a rule f , a menu mechanism G, 
and a convention S. We say that S is

• f -compatible (or compatible with the rule) if and only if for each θ ∈ �, we have X (S(θ)) =
f (θ); and

• preferential if and only if for each i ∈ N and each θi ∈ �i , there is a tie-breaker τi(θi) ∈ Pi

such that for each h ∈ Hi , [Si (θi)](h) = argmaxτi (θi )
[argmaxRi(θi )

Xi(h)].5

Compatibility with the rule requires that the rule’s outcome is always reached if agents follow 
the convention, while the preferential requirement imposes that the convention simply specifies 
that each agent should always pick a most-preferred assignment, breaking ties consistently. It is 
easy to verify that both conditions are satisfied by the conventions for all of the examples we 
have discussed thus far.

2.5. Implementation

In order to consider incentives in a mechanism G, we first consider incentives in each game 
(G, R). In particular, a solution concept associates each of these games with a collection of plau-
sible strategy profiles, and we are primarily interested in the novel (to our knowledge) solution 
concept of everywhere-dominance. In order to facilitate our analysis and discussion, we also 
recall three standard solution concepts:

Definition. Solution concepts. Fix an environment, a mechanism, and a preference profile. Each 
solution concept SC gives a collection of strategy profiles SC(G, R) ⊆ S. We consider:

5 Abusing notation, if argmaxR (X′ ) is a singleton {x}, we sometimes let argmaxR (X′ ) denote x.

i i i i
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• Nash equilibrium: s ∈ NE(G, R) if and only if for each i ∈ N and each s′
i ∈ Si , X (s) Ri

X (s′
i , s−i );

• dominant strategy equilibrium: s ∈ DE(G, R) if and only if for each i ∈ N , each s′−i ∈ S−i , 
and each s′

i ∈ Si , X (si , s′−i ) Ri X (s′
i , s

′−i );• subgame perfect equilibrium: if G has perfect information, then s ∈ SPE(G, R) if and only 
if for each i ∈ N , each h ∈ Hi , and each s′

i ∈ Si , X h(s) Ri X h(s′
i , s−i ); and

• everywhere-dominant strategy equilibrium: s ∈ EDE(G, R) if and only if for each i ∈ N , 
each h ∈ Hi , each s′−i ∈ S−i , and each s′

i ∈ Si , X h(si, s′−i ) Ri X h(s′
i , s

′−i ).

It is easy to verify that everywhere-dominance is stronger than both dominance and subgame 
perfection, which in turn are both stronger than Nash. Notice that unlike subgame perfection, 
everywhere-dominance is defined for games with imperfect information: at an information set 
with multiple histories, the player’s continuation strategy must be a best response at each of 
these histories. Indeed, everywhere-dominance requires the player’s strategy to always be a best 
response—regardless of his beliefs about how his peers have played thus far, how his peers will 
play henceforth, and any other information he might lack about his current history—even if he 
has already deviated from this strategy (for example, due to error).

Given a solution concept for each game (G, R), we consider three ways of articulating im-
plementation for G6: (i) ex-post with respect to a convention, which requires that at each type 
profile, the convention specifies an equilibrium that leads to the desired outcome; (ii) full, which 
requires that at each type profile, there are equilibria and each of them yields the desired outcome; 
and (iii) double, which we use in this paper to refer to both (i) and (ii) simultaneously:

Definition. Implementations. Fix an environment, a rule, and a solution concept SC. For each 
mechanism G and each convention S, we say that (G, S) is an ex-post SC-implementation of f
if and only if

• for each θ ∈ �, X (S(θ)) = f (θ); and
• for each θ ∈ �, S(θ) ∈ SC(G, R(θ)).

In this case, we also say that G is an ex-post SC-implementation of f via S. We say that G is a 
full SC-implementation of f if and only if

• for each θ ∈ �, SC(G, R(θ)) �= ∅; and
• for each θ ∈ � and each s ∈ SC(G, R(θ)), X (s) = f (θ).

Finally, we say that G is a double SC-implementation of f if and only if it is both an ex-post 
SC-implementation of f and a full SC-implementation of f .

When we use these terms for particular solution concepts, we sometimes replace DE with 
dominant, SPE with perfect or subgame perfect, and EDE with everywhere-dominant; for ex-
ample, we might refer to ex-post perfect implementation or full subgame perfect implementation.

6 We remark that another approach to robustness is to pursue interim implementation (or Bayesian implementation 
when there need not be a common prior) for all beliefs; see for example Penta (2015) and Bó and Hakimov (2020b). This 
is implied by ex-post implementation.
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Fig. 3. Independence of implementations. (a) Only ex-post perfect. Consider N = {1, 2}, X1 = X2 = {a, b}, the types 
are the strict rankings, the rule specifies that 1 always receives a while 2 receives the assignment preferred by 1, and 
the mechanism in Fig. 3 (a). (b) Only full subgame perfect. Consider N = {1, 2}, X1 = X2 = {a, b, c}, the types are the 
strict rankings, the rule maps each preference profile to the unique subgame perfect outcome of the game given by that 
profile and the mechanism in Fig. 3 (b), and that same mechanism. There is no ex-post perfect convention because, for 
example, each convention either specifies 1 should select a when his strict ranking is acb, or it specifies that he should 
select c when he has this ranking, but it does not specify both.

For our illustrative example, menu mechanism G3 (Fig. 2 (a)) is both (i) an ex-post 
everywhere-dominant implementation with respect to the unique preferential convention, and 
(ii) a full ex-post everywhere-dominant implementation; it is therefore a double everywhere-
dominant implementation. Before proceeding, we briefly discuss the interpretation of ex-post 
implementation, the independence of ex-post implementation and full implementation, and the 
independence of everywhere-dominance and obvious dominance (Li, 2017).

Interpretation of ex-post implementation. For simplicity, we focus on the case of public menu 
mechanisms; in this case ex-post implementation can be understood entirely in terms of each 
agent i’s first-order beliefs over �−i × S−i . In particular, agent i does not know the type profile 
of his peers or the strategy profile of his peers, and he may update his beliefs about this at each 
history. For ex-post perfection, if at each history i believes that his peers will surely follow the 
convention in the future (regardless of what has happened in the past), then his conventional 
strategy is a best response. For ex-post everywhere-dominance, at each history the conventional 
strategy is a best response to any beliefs. In both cases, if the environment is rich, the public 
menu mechanism is non-repeating, and the convention is preferential, then there are such beliefs 
that are compatible with (correct) common strong belief in rationality.7

Independence of ex-post implementation and full implementation. Ex-post implementation 
and full implementation are logically independent; we illustrate this for subgame perfect equi-
librium in Fig. 3. Indeed, the former requires that each agent’s strategy depends only on his own 
type, while the latter does not; the latter requires that all equilibria are compatible with the rule, 
while the former does not.

7 This can be formalized using strong 	-rationalizability (Battigalli and Siniscalchi, 2003; Battigalli and Siniscalchi, 
2007), a generalization of extensive form rationalizability (Pearce, 1984)—or equivalently, the iterative removal of 
conditionally dominated strategies (Shimoji and Watson, 1998)—for games with incomplete information. For ex-post 
perfection, let 	 require (in addition to the standard requirements) that each agent i assigns probability one to the event 
{(θ−i , S−i (θ−i ))|θ−i ∈ �−i } at each history, regardless of his type. By the Play Lemma (Appendix D), the hypothesis 
that one’s peers are following the convention can never be falsified, so each history indeed has admissible beliefs. For 
ex-post everywhere-dominance, 	 need only satisfy the standard requirements. In both cases, the convention survives 
the iterative deletion procedure in Definition 6 of Battigalli and Siniscalchi (2007).
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Fig. 4. Independence of everywhere-dominant and obviously dominant implementations. Consider N = {1, 2}, X1 =
{w, x, y, z}, X2 = {a, b, c, d}, 1 can have rankings in {wxyz, yxzw, zxyw}, 2 can have any strict ranking, and the rule is 
given by the preferential convention for both menu mechanisms. (a) When 2 has ranking dabc, his preferential strategy is 
not obviously dominant because at its first information set, the worst case from adhering to the preferential strategy (that 
is, a) is worse than the best case from deviating (that is, d). (b) When 1 has ranking wxyz, his preferential strategy is 
not everywhere-dominant because when selecting from {y, z}, the preferential strategy might lead to y while a deviation 
leads to x and therefore is profitable.

Independence of everywhere-dominance and obvious dominance. As solution concepts, 
everywhere-dominance and obvious dominance (Li, 2017) both strengthen the standard notion 
of dominance in the context of dynamic games. Moreover, both have some relationship with 
menu mechanisms: our main results establish the link for everywhere-dominance, while recent 
literature has established the link for obvious dominance.8 What then is the relationship between 
these two solution concepts?

For context, a strategy is obviously dominant if and only if at each information set it can 
reach, the worst case from adhering to the strategy is at least as good as the best case from 
deviating. In this case, the strategy can be identified as dominant by an agent who has trouble with 
contingent reasoning, in the sense that he struggles to compare strategies on a case-by-case basis. 
By contrast, identifying an everywhere-dominant strategy may require contingent reasoning, but 
such a strategy retains its strong incentives even at information sets that it cannot reach—for 
example, if the player has previously made a typo. Altogether, then, obvious dominance imposes 
a stronger requirement on-path and everywhere-dominance imposes a stronger requirement off-
path, suggesting that the two concepts are independent, and indeed this is the case.

In fact, the logical independence of these two solution concepts introduces a novel design 
consideration: concealing information facilitates everywhere-dominance while revealing infor-
mation facilitates obvious dominance. Indeed, everywhere-dominant implementation is always 
preserved when thickening information sets (provided that all conventional strategies remain 
available, which is always the case for preferential strategies in menu mechanisms) because 
from each history one’s opponents have access to fewer strategies. On the other hand, obviously 

8 In particular, for rich and strict environments, if a rule has an obviously strategy-proof implementation, then it has 
one through a millipede mechanism (Pycia and Troyan, 2019), in which case it also has an implementation in weakly 
dominant strategies through a menu mechanism that is moreover a pick-an-object mechanism (Bó and Hakimov, 2020b). 
There are millipede mechanisms that are not menu mechanisms, and there are menu mechanisms that are not millipede 
mechanisms.
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strategy-proof implementation is always preserved when information sets are broken (provided 
that we begin from a mechanism that satisfies perfect recall) because the worst case from ad-
hering to the convention can only improve while the best case from deviating can only worsen 
(Ashlagi and Gonczarowski, 2018; see also Mackenzie, 2020). In fact, for the example in Fig. 4, 
there are only two histories that might share an information set, and the choice to pair them or 
separate them determines whether or not there is only an everywhere-dominant implementation 
or only an obviously dominant implementation: when we move from the mechanism on the left 
to the mechanism on the right by making all actions observable, we lose everywhere-dominance 
but gain obvious dominance.

