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Abstract

The LMO invariant is a universal quantum invariant of 3-manifolds. In this paper, we present the
degree 2 part of the LMO invariant of cyclic branched covers of knots by using the 3-loop invariant
of knots, and we calculate it concretely for knots obtained by plumbing the doubles of two knots.

1 Introduction

The LMO invariant of 3-manifolds is an invariant derived from the Kontsevich invariant
of knots, and it is universal to all perturbative invariants and finite type invariants of 3-
manifolds. The LMO invariant takes its value in the space of Jacobi diagrams, which
are some kinds of trivalent graphs. It is well-known that the degree 0 part of the LMO
invariant is equal to the order of the first homology group, and the degree 1 part of the
LMO invariant is equal to the Casson-Walker-Lescop invariant up to scalar multiplication.
The value of the LMO invariant is presented by an infinite sum of Jacobi diagrams, and
in general, it is difficult to determine all terms of it.

There are not so many examples of calculation of the LMO invariants of 3-manifolds
so far. For example, the LMO invariants of Lens spaces are caluculated in [1], and the
small degree parts of the LMO invariants of Seifert fibered rational homology spheres are
calculated in [2].

In [4], Garoufalidis and Kricker found a formula for the LMO invariant of cyclic
branched covers of knots by using the rational form of the Kontsevich invariant of knots,
which is closely related to the loop expansion of the Kontsevich invariant of knots [3],
[6]. Its 2-loop part is presented by the 2-loop polynomial, and its 3-loop part is presented
by the 3-loop invariant. By using the formula of Garoufalidis and Kricker, we can calcu-
late the degree 1 part of the LMO invariant (Casson-Walker invariant) of cyclic branched
covers of a knot, via the 2-loop polynomial of the knot [4].

In this paper, we calculate the degree 2 part of the LMO invariant of cyclic branched
covers of some knots, via the 3-loop invariant of knots. Further, in [11], the author
calculated the 3-loop polynomial of knots obtained by plumbing the doubles of two knots,
where this class of knots includes untwisted Whitehead doubles. By using this result and
the formula in [4], we calculate the degree 2 part of the LMO invariant of cyclic branched
covers of knots obtained by plumbing the doubles of two knots. This is a new example of
the calculation of the degree 2 part of the LMO invariant.
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This paper is organized as follows. In Section 2, we review the fundamental notions and
the formula of Garoufalidis and Kricker in [4]. In Section 3, we state the main theorem
and prove it. In Section 4, we consider the degree 2 part of the formula of the Garoufalidis
and Kricker in detail.

The author would like to thank Advisor Tomotada Ohtsuki for encouragement and
comments.

2 The LMO invariant of cyclic branched covers of knots

In this section, we review how to calculate the LMO invariant of the cyclic branched
covers of knots. This is a work of Garoufalidis and Kricker [4].

Let K be a knot in S3, and let Σp
K is the p-fold cyclic branched covers of K. We call a

knot K p-regular if Σp
K is a rational homology sphere, and we call a knot K regular if it

is p-regular for all p. It is known that a knot K is p-regular if and only if its Alexander
polynomial ∆K(t) has no complex pth root of unity.

A Jacobi diagram on ∅ is a trivalent graph such that a cyclic order of the three edges
around each trivalent vertex is fixed, in other words, each trivalent vertex is vertex-
oriented. When we draw a Jacobi diagram on ∅, each trivalent vertex is vertex-oriented
in the counterclockwise order. Furthermore, we define the degree of a Jacobi diagram to
be half the number of all vertices of the graph of the Jacobi diagram. We define A(∅) to
be the quotient vector space spanned by Jacobi diagrams on ∅ subject to the AS, IHX
relations.

the AS relation :                               =  －

the IHX relation :    =                   －

The LMO invariant ZLMO of a closed 3-manifold is defined to be in A(∅) (Strictly
speaking, it is defined to be in the completion of A(∅) with respect to the degree). For a
closed 3-manifold M , the LMO invariant is presented by

ZLMO(M) = exp

(
c1(M) + c2(M) + (terms of connected diagrams of degree > 2)

)
,

where ci(M) is a scalar invariant of M . Note that c1(M) is equal to (−1)b1(M)λ(M)/2,
where λ(M) is the Casson-Walker-Lescop invariant and b1(M) is the first Betti number
of M . For details, see for example [8], [9].