3. Menu mechanisms for strategy-proof rules

3.1. Result

The classic revelation principle states that for each strategy-proof rule, the associated direct 
mechanism provides an ex-post dominant implementation (Gibbard, 1973; Myerson, 1981). In 
this section, we consider the full class of these rules, and investigate conditions under which 
a menu mechanism provides an alternative such implementation that moreover provides robust 
incentives off the path of play.

To begin, we first investigate the robust incentive compatibility of menu mechanisms for 
which all actions are observable. In particular, we provide conditions under which a public menu 
mechanism provides an ex-post perfect implementation:

Proposition 1. For each rich environment, each strategy-proof rule, each non-repeating public 
menu mechanism, and each preferential convention that is compatible with the rule, the public 
menu mechanism is an ex-post perfect implementation of the rule via the convention.

The formal proof is in Appendix E, and involves lemmas about public menu mechanisms 
(Appendix D) whose proofs involve lemmas about revealed preference theory (Appendix C). We 
sketch the arguments below:

Proof sketch. To begin, we take arbitrary θ ∈ �, i ∈ N , h ∈ Hi , and si ∈ Si , we define a to 
be the assignment for i when he conforms to the convention and b to be the assignment for i
when he deviates—that is, a ≡ X h

i (S(θ)) and b ≡ X h
i (si , S−i (θ−i ))—and we seek to prove that 

a Ri(θi) b, dismissing the trivial case where a = b. In order to do so, we consider the plays 
through h where i conforms and where he deviates, πa ≡ πh(S(θ)) and πb ≡ πh(si, S−i (θ−i )), 
and seek type profiles for which the convention specifies these plays. Because the environment is 
rich and the convention is preferential, this is possible if for each agent, certain choices from the 
menus of certain histories are together rationalizable, and we therefore apply techniques from 
revealed preference theory.

In particular, we use the well-known result that choices are rationalizable by a strict preference 
relation if and only if there is no revealed cycle (the Cycle Lemma; see for example Chambers and 
Echenique, 2016) to prove that for each agent, (i) always staying on a given play is specified by 
the convention for some type (the Play Lemma); and (ii) for each history and each continuation 
strategy specified by the convention, proceeding toward that history and then conforming to the 
continuation strategy is specified by the convention for some type (the Continuation Lemma). 
Both of these proofs rely critically on the fact that the public menu mechanism is non-repeating. 
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Our proof of Proposition 1 also involves a second result from revealed preference theory: if all 
strict preference relations that rationalize some choices rank a above b, then there is a revealed 
path from a to b (the Path Lemma).

By the Continuation Lemma, there is θ∗−i ∈ �−i at which the convention has each agent 
j ∈ N\{i} proceed to h and then play according to Sj (θj ). By the Play Lemma, i remaining 
on πa and i remaining on πb are both rationalizable. If Pa and Pb rationalize i remaining on 
πa and πb, respectively, then by richness they are given by types θa

i and θb
i , so as the conven-

tion is preferential we have πa = π(S(θa
i , θ∗−i )) and πb = π(S(θb

i , θ∗−i )). We can therefore apply 
strategy-proofness to deduce that a Pa b and b Pb a. Since Pa and Pb were arbitrary rationaliza-
tions, thus by the Path Lemma, i remaining on πa reveals a path from a to b, and i remaining 
on πb reveals a path from b to a.9 Finally, we use both revealed paths to prove that the former 
revealed path is revealed entirely after h, which as the convention is preferential implies that 
a Ri(θi) b, as desired. �

Before proceeding, we remark that Proposition 1 does not hold if (i) we weaken non-repeating
by simply requiring that the choices along each play can be rationalized by some strict preference 
profile, or (ii) we weaken preferential by simply requiring that the convention always asks each 
agent to select a most-preferred assignment without necessarily breaking ties consistently; see 
Fig. 7 in Appendix E.

As discussed in Section 1.2, an agent’s conventional strategy is everywhere-dominant when 
the ability of his peers to react to deviations is limited. Our first theorem states that if we take 
the hypotheses for Proposition 1 and then replace the requirement that all actions are observable 
with reaction-proofness, then the resulting hypotheses guarantee ex-post everywhere-dominant 
implementation10:

Theorem 1. For each rich environment, each strategy-proof rule, each non-repeating and 
reaction-proof menu mechanism, and each preferential convention that is compatible with the 
rule, the menu mechanism is an ex-post everywhere-dominant implementation of the rule via the 
convention.

Proof. We consider both (i) the non-repeating and reaction-proof menu mechanism G, and 
(ii) its associated public menu mechanism G!. For each i ∈ N , let Si denote the set of strategies 
for i for the former mechanism and let S!

i denote this set for the latter mechanism. Observe that 
any strategy for i specified by a preferential convention belongs to Si ⊆ S!

i , as such a strategy 
never has i select distinct actions at distinct histories that share a menu. It follows that S is a 
preferential convention compatible with the rule for both G and G!.

Assume, by way of contradiction, that (G, S) is not an ex-post everywhere-dominant imple-
mentation of the rule. Then there are i ∈ N , θi ∈ �i , h ∈ Hi , and s−i ∈ S−i such that i has a 

9 Note that if at history h, selecting a leads toward πa and selecting b leads toward πb , then we trivially have both 
revealed paths; we use the Path Lemma because this need not be the case. For example, consider a deferred acceptance 
menu mechanism where the menu at h is {a, b, x, y}, selecting x leads toward πa with some future choices that eventually 
result in a, and selecting y leads toward πb with some future choices that eventually result in b.
10 In earlier versions of this paper, both Theorem 1 and Theorem 2 required the additional hypothesis that no actions 
are observable; we thank an anonymous referee and Inácio Bó for correctly conjecturing that this requirement could be 
dropped by generalizing the earlier version of our reaction-proofness condition.
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profitable deviation s′′
i ∈ Si from Si (θi) at h when his type is θi and his peers play s−i . To use 

the notation from the definition of reaction-proofness, define s′
i ≡ Si (θi).

By Proposition 1, (G!, S) is an ex-post perfect implementation of the rule via S; thus the 
restriction of s−i to the given subgame is not specified by the convention for any type profile. Let 
j be the lowest-index peer of i whose restricted strategy is never specified by the convention. We 
claim that j has a type θ∗

j such that i has the same profitable deviation s′′
i ∈ Si from s′

i at h when 
his type is θi and his peers play (Sj (θ

∗
j ), s−i,j ).

Define the plays π ′ ≡ πh(s′
i , s−i ) and π ′′ ≡ πh(s′′

i , s−i ). Let h′
1, h′

2, ... label the histories 
where j plays after h along π ′ in order, let h′′

1, h′′
2, ... label the histories where j plays after 

h along π ′′ in order, and let T denote the set of t ∈ N such that there are both h′
t and h′′

t . We 
consider two cases:

CASE 1: For each t ∈ T , both h′
t and h′′

t share an information set in G. In this case, let π+ ∈
{π ′, π ′′} maximize the number of histories where j plays after h, and let θ∗

j be such that j
adheres to π+ after h according to convention (which exists by the Play Lemma). Then for each 
t ∈ T , (i) sj (h

′
t ) = sj (h

′′
t ), because sj ∈ Sj ; and (ii) [Sj (θ

∗
j )](h′

t ) = [Sj (θ
∗
j )](h′′

t ), because the 
convention is preferential; so necessarily both sj and Sj (θ

∗
j ) agree along π ′ and π ′′ after h, so 

Sj (θ
∗
j ) adheres to both π ′ and π ′′ after h. Clearly, then, when the peers of i change from s−i to 

(Sj (θ
∗
j ), s−i,j ), s′′

i ∈ Si remains a profitable deviation for i from s′
i as claimed.

CASE 2: There is t ∈ T such that h′
t and h′′

t are in different information sets in G. In this case, let 
t �= denote the earliest such t ∈ T . By reaction-proofness, there is h= ∈ {h′

t �= , h′′
t �= } such that for 

each pair π1, π2 ∈ � such that h= ∈ π1 ∩ π2, we have Xi (π1) = Xi (π2). Let π= ∈ {π ′, π ′′} be 
the play that contains h=, and let π∗ ∈ {π ′, π ′′} be the other play.

Let θ∗
j ∈ �j be such that j adheres to π∗ after h according to convention (which exists by the 

Play Lemma). We claim

• Xi (π
h(s′

i , s−i )) = Xi (π
h(s′

i , Sj (θ
∗
j ), s−i,j )), and

• Xi (π
h(s′′

i , s−i )) = Xi (π
h(s′′

i , Sj (θ
∗
j ), s−i,j )).

First, assume that π∗ = π ′. Then h= = h′′
t �= . For the first item, the two plays are equivalent by 

construction of θ∗
j , so we are done. For the second item, if the two plays are distinct, then as any 

member of Sj that leads from h to h′
t �= also leads from h to h′′

t �= , necessarily both πh(s′′
i , s−i )

and πh(s′′
i , Sj (θ

∗
j ), s−i,j ) lead from h to h′′

t �= = h=, so h= ∈ πh(s′′
i , s−i ) ∩πh(s′′

i , Sj (θ
∗
j ), s−i,j ), 

from which the desired conclusion follows immediately.
Second, assume that π∗ = π ′′; then the desired conclusions follow from a symmetric argu-

ment.
Thus in both cases, when the peers of i change from s−i to (Sj (θ

∗
j ), s−i,j ), s′′

i ∈ Si remains a 
profitable deviation for i from s′

i as claimed.

In both Case 1 and Case 2, s′′
i ∈ Si remains a profitable deviation for i from s′

i = Si (θi) as 
claimed. But then repeating the argument, s′′

i ∈ Si remains such a profitable deviation for i from 
the convention when all of his peers play according to the convention, contradicting that (G!, S)

is an ex-post perfect implementation of the rule. �
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Fig. 5. Indispensable conditions. (a) Rich. Consider N = {1, 2}, X1 = X2 = {a, b, c}, �1 = �2 = {abc, cba}, and Fig. 5
(a) with the rule given by the preferential convention. (b) Non-repeating. Consider N = {1}, X1 = {a, b, c}, the types are 
the strict rankings, and Fig. 5 (b) with the rule given by the preferential convention.

3.2. Logical relations

In this section, we consider both the necessity and the indispensability of our hypotheses for 
Theorem 1.