Let σK : S1 → Z be the signature function. It is defined for all complex numbers of
absolute value 1, see for example [5].

In [4], Garoufalidis and Kricker showed that for all p and p-regular knot K, we have

ZLMO(Σp
K) = eσK(p)Θ/16Liftp ◦ τ ratαp

◦ Zrat(K) ∈ A(∅). (1)
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Here, Zrat is the rational form of the Kontsevich invariant of a knot K, defined in [3].

Further, αp is defined by αp = Ω(p−1)/p ∈ A(∗), where Ω = exp


 is

the value of the Kontsevich invariant of the unknot in A(∗). Here, A(∗) is the quotient
vector space spanned by open Jacobi diagrams subject to the AS, IHX relations, where
an open Jacobi diagram is an uni-trivalent graph such that each trivalent vertex is vertex-
oriented. The maps Liftp and τ ratαp

are defined in [4].

By considering the degree 2 part (the 3-loop part) of ZLMO(Σp
K), we obtain the fol-

lowing proposition.

Proposition 2.1. For all p and p-regular knot K, we have

c2(Σ
p
K)

=
1

48p2

∑
ωp
1=ωp

2=ωp
3=1

ΛK(ω
3
4
1 ω

− 1
4

2 ω
− 1

4
3 , ω

− 1
4

1 ω
3
4
2 ω

− 1
4

3 , ω
− 1

4
1 ω

− 1
4

2 ω
3
4
3 , ω

− 1
4

1 ω
− 1

4
2 ω

− 1
4

3 ) + lKp .

Here, the rational form ΛK(t1, t2, t3, t4) ∈ Q(t±1
1 , t±1

2 , t±1
3 , t±1

4 )/(t1t2t3t4 = 1) is the 3-
loop invariant for a knot K, which is a rational form presenting the 3-loop part of the
Kontsevich invariant of knots. For a knot K, we present its 3-loop part of Zrat(K) by

Zrat(K)(3-loop) =
∑
i

+
∑
i

,

where qi,j(t) and ri,j(t) are polynomials in t±1. Then the 3-loop invariant ΛK(t1, t2, t3, t4)
is defined by

ΛK(t1, t2, t3, t4)

=
∑
i

τ∈S4

qi,1(t
sgnτ
τ(1) t

−sgnτ
τ(4) )qi,2(t

sgnτ
τ(2) t

−sgnτ
τ(4) )qi,3(t

sgnτ
τ(3) t

−sgnτ
τ(4) )qi,4(t

sgnτ
τ(2) t

−sgnτ
τ(3) )qi,5(t

sgnτ
τ(3) t

−sgnτ
τ(1) )qi,6(t

sgnτ
τ(1) t

−sgnτ
τ(2) )

∆K(t1t
−1
4 )∆K(t2t

−1
4 )∆K(t3t

−1
4 )∆K(t2t

−1
3 )∆K(t3t

−1
1 )∆K(t1t

−1
2 )

+
∑
i

τ∈S4

ri,1(t
sgnτ
τ(1) t

−sgnτ
τ(4) )ri,2(t

sgnτ
τ(2) t

−sgnτ
τ(4) )ri,3(t

sgnτ
τ(3) t

−sgnτ
τ(4) )ri,5(t

sgnτ
τ(3) t

−sgnτ
τ(1) )ri,6(t

sgnτ
τ(1) t

−sgnτ
τ(2) )

∆K(tτ(1)t
−1
τ(4))

2∆K(tτ(2)t
−1
τ(4))∆K(tτ(3)t

−1
τ(4))∆K(tτ(3)t

−1
τ(1))∆K(tτ(1)t

−1
τ(2))

∈ Q(t±1
1 , t±1

2 , t±1
3 , t±1

4 )1/(S4, t1t2t3t4 = 1),

whereQ(t±1
1 , t±1

2 , t±1
3 , t±1

4 )1 is the ring of rational forms
v(t1, t2, t3, t4)

u(t1, t2, t3, t4)
such that u(1, 1, 1, 1) =

1. In particular, if ∆K(t) = 1, then ΛK(t1, t2, t3, t4) is a polynomial, so in this case, we
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call it the 3-loop polynomial. For details, see [10], [11]. Further, lKp is a scaler invariant
of a knot K, which can be calculated by an equivariant linking matrix of a surgery link
in S3\K. For details, see [4]. As shown later, lKp is not essential for our case. For the

definition of lKp and proof of Proposition 2.1, see Section 4

3 The degree 2 part of ZLMO(Σp
D(K,K ′))

In this section, we state the main theorem of this paper and prove it.
Let K be a 0-framed knot, and let K ′ be a k-framed knot (k ∈ Z). Let D, D′ be

1-tangles whose closures are K, K ′, respectively, noting that isotopy classes of D and D′

are uniquely determined by K and K ′.

(0-framing) (k-framing)

D D'

(2)

We define D(K,K ′) to be the following knot,

where D(2) and D′(2) are the doubles of D and D′, respectively. We can obtain D(K,K ′)
by plumbing of the doubles of K and K ′, noting that D(K,K ′) is a genus 1 knot with
trivial Alexander polynomial, hence, D(K,K ′) is regular.

We denote that ai is a degree i Vassiliev invariant of K, presented by

a2 = −1

2
c2, a3 = − 1

24
j3, a4 =

1

24
(−12c4 + 6c22 − c2),

where cn are coefficient of the Conway polynomial ∇K(z) =
∑

cnz
n and jn are coefficient

of the Jones polynomial JK(e
t) =

∑
jnt

n. Note that the Conway polynomial is defined

by ∇K(t
1
2 − t−

1
2 ) = ∆K(t). The value a′i is a degree i Vassiliev invariant of K ′, presented

by in the same way.
Now, we state the main theorem of this paper.
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Theorem 3.1. For all p, we have

c2(Σ
p
D(K,K′))

=
1

48p2

∑
ωp
1=ωp

2=ωp
3=1

ΛD(K,K′)(ω
3
4
1 ω

− 1
4

2 ω
− 1

4
3 , ω

− 1
4

1 ω
3
4
2 ω

− 1
4

3 , ω
− 1

4
1 ω

− 1
4

2 ω
3
4
3 , ω

− 1
4

1 ω
− 1

4
2 ω

− 1
4

3 )

=

(
4a2a

′
2 +

1

6
k2a2 + 2ka3 + 10k2a4 + 6k2a22

)
p.

In particular, we can obtain c2(Σ
p
Wh±(K)), whereWh±(K) denotes the untwistedWhite-

head double of K.

Here, D is a 1-tangle whose closure is K as shown in (2)

Corollary 3.2. For all p, we have

c2(Σ
p
Wh±(K))

=
1

48p2

∑
ωp
1=ωp

2=ωp
3=1

ΛWh±(K)(ω
3
4
1 ω

− 1
4

2 ω
− 1

4
3 , ω

− 1
4

1 ω
3
4
2 ω

− 1
4

3 , ω
− 1

4
1 ω

− 1
4

2 ω
3
4
3 , ω

− 1
4

1 ω
− 1

4
2 ω

− 1
4

3 )

=

(
1

6
a2 ∓ 2a3 + 10a4 + 6a22

)
p.

The corollary immediately follows from Theorem 3.1.

Proof of Theorem 3.1. By Proposition 4.1 in Section 4, we get l
D(K,K′)
p = 0. Thus, by

Proposition 2.1, we obtain that

c2(Σ
p
D(K,K′)) =

1

48p2

∑
ωp
1=ωp

2=ωp
3=1

ΛD(K,K′)(ω
3
4
1 ω

− 1
4

2 ω
− 1

4
3 , ω

− 1
4

1 ω
3
4
2 ω

− 1
4

3 , ω
− 1

4
1 ω

− 1
4

2 ω
3
4
3 , ω

− 1
4

1 ω
− 1

4
2 ω

− 1
4

3 ).

(3)
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On the other hand, the 3-loop polynomial of D(K,K ′) is calculated in [11], as follows,

ΛD(K,K′)(t1, t2, t3, t4)

= (−16a2a
′
2 − k2a2 − 8ka3)(u1,2 + u1,3 + u1,4 + u2,3 + u2,4 + u3,4)

+ (−k2a2
12

+ 4k2a4)(u1,4u2,4 + u1,4u3,4 + u2,4u3,4 + u1,3u2,3 + u1,3u4,3 + u2,3u4,3

+ u1,2u3,2 + u1,2u4,2 + u3,2u4,2 + u2,1u3,1 + u2,1u4,1 + u3,1u4,1)

+ 24k2a4(u1,2u3,4 + u1,3u2,4 + u1,4u2,3)

+ 8k2a22(u
2
1,2 + u2

1,3 + u2
1,4 + u2

2,3 + u2
2,4 + u2

3,4)