Necessity. A hypothesis is logically necessary (for the conclusion) if and only if it is an impli-
cation of the conclusion. For Theorem 1, strategy-proofness is necessary: an ex-post everywhere-
dominant implementation is an ex-post Nash implementation, and it is well-known that for en-
vironments with private values, each rule with an ex-post Nash implementation is strategy-proof
(see, for example, Bergemann and Morris, 2005). By definition, f -compatibility is necessary. It is 
easy to construct examples showing that the rest of the assumptions (the richness, non-repeating, 
reaction-proof, and preferential requirements) are not necessary. Indeed, we provide sufficient 
conditions for implementation, but do not describe all possible implementations.

Tightness. A hypothesis is indispensable (for the proposition) if and only if when the propo-
sition is modified by dropping this hypothesis, it becomes false.11 For Theorem 1, it is easy to 
construct examples showing that the strategy-proof, preferential, and f -compatible requirements 
are each indispensable. Moreover, menu mechanism G4 (Fig. 2 (b)) establishes that reaction-
proofness is indispensable. Finally, Fig. 5 establishes that the richness and non-repeating re-
quirements are also indispensable. Altogether, all assumptions in Theorem 1 are indispensable, 
so we say the result is tight.

4. Menu mechanisms for group strategy-proof rules

4.1. Result

While Theorem 1 provides conditions that guarantee agents have strong robust incentives 
to adhere to the given convention, agents may also have strong robust incentives to play other 
conventions. For example, in Fig. 3 (a), there are four conventions, and each of them specifies 
an everywhere-dominant strategy equilibrium for each type profile, but only one is compatible 

11 To avoid confusion: for hypotheses Hi and conclusion C, consider a proposition with the format (H1 and H2 and 
...) together imply C. If a hypothesis is necessary, then it is indispensable if and only if it is not implied by the other 
hypotheses, and therefore tightness (all hypotheses are indispensable) and logical independence of hypotheses are syn-
onymous for axiomatic characterizations (where all hypotheses are necessary). In general, however, it is stronger to state 
that a hypothesis is indispensable than to state that it is not implied by the other hypotheses.
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with the rule. In this section, we investigate when menu mechanisms provide double everywhere-
dominant implementation, and thus are further robust to which equilibrium occurs.

As in the previous section, we begin by investigating menu mechanisms for which all ac-
tions are observable. In particular, we provide conditions under which a public menu mechanism 
provides a double subgame perfect implementation:

Proposition 2. For each rich and strict environment, each group strategy-proof rule, each non-
repeating public menu mechanism, and each preferential convention that is compatible with the 
rule, the public menu mechanism is both an ex-post perfect implementation of the rule via the 
convention and a full subgame perfect implementation of the rule.

The formal proof is in Appendix F, and involves the same lemmas as the proof of Proposi-
tion 1. We sketch the arguments below:

Proof sketch. We take an arbitrary type profile θ ∈ �, an arbitrary subgame perfect equilibrium 
s∗ ∈ SPE(G, R(θ)), and define sθ ≡ S(θ). By Proposition 1, we have that sθ ∈ SPE(G, R(θ))

and X (sθ ) = f (θ). Thus to complete the proof, we need only show that X (sθ) = X (s∗).
To do so, we first apply a result from the literature to deduce that our rule satisfies non-

bossiness (Pápai, 2000 and Takamiya, 2001; see Section 4.2). We then proceed by backwards 
induction, iteratively showing that the two equilibria lead to the same outcome from histories 
earlier and earlier in the game tree until we conclude that they lead to the same equilibrium from 
the initial history. The inductive argument involves an agent i contemplating the choice between 
h∗ (as prescribed by s∗) and hθ (as prescribed by sθ ), where by induction the equilibrium out-
comes agree for both h∗ and hθ . To prove that the outcomes agree whether (i) i selects h∗ and 
then all play according to s∗; or (ii) i selects hθ and then all play according to sθ ; we use the 
Play Lemma, the Continuation Lemma, strictness,12 and non-bossiness. �

Taken together, Proposition 1 and Proposition 2 show that public menu mechanisms provide 
an interesting alternative to direct mechanisms. Though public menu mechanisms only imple-
ment desired outcomes in terms of subgame perfect equilibrium—which means that if agents 
do not believe that their peers will conform to the convention, or at least pursue their own best 
interest, then undesirable outcomes can occur—they have the advantage that they do not require 
all information to be transmitted by the agents. By contrast, direct mechanisms do not require 
agents to have faith in the rationality of their peers, but they do require the agents to transmit all 
private information.

Our second theorem states that if we take the hypotheses for Proposition 2 and then replace the 
requirement that all actions are observable with reaction-proofness, then the resulting hypotheses 
guarantee double everywhere-dominant implementation:

Theorem 2. For each rich and strict environment, each group strategy-proof rule, each non-
repeating and reaction-proof menu mechanism, and each preferential convention that is compat-
ible with the rule, the menu mechanism is both an ex-post everywhere-dominant implementation 
of the rule via the convention and a full everywhere-dominant implementation of the rule.

12 Alternatively, strictness can be removed if non-bossiness is strengthened to non-bossiness in welfare/outcome
(Schummer and Velez, 2021), which can be easily verified with our proof.
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Proof. By Theorem 1, we have an ex-post everywhere-dominant implementation via S. Assume, 
by way of contradiction, we do not have a full everywhere-dominant implementation. Then there 
are θ ∈ � and s ∈ EDE(G, R(θ)) such that X (S(θ)) �= X (s).

We claim that both S(θ) and s are subgame perfect equilibria in the associated public menu 
mechanism game. Indeed, if not, then for one of these strategy profiles s∗, there is a history h
where the player i has a profitable deviation s′

i . By the Play Lemma, there is a type θ ′
i ∈ �i such 

that Si (θ
′
i ) adheres to πh(s′

i , s
∗−i ). But since S is preferential, thus Si (θ

′
i ) is a strategy in the 

reaction-proof menu mechanism, so i has a profitable deviation from s∗ at h, contradicting that 
s∗ is an everywhere-dominant strategy equilibrium in the reaction-proof menu mechanism game.

Altogether, then, since S(θ) and s are both subgame perfect equilibria in the associated 
public menu mechanism game, thus by Proposition 2, X (S(θ)) = X (s), contradicting that 
X (S(θ)) �= X (s). �

Taken together, Theorem 1 and Theorem 2 show that reaction-proof menu mechanisms pro-
vide a particularly interesting alternative to direct mechanisms: while neither requires agents to 
have faith in the rationality of their peers, the former moreover only requires a limited amount of 
information to be transmitted by the agents.

4.2. Logical relations

In this section, we consider both the necessity and the indispensability of our hypotheses for 
Theorem 2. In order to do so, we first separate group strategy-proofness from strategy-proofness
using a result from the literature, which fruitfully also allows us to relate our result to the classic 
literature on Nash implementation. Recall the following two standard conditions for rules:

Definition. Additional properties for rules. Fix an environment and a rule f . For each i ∈ N , 
each θi ∈ �i , and each x ∈ X, define the lower counter set of i for x given θi , LCSi(x|θi) ≡
{x′ ∈ X|x Ri(θi) x′}. We say that

• f is Maskin monotonic if and only if for each pair θ, θ ′ ∈ � such that for each i ∈ N , 
LCSi(f (θ)|θi) ⊆ LCSi(f (θ)|θ ′

i ), we have f (θ) = f (θ ′); and
• f is non-bossy if and only if for each θ ∈ �, each i ∈ N , and each θ ′

i ∈ �i , fi(θ) =
fi(θ

′
i , θ−i ) implies f (θ) = f (θ ′

i , θ−i ).

Maskin monotonicity is the classic necessary condition for full Nash implementation (Maskin, 
1999), while non-bossiness requires that if an agent does not change his own assignment when 
he changes his report, then he does not change anybody’s assignment (Satterthwaite and Sonnen-
schein, 1981).13 As established in the literature, there are strong logical relationships between 
these properties:

13 We remark that we use the original version of non-bossiness; see Thomson (2016) for a discussion of variants and 
their normative content.
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Theorem PT (Pápai, 2000; Takamiya, 2001). 14 For each rich and strict environment, and for 
each rule, the following are equivalent:

• the rule is group strategy-proof,
• the rule is strategy-proof and non-bossy, and
• the rule is Maskin monotonic.

This immediately yields two corollaries. To complete their proofs, first observe that for each 
rich and strict environment, and for each rule, there is a non-repeating and reaction-proof menu 
mechanism with a preferential convention that is compatible with the rule: simply consider any 
private menu mechanism that imitates the direct mechanism. It follows directly from this obser-
vation, the classic theorem that Maskin monotonicity is necessary for full Nash implementation 
(Maskin, 1999), Theorem 2, and Theorem PT, that:

Corollary 2.1. For each rich and strict environment, if a rule has a full Nash implementation, 
then there is a menu mechanism that is both an ex-post everywhere-dominant implementation of 
the rule via a preferential convention and a full everywhere-dominant implementation of the rule.

Corollary 2.2. For each rich and strict environment, each strategy-proof and non-bossy rule, 
each non-repeating and reaction-proof menu mechanism, and each preferential convention that 
is compatible with the rule, the menu mechanism is both an ex-post everywhere-dominant imple-
mentation of the rule via the convention and a full everywhere-dominant implementation of the 
rule.

Altogether, Corollary 2.1 provides a useful link between the classic literature on Nash im-
plementation and everywhere-dominant implementation via menu mechanisms, while Corol-
lary 2.215 allows us to more clearly investigate the logical relationships of our hypotheses and 
conclusions:

Necessity. For Corollary 2.2, it is easy to see that for each assumption that appears in Theo-
rem 1, necessity is the same across the two results. It is also easy to show that strictness is not 
necessary, and recent work suggests it may be particularly interesting to investigate the relax-
ation of our domain restrictions in future work.16 Finally, non-bossiness is not necessary (Fig. 6). 