− k2a2
4

(v1,4v2,4 + v1,4v3,4 + v2,4v3,4 + v1,3v2,3 + v1,3v4,3 + v2,3v4,3

+ v1,2v3,2 + v1,2v4,2 + v3,2v4,2 + v2,1v3,1 + v2,1v4,1 + v3,1v4,1), (4)

where ui,j = tit
−1
j + t−1

i tj − 2, and vi,j = tit
−1
j − t−1

i tj. Note that

e
2πik
p + e−

2πik
p − 2 = 2 cos

2kπ

p
− 2

e
2πik
p − e−

2πik
p − 2 = 2i sin

2kπ

p
(0 ≤ k < p).

Thus, by applying to (4) to (3), we obtain

c2(Σ
p
D(K,K′))

=
1

48p2

∑
0≤k<p
0≤l<p
0≤m<p

(
(−16a2a

′
2 − k2a2 − 8ka3)(rk + rl + rm + rk−l + rl−m + rm−k)

+ (−k2a2
12

+ 4k2a4)(rkrl + rlrm + rmrk + rkrk−l + rkrm−k + rlrl−m + rlrk−l + rmrm−k + rmrl−m

+ rk−lrl−m + rl−mrm−k + rm−krk−l)

+ 24k2a4(rkrl−m + rlrm−k + rmrk−l)

+ 8k2a22(r
2
k + r2l + r2m + r2k−l + r2l−m + u2

m−k)

− k2a2
4

(−sksl − slsm − smsk − sksk−l + sksm−k − slsl−m + slsk−l − smsm−k + smsl−m

+ sk−lsl−m + sl−msm−k + sm−ksk−l)
)
,

where rn = 2 cos
2nπ

p
− 2, sn = 2 sin

2nπ

p
. Further,

∑
0≤k<p
0≤l<p
0≤m<p

(rk + rl + rm + rk−l + rl−m + rm−k) = −12p3,
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∑
0≤k<p
0≤l<p
0≤m<p

(rkrl + rlrm + rmrk + rkrk−l + rkrm−k + rlrl−m + rlrk−l + rmrm−k + rmrl−m

+ rk−lrl−m + rl−mrm−k + rm−krk−l) = 48p3,∑
0≤k<p
0≤l<p
0≤m<p

(rkrl−m + rlrm−k + rmrk−l) = 12p3,

∑
0≤k<p
0≤l<p
0≤m<p

(r2k + r2l + r2m + r2k−l + r2l−m + u2
m−k) = 36p3,

∑
0≤k<p
0≤l<p
0≤m<p

(−sksl − slsm − smsk − sksk−l + sksm−k − slsl−m + slsk−l − smsm−k + smsl−m

+ sk−lsl−m + sl−msm−k + sm−ksk−l) = 0.

Therefore, we obtain

c2(Σ
p
D(K,K′))

=
1

48p2
(
(−16a2a

′
2 − k2a2 − 8ka3)(−12p3) + (−k2a2

12
+ 4k2a4) · 48p3

+ 24k2a4 · 12p3 + 8k2a22(36p
3)− k2a2

4
· 0
)

=

(
4a2a

′
2 +

1

6
k2a2 + 2ka3 + 10k2a4 + 6k2a22

)
p.

4 The degree 2 part of the formula of Garoufalidis and Kricker

In this section, we learn more about the degree 2 part of the formula of Garoulafidis
and Kricker.

Let K be a knot in S3, and let ΛK(t1, t2, t3, t4) be its 3-loop invariant. By [4], we can

7



define RespΛK(t1, t2, t3, t4) by

RespΛK(t1, t2, t3, t4)

= pχ
∑

ωp
1=ωp

2=ωp
3=1

∑
i

τ∈S4

qi,1(τ(ω1))qi,2(τ(ω2))qi,3(τ(ω3))qi,4(τ(ω4))qi,5(τ(ω5))qi,6(τ(ω6))

∆K(ω1)∆K(ω2)∆K(ω3)∆K(ω4)∆K(ω5)∆K(ω6)

+
∑
i

τ∈S4

ri,1(τ(ω1))ri,2(τ(ω2))ri,3(τ(ω3))ri,5(τ(ω5))ri,6(τ(ω6))

∆K(τ(ω1))2∆K(τ(ω2))∆K(τ(ω3))∆K(τ(ω5))∆K(τ(ω6))


(where ω4 = ω2ω

−1
3 , ω5 = ω3ω

−1
1 , ω6 = ω1ω

−1
2 .)