14 Both Pápai (2000) and Takamiya (2001) prove the equivalence of the first and second items, while Takamiya (2001)
proves the equivalence of the first and third. Both papers involve models with additional structure, but these particular 
proofs apply directly to our model.
15 We remark that because Corollary 2.2 involves non-bossiness and a unique subgame perfect equilibrium outcome, 
it is conceptually related to Schummer and Velez (2021). In particular, Schummer and Velez (2021) consider sequential 
equilibria of imperfect information games where agents sequentially reveal preferences, and then outcomes are given 
by strategy-proof and non-bossy rules; they provide sufficient conditions on the prior guaranteeing that all sequential 
equilibria are welfare-equivalent to truth-telling, which is itself a sequential equilibrium. Interestingly, they observe that 
their work is also related to Marx and Swinkels (1997), who prove that a version of non-bossiness for normal form games 
guarantees that the order of elimination of weakly dominated strategies does not matter.
16 In particular, for (a discrete version of) the division problem with single-peaked preferences (Sprumont, 1991), 
richness and strictness are violated, but each sequential allotment rule (Barberà et al., 1997) has a double everywhere-
dominant implementation through a menu mechanism with a preferential convention (Arribillaga et al., 2021). Incredibly, 
these implementations are moreover “everywhere obviously dominant.”
24



A. Mackenzie and Y. Zhou Journal of Economic Theory 204 (2022) 105511
Fig. 6. Double everywhere-dominant implementation without non-bossiness. Consider N = {1, 2}, X1 = X2 = {∅, 3, 6}, 
�1 = �2 = {∅36, 3∅6, 36∅}, and Fig. 6 with the rule given by the preferential convention. Note that we can interpret 
this as an English auction with strictness: ∅ is losing and paying nothing, 3 is winning and paying 3, 6 is winning and 
paying 6, and the admissible valuations are the non-integer reals.

Altogether, while Corollary 2.2 provides sufficient conditions for double everywhere-dominant 
implementation, there are interesting examples of these implementations that violate our condi-
tions.

Tightness. As with Theorem 1, it is easy to construct examples showing the indispensability 
of all assumptions for Corollary 2.2 except reaction-proofness, richness, and the non-repeating
requirement. Moreover, for these three assumptions, the examples we used for Theorem 1 all sat-
isfy strictness and non-bossiness, and therefore still apply. Altogether, Corollary 2.2 is tight: we 
cannot modify the result to cover new double everywhere-dominant implementations by simply 
dropping some of our requirements.

5. Discussion

We have thus far highlighted how our model, assumptions, and results apply to our simple 
illustrative example—serial dictatorship for object allocation—but our results are far more gen-
eral. Even for object allocation, our strongest conclusions apply to non-trivial menu mechanisms 
(that is, menu mechanisms that do not simply imitate the direct mechanism) for the full class of 
group strategy-proof and efficient rules. More generally, our results apply to matching with con-
tracts, labor markets, auctions with unit demand and strictness, school choice, and two-candidate 
elections. We summarize the key implications of our results for these settings in Table 2, and 
provide details in Appendix G.

We emphasize that for our two-sided matching applications—doctor to hospital, worker to 
firm, buyer to seller, and student to school—our model fixes one side as strategic and the other as 
non-strategic, with the preferences of the non-strategic side reflected in the rule. Moreover, when 
the matching is many-to-one, the side whose members can only have a single match should be the 
strategic side. For example, for school choice, the agents are the students, while the preferences 
of the non-strategic schools and the deferred acceptance algorithm together define the rule.

Importantly, this modeling approach does not actually require us to assume that the other side 
is never strategic; it simply requires us to assume that the other side is no longer strategic when 
our analysis begins. For example, consider a school choice environment that is organized by a 
private menu mechanism based on deferred acceptance, where the students and schools each 
download an app on an electronic device. Suppose that the schools first strategically report their 
complete preference information, then the students play a private menu mechanism derived from 
the algorithm and these reports. From the perspective of the students, we can model this as a 
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Table 2
Applications of main results. In each row, we specify a class of environments. Moreover, for each of these environments, 
we specify an example: formally, a class of rules, each with an associated private menu mechanism and preferential
convention (see Appendix G for details). For each of our hypotheses, a + means that the property is always satisfied 
while a − means that the property is sometimes violated. In the final column, XPED means that we always have ex-post 
everywhere-dominant implementation while 2ED means that we always have double everywhere-dominant implementa-
tion. Note that while we cannot directly apply either of our main results to labor markets or auctions due to violations of 
richness, we are able to apply Theorem 1 to matching with contracts and then prune the menu mechanism accordingly 
(see Appendix G for details).
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Conclusion

Matching with contracts Cumulative offers process + + + − + + + + XPED
Labor markets Salary adjustment process − + + − + + + + XPEDa

Auctions with unit demand Crawford-Knoer auction − + + − + + + + XPEDa
and strictness (such as English auction)

School choice Deferred acceptance + + + − + + + + XPED

Object allocation
Trading cycles + + + + + + + + 2ED
(such as top trading cycles)

Two-candidate elections Voting by committees + + + + + + + + 2ED

a Conclusion does not follow from direct application of theorem; see caption.

game where (i) nature selects a school preference profile (with an associated rule) and a student 
preference profile, and then (ii) the students play a private menu mechanism for the selected 
rule. Even if we model this game using the thickest information sets compatible with perfect 
recall—so that a student does not even know which rule is being implemented!—everywhere-
dominance of the preferential convention is preserved from our result for the case where the rule 
is known. Indeed, each student’s type-strategy only requires him to know his own preferences, 
and is everywhere-dominant across all private menu mechanisms that nature might select.

We can continue along this line of reasoning to see that everywhere-dominance holds in games 
with extremely limited information. Continuing with the above example, a fixed environment 
and rule are associated with multiple private menu mechanisms derived from the deferred ac-
ceptance algorithm that differ only in the order in which agents play; everywhere-dominance 
holds no matter how nature selects among these private menu mechanisms. Moreover, for a 
given student, everywhere-dominance holds across these private menu mechanisms not only 
for the current environment, but for all environments that include that student. It follows that 
everywhere-dominance holds for a student participating in a school choice environment orga-
nized by a deferred acceptance app even when he does not know (i) the number of other students 
in the school choice environment, let alone their identities or preferences, (ii) the order in which 
he and any other students may play, or (iii) the preferences of the schools. Analogous remarks 
apply for our other examples, such as online auctions where sellers strategically post their reser-
vation prices and then the private menu mechanism is played by buyers who do not even know 
the number of other buyers.
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Appendix A. Definition of mechanism

In this appendix, we formally define mechanisms:

Definition. Fix an environment. A mechanism is a tuple G = (H, �, P , A, α, (Ii )i∈N, X ) such 
that the following hold:

• H is the set of histories and � is the partial order on H representing precedence. We require 
that (H, �) is a meet-semilattice tree.17 For each h ∈ H , we let σ(h) denote the set of 
immediate successors of h. A play is a maximal chain, which gives a complete description 
of a sequence of choices; we write π for a play and � for the set of plays. A terminal history
is a history with no successor; we write z for a terminal history and Z for the set of terminal 
histories.

• P : H\Z → N is the player function, which associates each non-terminal history with the 
agent who selects an action at that history. For each i ∈ N , we let Hi ≡ {h ∈ H\Z|P (h) = i}
denote the histories that belong to i.

• A is the set of actions and α : ∪H\Zσ(h) → A is the action function, which at each non-
terminal history h associates each immediate successor h′ ∈ σ(h) with the action taken to 
reach it. We require that at any non-terminal history, each available action determines a 
unique next history: for each h ∈ H\Z and each pair h′, h′′ ∈ σ(h), α(h′) �= α(h′′). For each 
non-terminal history h, we let A(h) ≡ {α(h′)|h′ ∈ σ(h)} denote the actions available at h.
For each i ∈ N , each h ∈ Hi , and each π ∈ � such that h ∈ π , we let αh(π) denote the action 
taken at h to remain on π . Similarly, for each i ∈ N , each h ∈ Hi , and each h′ ∈ H such that 
h ≺ h′, we let αh(h′) denote the action taken at h to continue toward h′. It is straightforward 
to show that both αh(π) and αh(h′) are well-defined.

• For each i ∈ N , Ii is the information partition for i, which specifies the information sets
partitioning Hi . We require that for each pair h, h′ in the same information set Ii , the same 
actions are available: A(h) = A(h′). We write A(Ii ) for the actions A(h) available at each 
history h ∈ Ii . Across all histories in a given information set Ii , i must behave the same 
way.

• X : � → X is the outcome function, which associates each play with an outcome.

For convenience, whenever we refer to a generic mechanism we implicitly assume all of this 
notation.

Appendix B. Details about privacy

In this appendix, we introduce a method for comparing the relative informativeness of two 
implementations, formally observe that menu mechanisms can improve upon the privacy of direct 
mechanisms, and compare our privacy notion to others in the literature.

17 These conditions guarantee that choices always determine a unique maximal chain, guarantee that there is a unique 
initial history which precedes all others, and allow an action to be viewed as selecting an immediate successor. For details 
about these order-theoretic concepts (meet-semilattice, tree, successor, immediate successor, and maximal chain) in the 
context of extensive game forms, see Alós-Ferrer and Ritzberger (2016) and Mackenzie (2020).
27



A. Mackenzie and Y. Zhou Journal of Economic Theory 204 (2022) 105511
For intuition, suppose that an observer is (i) interested in the collective private information of 
the agents, and (ii) able to observe all actions taken by the agents.18 Moreover, suppose that the 
observer assumes that all agents follow the convention, so that after observing play π he infers 
that the type profile belongs to {θ ∈ �|π(S(θ)) = π}. In this case, the informativeness of an 
implementation (G, S) is given by its partition of �, {θ ∈ �|π(S(θ)) = π}π∈�.19

When comparing two implementations, we simply compare the coarseness of their partitions, 
in which case plays can be interpreted as messages that are compared using the relative informa-
tiveness order of Segal (2007), and mechanisms can interpreted as experiments that are compared 
using the Blackwell order (Blackwell, 1951)20:

Definition. Relative informativeness. Fix an environment. Let (G, S) and (G∗, S∗) each be a 
mechanism with an associated convention, let π specify plays in G given strategy profiles in G, 
and let π∗ specify plays in G∗ given strategy profiles in G∗. We say that (G, S) is at least as 
informative as (G∗, S∗) if and only if for each θ ∈ �, we have

{θ ′ ∈ �|π(S(θ ′)) = π(S(θ))} ⊆ {θ ′ ∈ �|π∗(S∗(θ ′)) = π∗(S∗(θ))}.
In this case, we sometimes say that (G∗, S∗) weakly improves upon the privacy of (G, S).

Using this notion, we can formally observe that menu mechanisms generally improve upon 
the privacy of direct mechanisms, and moreover can provide optimal privacy:

Observation. Fix an environment, a rule f , a menu mechanism G, and an f -compatible con-
vention S. Then

• {θ ∈ �|π(S(θ)) = π}π∈� is weakly coarser than {θ}θ∈�, which is achieved by the direct 
mechanism with the honesty convention, and

• {θ ∈ �|π(S(θ)) = π}π∈� is weakly finer than {f −1(x)}x∈f (X).

Moreover, if we have an object allocation environment, f is serial dictatorship, G is an associated 
menu mechanism derived from the rule’s algorithm, and S is the preferential convention (see Ap-
pendix G), then {θ ∈ �|π(S(θ)) = π}π∈� = {f −1(x)}x∈f (X). By Corollary G.4, (G, S) is both 
an ex-post everywhere-dominant implementation and full everywhere-dominant implementation 
of f , and by the second item above, (G, S) is minimally informative among all implementations 
of f .

Our observation that menu mechanisms generally offer better privacy than direct mechanisms 
formalizes simple intuition. For example, in an English auction, the winner only needs to reveal 
that his valuation is higher than the final price, but does not need to reveal more beyond that; 
indeed, this has been recognized as one of the practical merits of English auctions over direct 

18 There are many natural variants that we could also consider; for example, the observer only observes the final out-
come.
19 When S is f -compatible, it is well-known that this partitions � into “f -monochromatic rectangles” (Kushilevitz 
and Nisan, 1997).
20 A Blackwell experiment is a function that associates each unknown state with a probability distribution over signals. 
In our model, type profiles are states, plays are signals, and each state θ surely yields the signal π(S(θ)).
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mechanisms (Rothkopf et al., 1990). We leave the general investigation of optimal privacy for 
future work.

To conclude this appendix, we compare our notion of privacy to several related notions from 
the literature. First, communication complexity, or the worst-case volume of bits that must be 
exchanged (Yao, 1979; Kushilevitz and Nisan, 1997), has been investigated for (i) calculating an 
optimal outcome when agents are honest, with or without the assistance of an omniscient oracle 
such as a Walrasian auctioneer (Segal, 2007), (ii) ex-post Nash implementation and Bayesian-
Nash implementation (Fadel and Segal, 2009), and (iii) Nash implementation when each agent 
knows the entire type profile (Segal, 2010). At a high level, these papers establish that under 
some assumptions, providing incentives increases communication costs while using dynamic 
mechanisms reduces communication costs. Conceptually, we make a similar point—we argue 
that menu mechanisms use less information than direct mechanisms—but we do not formalize 
this with communication complexity because (i) from a privacy perspective, two bits may not be 
equal, and (ii) the worst-case analysis may fail to recognize the improvements of menu mecha-
nisms in most cases.21 Second, we remark that other interesting notions of privacy that are less 
closely related to ours have also been considered. For example, in the Bayesian tradition, Eliaz 
et al. (2021) consider a notion of privacy based on the difference between the planner’s prior 
and posterior. As another example, agents whose preferences are sensitive to privacy concerns 
have been investigated, both in games and in implementation (Gradwohl and Smorodinsky, 2017; 
Gradwohl, 2018). Finally, Milgrom and Segal (2020) propose unconditional winner privacy in 
the context of auctions, and also discuss other privacy notions in the computer science literature 
where cryptography technology is taken into account.

Appendix C. Proofs of Cycle and Path Lemmas

In this appendix, we provide two lemmas about revealed preference theory (the Cycle Lemma
and the Path Lemma) that are useful for studying public menu mechanisms.

In particular, some of our arguments involve fixing an agent’s choices at some histories—for 
example, so that the agent always chooses to remain on a given play—and then establishing 
that the convention specifies these choices for some type. When the environment is rich and the 
convention is preferential, this is equivalent to establishing that the choices are rationalizable by 
a strict preference relation; we therefore begin this appendix by abstracting from other features 
of our model to focus on menus and choices:

Definition. A choice space is a tuple (A, M, C), where

• A is a finite set of alternatives,
• M ⊆ 2A is a nonempty collection of menus, and
• C : M → A is a choice function such that for each M ∈M, C(M) ∈ M .

We let PA denote the set of strict preference relations on A.
For each pair a, b ∈ A, we say that a is revealed preferred to b by C, written a �C b, if and 

only if there is M ∈M such that a, b ∈ M and C(M) = a. A list (a1, a2, ..., ak) ∈ ∪κ∈N\{1}Aκ is 

21 For example, the worst case in a deferred acceptance menu mechanism may involve each agent revealing his full 
preference ranking, though in most cases considerably less information is revealed.
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a C-path (from a1 to ak) if and only if for each t ∈ {1, 2, ..., k − 1}, at �C at+1, and is moreover 
a C-cycle (from a1 to a1) if and only if ak = a1.22

Finally, we say that C is rationalizable (by a strict preference relation) if and only if there is 
P ∈ PA such that for each M ∈ M, C(M) = argmaxP M ; in this case, we say that P rationalizes 
C. We let PC ⊆ PA denote the set of members of PA that rationalize C.

Our first lemma, which is a standard result, provides a necessary and sufficient condition for 
rationalizability. When applied to public menu mechanisms (under appropriate conditions), this 
lemma allows us to establish that certain choices made by an agent at some of his histories are 
specified by the convention for some type:

Cycle Lemma. For each choice space (A, M, C), there are no C-cycles if and only if C is ratio-
nalizable.

The Cycle Lemma follows easily from Szpilrajn’s Theorem, which states that every strict 
partial order can be extended to a linear order (Szpilrajn, 1930; see also Chambers and Echenique, 
2016); we therefore omit its proof.

Our second lemma applies to public menu mechanisms (under appropriate conditions) when 
certain choices made by an agent are only specified by the convention for types that rank some 
assignment a over another assignment b. In this case, the lemma allows us to conclude that these 
choices yield a path from a to b:

Path Lemma. Let (A, M, C) be a choice space such that C is rationalizable. For each pair 
a, b ∈ A, there is a C-path from a to b if and only if for each P ∈PC , we have a P b.

Proof. Let (A, M, C) satisfy the hypotheses; we prove the parts in sequence.

[⇒] Assume there is a C-path from a to b, (a1, a2, ..., ak) ∈ ∪κ∈N\{1}Aκ , and let P ∈ PC . It 
follows by definition that for each t ∈ {1, 2, ..., k − 1}, we have at P at+1; thus by transitivity, 
a = a1 P ak = b, as desired.

[⇐] We prove the contrapositive; assume there is no C-path from a to b. Because C is rational-
izable, there is P ∈ PC . If {a, b} ∈ M, then since there is no C-path from a to b, thus we have 
C({a, b}) = b, so b P a and we are done; thus let us assume {a, b} /∈M. Define M∗ ≡ M ∪{a, b}
and define C∗ :M∗ → A by (i) C∗({a, b}) ≡ b, and (ii) for each M ∈ M, C∗(M) ≡ C(M).

Assume, by way of contradiction, there is a C∗-cycle (a1, a2, ..., ak) ∈ ∪κ∈N\{1}Aκ . Since C
is rationalizable, thus by the Cycle Lemma there are no C-cycles, so in particular (a1, a2, ..., ak)

is not a C-cycle; thus there is t ∈ {1, 2, ..., k − 1} such that at = b and at+1 = a. Using the 
members of (a1, a2, ..., ak), we can construct a C∗-cycle from a to a, (a′

1, a
′
2, ..., a

′
k′), such that 

(i) for each t ∈ {2, 3, ..., k′ − 1}, a′
t �= a, and (ii) a′

k′−1 = b. For each t ∈ {1, 2, ..., k′ − 2}, a′
t �C∗

a′
t+1 and (a′

t , a
′
t+1) �= (b, a), so a′

t �C a′
t+1; but then (a′

1, a
′
2, ..., a

′
k′−1) is a C-path from a to b, 

contradicting that there is no C-path from a to b.

22 To avoid confusion, it is standard in graph theory to require that the members of a path be distinct, and also to require 
that a cycle has k ≥ 3 members whose first k − 1 members are distinct. These additional requirements have no impact on 
our arguments, so we omit them for simplicity.
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Since there are no C∗-cycles, thus by the Cycle Lemma C∗ is rationalizable, so there is P ∗ ∈
PC∗ . By construction of C∗, b P ∗ a. Clearly PC∗ ⊆ PC , so P ∗ ∈PC , as desired. �
Appendix D. Proofs of Play and Continuation Lemmas

In this appendix, we use the Cycle Lemma to provide two lemmas about public menu mecha-
nisms (the Play Lemma and the Continuation Lemma), both of which are used in both proofs of 
our main results.

The first lemma provides conditions guaranteeing that for each play, each agent has a type for 
which the convention requires he always remain on the play:

Play Lemma. Fix a rich environment, a non-repeating public menu mechanism, and a preferen-
tial convention. For each π ∈ � and each i ∈ N , there is θi ∈ �i such that for each h ∈ Hi ∩ π , 
[Si (θi)](h) = αh(π).

Proof. Let π ∈ � and let i ∈ N . To begin, we first show that i reveals no cycles along π . Indeed, 
define the choice space (Xi, M, C) by:

• M ≡ {Xi(h)|h ∈ Hi ∩ π}; and
• for each h ∈ Hi ∩ π , C(Xi(h)) ≡ αh(π).

We claim there is no C-cycle.
Assume, by way of contradiction, there is a C-cycle (a1, a2, ..., ak) ∈ ∪κ∈N\{1}Xκ

i . For each 
t ∈ {1, 2, ..., k − 1}, at �C at+1, so there is ht ∈ Hi ∩ π such that at , at+1 ∈ Xi(ht ) and 
C(Xi(ht )) = at . Since {ht } ⊆ π , thus {ht } has a member h≺ which precedes the others. We 
consider the two cases for non-repeating:

CASE 1: i has non-repeating choices. Since a1 = ak , thus there is t∗ ∈ {1, 2, ..., k − 1} such 
that C(Xi(h≺)) = at∗+1. Since C(Xi(ht∗)) = at∗ �= at∗+1, thus h≺ �= ht∗ , so h≺ ≺ ht∗ . But then 
at∗+1 ∈ {αh≺(ht∗)} ∩ Xi(ht∗), contradicting that i has non-repeating choices.

CASE 2: i has non-repeating rejections. Since a1 = ak , thus there is t∗ ∈ {1, 2, ..., k −1} such that 
at∗+1 ∈ Xi(h≺)\{C(Xi(h≺))}. Since C(Xi(ht∗+1)) = at∗+1, thus h≺ �= ht∗+1, so h≺ ≺ ht∗+1. 
But then at∗+1 ∈ (Xi(h≺)\{αh≺(ht∗+1)}) ∩ Xi(ht∗+1), contradicting that i has non-repeating 
rejections.

Since there are no C-cycles, thus by the Cycle Lemma C is rationalizable, so there is P ∈PC . 
Since the environment is rich, thus there is θi ∈ �i such that Ri(θi)= P . Since Ri(θi) is strict 
(and therefore requires no tie-breaking), thus for each h ∈ Hi ∩ π , we have

[Si (θi)](h) = argmaxRi(θi )
Xi(h) as S is preferential and Ri(θi) is strict

= argmaxP Xi(h) by construction of θi

= C(Xi(h)) as P ∈PC

= αh(π) by construction of C,

as desired. �
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The second lemma involves continuation strategies:

Definition. Fix an environment and a public menu mechanism. For each h ∈ H , each i ∈ N , 
and each si ∈ Si , define si�h to be restriction of si to {h′ ∈ Hi |h′ � h}; we refer to this as a 
continuation strategy (at h for i).

In particular, for each history, each agent, and each type, the convention specifies a contin-
uation strategy. The second lemma provides conditions guaranteeing that there is a type that 
requires the agent to (i) continue toward the given history whenever possible, and (ii) conform to 
the specified continuation strategy whenever possible:

Continuation Lemma. Fix a rich environment, a non-repeating public menu mechanism, and a 
preferential convention. For each h ∈ H , each i ∈ N , and each θi ∈ �i , there is θ∗

i ∈ �i such 
that

(i) for each h′ ∈ Hi such that h′ ≺ h, we have [Si (θ
∗
i )](h′) = αh′

(h); and
(ii) Si (θ

∗
i )�h = Si (θi)�h.

Proof. Let h ∈ H , let i ∈ N , and let θi ∈ �i . If {h′ ∈ Hi |h′ ≺ h} = ∅ then we are done; thus let 
us assume {h′ ∈ Hi |h′ ≺ h} �= ∅. Define H� ⊆ Hi and the choice space (Xi, M�, C�) by:

• H� ≡ {h′ ∈ Hi |h′ � h};
• M� ≡ {Xi(h

′)}h′∈H� ; and

• for each h′ ∈ H�, C�(Xi(h
′)) ≡ [Si (θi)](h′).

Define H≺ ⊆ Hi and the choice space (Xi, M, C) by:

• H≺ ≡ {h′ ∈ Hi |h′ ≺ h};
• M ≡ {Xi(h

′)}h′∈H≺∪H� ; and

• for each h′ ∈ H≺, C(Xi(h
′)) ≡ αh′

(h); and for each h′ ∈ H�, C(Xi(h
′)) ≡ [Si (θi)](h′).

Observe that for each h′ ∈ H�, C(Xi(h
′)) = C�(Xi(h

′)).
First, we claim there are no C�-cycles. Indeed, since S is preferential, thus there is Pθi

∈
Pi such that for each h′ ∈ Hi , [Si (θi)](h′) = argmaxPθi

Xi(h
′); this Pθi

is easily constructed 
from Ri(θi) and the tie-breaker τi(θi). Since Pθi

∈ PC� , thus C� is rationalizable, so by the 
Cycle Lemma there are no C�-cycles.

Second, we claim there are no C-cycles. Indeed, assume, by way of contradiction, there is 
a C-cycle (a1, a2, ..., ak) ∈ ∪κ∈N\{1}Xκ

i . For each t ∈ {1, 2, ..., k − 1}, at �C at+1, so there is 
ht ∈ H≺ ∪ H� such that at , at+1 ∈ Xi(ht ) and C(Xi(ht )) = at . Because there are no C�-cycles, 
thus there is t∗ ∈ {1, 2, ..., k − 1} such that ht∗ ∈ H≺; it follows that {ht } has a member h≺
which precedes the others, and that for each h′ ∈ {ht }\{h≺}, C(Xi(h≺)) = αh≺(h′). From here, 
the two-case argument about non-repeating from the proof of the Play Lemma establishes the 
contradiction.

Since there are no C-cycles, thus by the Cycle Lemma C is rationalizable, so there is P ∈PC . 
Since the environment is rich, thus there is θ∗

i ∈ �i such that Ri(θ
∗
i ) = P . For each h′ ∈ H≺ ∪

H�,
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[Si (θ
∗
i )](h′) = argmaxRi(θ

∗
i )Xi(h

′) as S is preferential and Ri(θ
∗
i ) is strict

= argmaxP Xi(h
′) by construction of θ∗

i

= C(Xi(h
′)) as P ∈ PC .

Thus by construction of C,
(i) for each h′ ∈ Hi such that h′ ≺ h, we have [Si(θ

∗
i )](h′) = αh′

(h); and
(ii) for each h′ ∈ H�, [Si (θ

∗
i )](h′) = [Si (θi)](h′), so Si (θ

∗
i )�h = Si (θi)�h.

Since h ∈ H , i ∈ N , and θi ∈ �i were arbitrary, we are done. �
Appendix E. Proof of Proposition 1

In this appendix, we prove Proposition 1, then observe that the result does not hold if we 
weaken non-repeating in a natural way or weaken preferential in a natural way (Fig. 7).

Proposition 1. For each rich environment, each strategy-proof rule, each non-repeating public 
menu mechanism, and each preferential convention that is compatible with the rule, the public 
menu mechanism is an ex-post perfect implementation of the rule via the convention.

Proof. Let θ ∈ �, let i ∈ N , let h ∈ Hi , and let si ∈ Si . Define a, b ∈ Xi by

a ≡ X h
i (S(θ)), and

b ≡ X h
i (si ,S−i (θ−i )).

We want to show a Ri(θi) b. If a = b then we are done, so assume a �= b.
Define πa ≡ πh(S(θ)), define πb ≡ πh(si, S−i (θ−i )), and define H≺ ≡ {h′ ∈ Hi |h′ ≺ h}. 

Define the choice space (Xi, Ma, Ca) by:

• Ma ≡ {Xi(h
′)}h′∈Hi∩πa

; and
• for each h′ ∈ Hi ∩ πa , Ca(Xi(h

′)) ≡ αh′
(πa).

Define the choice space (Xi, Mb, Cb) by:

• Mb ≡ {Xi(h
′)}h′∈Hi∩πb

; and
• for each h′ ∈ Hi ∩ πb , Cb(Xi(h

′)) ≡ αh′
(πb).

By the argument used in the proof of the Play Lemma, both Ca and Cb are rationalizable.
Let Pa ∈PCa

and let Pb ∈PCb
. Since the environment is rich, thus there are θa

i , θb
i ∈ �i such 

that Ri(θ
a
i )= Pa and Ri(θ

b
i )= Pb . By the Continuation Lemma, for each j ∈ N\{i}, there is 

θ∗
j ∈ �j such that

(i) for each h′ ∈ Hj such that h′ ≺ h, we have [Sj (θ
∗
j )](h′) = αh′

(h); and
(ii) Sj (θ

∗
j )�h = Sj (θj )�h.

Since S is preferential, thus by construction, πa = π(S(θa
i , θ∗−i )) and πb = π(S(θb

i , θ∗−i )), so 
by f -compatibility, a = Xi (S(θa

i , θ∗−i )) = fi(θ
a
i , θ∗−i ) and b = Xi (S(θb

i , θ∗−i )) = fi(θ
b
i , θ∗−i ). By 

strategy-proofness,

a = fi(θ
a, θ∗ )
i −i
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Ri(θ
a
i ) fi(θ

b
i , θ∗−i )

= b,

so a Pa b. By a symmetric argument, b Pb a. Since Pa ∈ PCa
and Pb ∈ PCb

were arbitrary, 
thus by the Path Lemma, there are (i) a Ca-path from a to b, (a1, a2, ..., ak) ∈ ∪κ∈N\{1}Xκ

i , 
and (ii) a Cb-path from b to a, (b1, b2, ..., bk′) ∈ ∪κ∈N\{1}Xκ

i . For each t ∈ {1, 2, ..., k − 1}, 
at �Ca at+1, so there is ha

t ∈ Hi ∩πa such that at , at+1 ∈ Xi(h
a
t ) and Ca(Xi(h

a
t )) = at . Similarly, 

for each t ∈ {1, 2, ..., k′ − 1}, bt �Cb bt+1, so there is hb
t ∈ Hi ∩ πb such that bt , bt+1 ∈ Xi(h

b
t )

and Cb(Xi(h
b
t )) = bt .

Assume, by way of contradiction, {ha
t } ∩ H≺ �= ∅. Since {ha

t } ⊆ πa , thus it has a member ha≺
which precedes the others. We consider the two cases for non-repeating:

CASE 1: i has non-repeating choices. It must be that ha≺ = ha
1; else there is t ∈ {1, 2, ..., k − 1}

such that (i) ha≺ ≺ ha
t , and (ii) the assignment that is chosen by Ca at Xi(h

a≺) is rejected by Ca

at Xi(h
a
t ), contradicting that i has non-repeating choices. By the same argument, hb

1 precedes 
the others in {hb

t }. Since {ha
t } ∩ H≺ �= ∅, thus ha

1 ∈ H≺, so ha
1 ∈ πb and a = αha

1 (πb). Since 

a �= α
hb

k′−1(πb), thus ha
1 �= hb

k′−1, so either ha
1 ≺ hb

k′−1 or hb
k′−1 ≺ ha

1. Since i has non-repeating 
choices, thus hb

k′−1 ≺ ha
1 , so hb

1 � hb
k′−1 ≺ ha

1 . But then {hb
t } ∩ H≺ �= ∅, so by a symmetric 

argument, ha
1 ≺ hb

1, contradicting that hb
1 ≺ ha

1.

CASE 2: i has non-repeating rejections. It must be that ha≺ = ha
k−1; else there is t ∈ {1, 2, ..., k−1}

such that (i) ha≺ ≺ ha
t , and (ii) an assignment that is rejected by Ca at Xi(h

a≺) is chosen by Ca at 
Xi(h

a
t ), contradicting that i has non-repeating rejections. By the same argument, hb

k′−1 precedes 

the others in {hb
t }. Since {ha

t } ∩ H≺ �= ∅, thus ha
k−1 ∈ H≺, so ha

k−1 ∈ πb and b �= αha
k−1(πb). 

Since b = αhb
1 (πb), thus ha

k−1 �= hb
1, so either ha

k−1 ≺ hb
1 or hb

1 ≺ ha
k−1. Since i has non-repeating 

rejections, thus hb
1 ≺ ha

k−1, so hb
k′−1 � hb

1 ≺ ha
k−1. But then {hb

t } ∩ H≺ �= ∅, so by a symmetric 
argument, ha

k−1 ≺ hb
k′−1, contradicting that hb

k′−1 ≺ ha
k−1.

Thus {ha
t } ∩ H≺ = ∅. Since S is preferential, thus there is τi(θi) ∈ Pi such that for each 

h′ ∈ Hi ,

[Si (θi)](h′) = argmaxτi (θi )
[argmaxRi(θi )

Xi(h
′)].

Define Pθi
∈ Pi by a1 Pθi

a2 if and only if (i) a1 Pi(θi) a2, or (ii) a1 Ii(θi) a2 and a1τi(θi)a2. 
Define the choice space (Xi, M, C) by:

• M ≡ {Xi(h
′)}h′∈(Hi∩πa)\H≺ ; and

• for each h′ ∈ (Hi ∩ πa)\H≺, C(Xi(h
′)) ≡ αh′

(πa).

Since πa = πh(S(θ)), thus Pθi
∈ PC , so C is rationalizable. Since {ha

t } ∩ H≺ = ∅, thus {ha
t } ⊆

(Hi ∩πa)\H≺, so there is a C-path from a to b. Since Pθi
∈PC , thus by the Path Lemma, a Pθi

b. 
Altogether, then, by construction we have a Ri(θi) b, as desired.

To conclude, since i ∈ N , h ∈ Hi , and si ∈ Si were arbitrary, thus S(θ) ∈ SPE(G, R(θ)). 
Since θ ∈ � was arbitrary, thus S satisfies ex-post perfection. By f -compatibility, G is an ex-
post perfect implementation of f via S. �
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Fig. 7. Weaker hypotheses that do not suffice for Proposition 1. For both examples, consider N = {1, 2}, X1 = {a, b, c}, 
and X2 = {x, y}. (a) Suppose the types are the strict rankings, and consider Fig. 7 (a) with the rule given by the prefer-
ential convention. This only violates non-repeating and is not an ex-post perfect implementation, despite satisfying the 
weaker requirement that the choices along each play can be rationalized by some strict preference profile. (b) Suppose 
�1 is the strict rankings together with complete indifference and �2 is the strict rankings, and consider Fig. 7 (b) with 
the rule given by the following convention: (i) each agent always selects a most-preferred assignment, and (ii) when 1
has complete indifference, he selects b at the initial history, selects b after 2 selects x, and selects c after 2 selects y. 
This only violates preferential and is not an ex-post perfect implementation, despite satisfying the weaker requirement 
that the convention always asks each agent to always select a most-preferred assignment.

To conclude this appendix, we observe that Proposition 1 does not hold if (i) we weaken 
non-repeating by simply requiring that the choices along each play can be rationalized by some 
strict preference profile, or (ii) we weaken preferential by simply requiring that the convention 
always asks each agent to select a most-preferred assignment without necessarily breaking ties 
consistently (Fig. 7).

Appendix F. Proof of Proposition 2

In this appendix, we prove Proposition 2.

Proposition 2. For each rich and strict environment, each group strategy-proof rule, each non-
repeating public menu mechanism, and each preferential convention that is compatible with the 
rule, the public menu mechanism is both an ex-post perfect implementation of the rule via the 
convention and a full subgame perfect implementation of the rule.

Proof. Remove each history where the player has a single action, let G denote the resulting 
mechanism, and let S denote the associated restricted convention. Then (G, S) satisfies the hy-
potheses. Moreover, since (i) for each i ∈ N , Xi is finite, and (ii) G is non-repeating, thus each 
play is finite. We prove that the desired conclusion holds for (G, S), from which the proposition 
clearly follows.

By Theorem PT, f is strategy-proof and non-bossy. By Proposition 1, G is an ex-post perfect 
implementation of the rule.

Let θ ∈ �, let s∗ ∈ SPE(G, R(θ)), and define sθ ≡ S(θ). By Proposition 1, sθ ∈ SPE(G,

R(θ)) and X (sθ ) = f (θ). To prove that X (s∗) = X (sθ ), we use a version of backwards induc-
tion, proceeding by induction on history length. In particular, for each h ∈ H , define the length 
of h, �(h) ≡ maxπ∈� |π ∩ {h′ ∈ H |h′ � h}|; this is the maximum cardinality of a play in the 
subgame that starts at h.
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For the base step, for each h ∈ H such that �(h) = 1, we have h ∈ Z, so X h(s∗) = X h(sθ ). 
For the inductive step, assume L ∈ N is such that for each h ∈ H such that �(h) ≤ L, we have 
X h(s∗) = X h(sθ ); and let h ∈ H such that �(h) = L + 1. Define i ≡ P (h), let h∗ be the imme-
diate successor of h identified by s∗, and let hθ be the immediate successor of h identified by sθ . 
Since �(h∗) ≤ L and �(hθ ) ≤ L, thus

X h∗
(sθ ) = X h∗

(s∗) by the inductive hypothesis as �(h∗) ≤ L

Ri(θi) X hθ

(s∗) as s∗ ∈ SPE(G,R(θ))

= X hθ

(sθ ) by the inductive hypothesis as �(hθ ) ≤ L.

Since sθ ∈ SPE(G, R(θ)), thus X hθ
(sθ ) Ri(θi) X h∗

(sθ ). Altogether, we have X h∗
(sθ ) Ii(θi)

X hθ
(sθ ).

To conclude the inductive step, we claim X h(s∗) = X h(sθ ). Indeed, define π∗ ≡ πh∗
(sθ )

and πθ ≡ πhθ
(sθ ). By the Play Lemma, there is θ∗

i ∈ �i such that for each h′ ∈ Hi ∩ π∗, 
[Si (θ

∗
i )](h′) = αh′

(π∗). By the Continuation Lemma, for each j ∈ N , there is θh
j ∈ �j such 

that
(i) for each h′ ∈ Hj such that h′ ≺ h, we have [Sj (θ

h
j )](h′) = αh′

(h); and

(ii) Sj (θ
h
j )�h = Sj (θj )�h.

By construction, π∗ = π(S(θ∗
i , θh

−i )) and πθ = π(S(θh)), so by f -compatibility, X h∗
(sθ ) =

X (S(θ∗
i , θh

−i )) = f (θ∗
i , θh

−i ) and X hθ
(sθ ) = X (S(θh)) = f (θh). Then f (θ∗

i , θh
−i ) Ii(θi) f (θh), 

so by strictness, fi(θ
∗
i , θh

−i ) = fi(θ
h). By non-bossiness, f (θ∗

i , θh
−i ) = f (θh), so X h∗

(sθ ) =
X hθ

(sθ ). Altogether, then,

X h(s∗) = X h∗
(s∗) by definition of h∗

= X h∗
(sθ ) by the inductive hypothesis as �(h∗) ≤ L

= X hθ

(sθ ) by the above argument

= X h(sθ ) by definition of hθ ,

as desired.
By induction, for each L ∈N and each h ∈ H such that �(h) = L, we have X h(s∗) = X h(sθ ). 

Since each play is finite, thus the initial history h∅ is such that �(h∅) ∈ N , so X (s∗) = X (sθ ) =
f (θ). Since sθ ∈ SPE(G, R(θ)), since s∗ ∈ SPE(G, R(θ)) was arbitrary, and since θ ∈ � was 
arbitrary, we are done. �
Appendix G. Details about applications

In this appendix, we provide formal details about the implications of our general results 
(Proposition 1, Proposition 2, Theorem 1, and Theorem 2) for familiar settings. In particular, for 
each application, we specify the additional structure that we impose on an environment to fit the 
application, specify the class of rules (each with an associated menu mechanism and convention) 
that we consider for each of these environments, formally state the associated corollaries, and 
briefly highlight relevant ideas from the literature. To simplify the discussion, we focus on pri-
vate menu mechanisms as our examples of reaction-proof mechanisms throughout this appendix. 
The corollaries about everywhere-dominance are summarized in the main text in Table 2.
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G.1. Matching with contracts

First, we consider matching with contracts (Hatfield and Milgrom, 2005). Suppose that there 
is a finite set of doctors and a finite set of hospitals, including a special outside option. Moreover, 
there is a finite set of contracts—each of which has an associated doctor, an associated hospital, 
and some terms—such that each doctor has a unique contract with the outside option. Let us say 
that an environment is a matching with contracts environment if and only if (i) the agents are 
the doctors; (ii) for each agent, the possible assignments are his contracts; (iii) an outcome is 
any assignment profile; and (iv) for each agent, the possible types are the strict rankings of his 
assignments.

For each hospital, a choice correspondence associates each set of its contracts with a subset of 
those contracts, and each profile of choice correspondences C determines a (doctor-proposing) 
cumulative offers process rule, f COP |C (Hatfield and Milgrom, 2005). This rule associates each 
type profile with the outcome of the cumulative offers process, which is described in terms of 
doctors iteratively proposing contracts to hospitals, and it is straightforward to adapt this process 
into a menu mechanism. Moreover, for each C such that (i) the outside option always chooses all 
contracts, and (ii) each hospital’s choice correspondence satisfies ‘observable substitutability,’ 
‘observable size monotonicity,’ and ‘non-manipulability via contractual terms,’ the rule f COP |C
is strategy-proof (Hatfield et al., 2021). It is easy to verify that our other conditions are satisfied, 
and thus we have:

Corollary G.1. Fix a matching with contracts environment and a profile of choice correspon-
dences C such that (i) the outside option always chooses all contracts, and (ii) each hospital’s 
choice correspondence satisfies ‘observable substitutability,’ ‘observable size monotonicity,’ and 
‘non-manipulability via contractual terms.’ Let Gpublic be a public menu mechanism for the as-
sociated cumulative offers process, and let Gprivate be the associated private menu mechanism. 
Then

• Gpublic is an ex-post perfect implementation of f COP |C via the preferential convention; and
• Gprivate is an ex-post everywhere-dominant implementation of f COP |C via the preferential 

convention.

In general, cumulative offers process rules are not group strategy-proof, which follows from 
Kojima (2010). We remark that while the literature has identified conditions that guarantee a 
cumulative offers process rule is weakly group strategy-proof (Hatfield and Kojima, 2009), this 
is not enough for us to apply our results on full implementation.

G.2. Labor markets and auctions

Second, we consider labor markets with salaries, which can be viewed as matching with con-
tracts environments that are modified to have restricted preference domains (Crawford and Knoer, 
1981; Kelso and Crawford, 1982). Suppose that there is a finite set of workers and a finite set of 
firms, including a special outside option. Moreover, there is a finite set of salaries, and the set of 
contracts is the product of workers and firms and salaries except that only the lowest salary is 
ever available for the outside option. Let us say that an environment is a labor market environ-
ment if and only if (i) the agents are the workers; (ii) for each agent, the possible assignments 
are his contracts; (iii) an outcome is any assignment profile; and (iv) for each agent, the possible 
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types are the strict rankings of his assignments such that a higher salary is always preferred to a 
lower salary for a given firm.

Each profile of choice correspondences for firms determines a (worker-proposing) salary ad-
justment process rule, f SAP |C (Crawford and Knoer, 1981; Kelso and Crawford, 1982), which in 
fact coincides with the restriction of f COP |C to monotonic types. As with our last example, the 
salary adjustment process naturally yields an associated menu mechanism, but now we cannot 
directly apply our result because labor market environments violate richness. Nevertheless, we 
prove that our results still have implications for this setting because we can enrich the type space, 
apply our result for matching with contracts, and then prune the menu mechanism from the richer 
environment:

Corollary G.2. Fix a labor market environment and a profile of choice correspondences C such 
that (i) the outside option takes all contracts, and (ii) each firm’s choice correspondence satisfies 
‘observable substitutability,’ ‘observable size monotonicity,’ and ‘non-manipulability via con-
tractual terms.’ Let Gpublic be a public menu mechanism for the associated salary adjustment 
process, and let Gprivate be the associated private menu mechanism. Then

• Gpublic is an ex-post perfect implementation of f SAP |C via the preferential convention; and
• Gprivate is an ex-post everywhere-dominant implementation of f SAP |C via the preferential 

convention.

Proof. We prove both parts with the same arguments. First, modify the labor market environment 
so that each agent can have all strict rankings and apply Corollary G.1 to obtain the desired 
implementation. Second, remove all types that violate monotonicity; we still have the desired 
implementation. Finally, modify the mechanism by pruning off all histories that are unused by the 
convention; we still have an implementation, and the result is the desired menu mechanism. �

An important special case is when each firm hires at most one worker, first prioritizes having 
an employee, then prioritizes minimizing the sole employee’s salary, and finally considers the 
employee’s identity. In this case, we can reinterpret workers as buyers with unit demand, reinter-
pret firms as sellers with unit supply, and reinterpret higher salaries as lower prices, resulting in a 
buyer-proposing Crawford-Knoer auction with strictness (Crawford and Knoer, 1981; Demange 
et al., 1986). It is standard in discrete settings to assume that each buyer is necessarily indifferent 
between exiting and receiving the object at one of the prices, but in our variant model we assume 
this is never the case; our strictness assumption holds if each admissible valuation is generic in 
the sense that it belongs to an open ball whose members all induce the same ranking of assign-
ments. Note that under the labor market interpretation, the implementation is a descending salary 
procedure, while under the auction interpretation, it is an ascending price procedure.

To conclude, we consider the special case where there is a single seller with one object. In the 
standard model, it is well-known that the Vickrey rule is strategy-proof (Vickrey, 1961), and that 
it is implemented by the English auction, which can clearly be written as a menu mechanism.23

Our results show that these insights extend to our variant model with strictness: the English 

23 In fact, ex-post perfect implementation has been investigated for a variety of more complex auction environments 
(Ausubel, 2004; Ausubel, 2006; Sun and Yang, 2014; Drexl and Kleiner, 2015).
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auction implements a variant of the Vickrey rule, where the winner pays the highest possible 
price that is no greater than the second-highest valuation (see Fig. 6).24

G.3. School choice and marriage

Third, we consider school choice (Gale and Shapley, 1962). Suppose there is a finite set of 
students and a finite set of schools, including a special outside option. Moreover, each school 
has a quota (or capacity), where the quota of the outside option is infinite. Let us say that an 
environment is a school choice environment if and only if (i) the agents are the students; (ii) for 
each agent, the possible assignments are the schools; (iii) an outcome is any assignment profile 
such that no school is assigned to more students than its quota; and (iv) for each agent, the 
possible types are the strict rankings of his assignments.

Each profile of choice correspondences for schools C determines a (student-proposing) de-
ferred acceptance rule, f DA|C (Gale and Shapley, 1962). As with our previous examples, there 
is an associated menu mechanism. For each school, a priority is a strict ranking of students that 
implicitly deems all students acceptable. If C is responsive to a profile of priorities p and respects 
the quotas, then f DA|C is strategy-proof (Dubins and Freedman, 1981; Roth, 1982). Moreover, 
the following are equivalent: (i) f DA|C is group strategy-proof, (ii) f DA|C is efficient, (iii) f DA|C
is consistent, and (iv) p is acyclic (Ergin, 2002). It is easy to verify that our other conditions are 
satisfied, and thus we have:

Corollary G.3. Fix a school choice environment, a profile of priorities p, and a profile of choice 
correspondences C that is responsive to p and respects the quotas. Let Gpublic be a public menu 
mechanism for the associated deferred acceptance algorithm, and let Gprivate be the associated 
private menu mechanism. Then

• Gpublic is an ex-post perfect implementation of f DA|p via the preferential convention;
• Gprivate is an ex-post everywhere-dominant implementation of f DA|p via the preferential 

convention; and
• if f DA|p is group strategy-proof, or f DA|p is efficient, or f DA|p is consistent, or p is 

acyclic, then moreover (i) Gpublic is a full subgame perfect implementation of f DA|p, and 
(ii) Gprivate is a full everywhere-dominant implementation of f DA|p.

Observe that the first and second item of Corollary G.3 can be derived from Corollary G.1, 
as these school choice environments are matching with contracts environments that satisfy the 
given hypotheses (Hatfield and Milgrom, 2005; Hatfield et al., 2021). As discussed earlier, for 
the first item of Corollary G.3, similar insights were recently obtained by Kawase and Bando 
(2021) and Bó and Hakimov (2019).

Analogues of Corollary G.3 hold in many interesting variants of the model; we mention three. 
First, deferred acceptance remains strategy-proof even when schools individually face affirma-
tive action constraints, including the special case where each school simply reserves a certain 
number of seats for minority students (Abdulkadiroǧlu and Sönmez, 2003; Abdulkadiroǧlu, 

24 The menu mechanism in Fig. 6 is simpler than the pruned cumulative offers process mechanism described in the 
proof of Corollary G.1. In particular, the latter has a history where 2 selects ∅ or 3 immediately after 1 selects 3; this 
history can be removed while preserving implementation.
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2005; Hafalir et al., 2013; Ehlers et al., 2014). Second, deferred acceptance remains strategy-
proof even when schools collectively face distributional constraints, which has been applied to 
the matching of doctors to hospitals in Japan while respecting the Japanese regional caps (Ka-
mada and Kojima, 2015; Kamada and Kojima, 2018). Finally, in the special case where each 
school has a quota of one, we can view students as men and schools as women (or alternatively, 
view students as women and schools as men); this is the classical marriage problem (Gale and 
Shapley, 1962).

G.4. Object allocation

Fourth, we consider object allocation without money. Suppose there is a finite set of agents 
and a finite set of objects, with at least many objects as agents. Let us say that an environment 
is an object allocation environment if and only if (i) for each agent, the possible assignments are 
the objects; (ii) an outcome is any assignment profile where no object is assigned to more than 
one agent; and (iii) for each agent, the possible types are the strict rankings of his assignments.

Each consistent control rights structure ω determines an associated trading cycles rule, f T C|ω , 
and the class of trading cycles rules is precisely the class of efficient and group strategy-proof
rules (Pycia and Ünver, 2017; Bade, 2020). This class includes the hierarchical exchange rules 
(Pápai, 2000), which in turn include both (i) Gale’s top trading cycles (reported in Shapley and 
Scarf, 1974); and (ii) serial dictatorship (see, for example, Svensson, 1999).

Each trading cycles rule is defined by a trading cycles algorithm that has an associated menu 
mechanism, and for hierarchical exchange rules these menu mechanisms are non-repeating, but 
in general they are not due to the presence of brokers. In the trading cycles algorithm, a broker 
cannot select his own object until late in the procedure. For our menu mechanisms, we modify 
this to recover our non-repeating property in a manner that has no impact on the algorithm: if a 
broker selects his own object before the algorithm wants him to, then he must immediately select 
another object. To ensure that the private menu mechanisms are reaction-proof, the agents should 
play in a simple order; see Example 3. It is easy to verify that our other conditions are satisfied, 
and thus we have:

Corollary G.4. Fix an object allocation environment and a consistent control rights structure 
ω. Let Gpublic be a non-repeating public menu mechanism adapted for the associated trading 
cycles algorithm, and let Gprivate be the associated private menu mechanism. Then

• Gpublic is both (i) an ex-post perfect implementation of f T C|ω via the preferential conven-
tion, and (ii) a full subgame perfect implementation of f T C|ω; and

• Gprivate is both (i) an ex-post everywhere-dominant implementation of f T C|ω via the pref-
erential convention, and (ii) a full everywhere-dominant implementation of f T C|ω .

Observe that in this model, every efficient and group strategy-proof rule has a double imple-
mentation in terms of everywhere-dominant strategy equilibrium.

G.5. Two-candidate elections

Finally, we consider two-candidate elections. Suppose there is a finite set of voters and two 
candidates. Let us say that an environment is a two-candidate election environment if and only if 
(i) for each agent, the possible assignments are the candidates; (ii) an outcome is any assignment 
40



A. Mackenzie and Y. Zhou Journal of Economic Theory 204 (2022) 105511
profile where all agents are assigned the same candidate; and (iii) for each agent, the possible 
types are the strict rankings of his assignments.

Each committee C determines a voting by committees rule f C , and the class of voting by 
committees rules is precisely the class of strategy-proof and onto rules (Barberà et al., 1991). It 
is easy to see that strategy-proofness is equivalent to group strategy-proofness for these environ-
ments, and to verify that our other conditions are satisfied; thus we have:

Corollary G.5. Fix a two-candidate election environment and a committee C. Let Gpublic be a 
public menu mechanism for the associated direct mechanism, and let Gprivate be the associated 
private menu mechanism. Then

• Gpublic is both (i) an ex-post perfect implementation of f C via the preferential convention, 
and (ii) a full subgame perfect implementation of f C ; and

• Gprivate is both (i) an ex-post everywhere-dominant implementation of f C via the preferen-
tial convention, and (ii) a full everywhere-dominant implementation of f C .

We remark that in this setting, because players have strict preferences over all outcomes, 
implementation in subgame perfect equilibrium is equivalent to implementation in guided it-
eratively undominated strategies, which has been proposed as a simple implementation where 
players receive assistance in making their calculations (Glazer and Rubinstein, 1996). When 
there are three or more candidates, richness and strictness imply that the only strategy-proof
rules that respect consensus are the dictator rules (Gibbard, 1973; Satterthwaite, 1975).
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