= pχ
∑

ωp
1=ωp

2=ωp
3=1

ΛK(ω
3
4
1 ω

− 1
4

2 ω
− 1

4
3 , ω

− 1
4

1 ω
3
4
2 ω

− 1
4

3 , ω
− 1

4
1 ω

− 1
4

2 ω
3
4
3 , ω

− 1
4

1 ω
− 1

4
2 ω

− 1
4

3 )

=
1

p2

∑
ωp
1=ωp

2=ωp
3=1

ΛK(ω
3
4
1 ω

− 1
4

2 ω
− 1

4
3 , ω

− 1
4

1 ω
3
4
2 ω

− 1
4

3 , ω
− 1

4
1 ω

− 1
4

2 ω
3
4
3 , ω

− 1
4

1 ω
− 1

4
2 ω

− 1
4

3 ), (5)

where χ is the Euler characteristic of the 3-loop graph, and its value equals to −2. Further,
we define lKp by

lKp = Liftp

⟨ exp(− 1

2
tr⟲ log(EL(teh)EL(t)−1)

)
,−p− 1

48p
h

h ⟩ , (6)

where EL(t) is a equivariant linking matrix of a surgery link in S3\K, and tr⟲ is the
wheel-valued trace, see for example [7]. The bracket ⟨ , ⟩ is defined by

⟨C1, C2⟩ =
(

sum of all ways gluing the h-marked legs of C1

to the h-marked legs of C2

)
.

It can be shown that lKp does not change by Kirby moves in S3\K, hence it is an invariant
K. For details, see [4].

Then, we prove Proposition 2.1.

Proof of Proposition 2.1. By [4], τ ratαp
◦ Zrat(K) is presented by

τ ratαp
◦ Zrat(K) =

⟨
exp

(
− 1

2
tr⟲ log(EL(teh)EL(t)−1)

)
⊔
(
Zrat(K)|t→teh

)
, αp(h)

⟩
, (7)

where EL(t) is a equivariant linking matrix, and

αp(h) = Ω(h)(p−1)/p = ∅+ p− 1

48p
h

h

+ (linear sum of higher terms).
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However, the terms in (7) which contribute to the 3-loop part are

⟨
∅ ⊔ γ

(3)
K , ∅

⟩
, and

⟨
exp

(
− 1

2
tr⟲ log(EL(teh)EL(t)−1)

)
⊔ ∅,−p− 1

48p
h

h ⟩
,

where γ
(3)
K =

∑
i

+
∑
i

is the 3-loop part of

Zrat(K). Thus, by (1) and (6), we get

c2(Σ
p
K) = Liftp

⟨∅ ⊔ γ
(3)
K , ∅

⟩
+
⟨
exp

(
− 1

2
tr⟲ log(EL(teh)EL(t)−1)

)
⊔ ∅,−p− 1

48p
h

h ⟩
= Liftp(γ

(3)
K ) + lKp . (8)

Note that eσK(p)Θ/16 does not contribute to the 3-loop part. However, by Theorem 7 in
[4] and the argument in Section 4 in [11], we can get

Liftp(γ
(3)
K )

= Resp

(
1

|S4|
ΛK(t1, t2, t3, t4)

)

=
1

48
RespΛK(t1, t2, t3, t4)

=
1

48p2

∑
ωp
1=ωp

2=ωp
3=1

ΛK(ω
3
4
1 ω

− 1
4

2 ω
− 1

4
3 , ω

− 1
4

1 ω
3
4
2 ω

− 1
4

3 , ω
− 1

4
1 ω

− 1
4

2 ω
3
4
3 , ω

− 1
4

1 ω
− 1

4
2 ω

− 1
4

3 ) , (9)

where we obtain the last equality by (5). By (8), (9), we obtain the required formula.

Lastly, we calculate lKp for D(K,K ′).

Proposition 4.1. We get

lD(K,K′)
p = 0.
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Proof. By handle slide, we can show that

= =

(surgery along the link drawn by thin lines),

so we get the following surgery presentation,

=

=

x y

z w

= K0 ∪ L,

where K0 is depicted by a thick line, and L is depicted by thin lines. Thus, a equivariant
linking matrix EL(t) of L ⊂ S3\K0 is given by

EL(t) =


0 0 1 0
0 k 0 1
1 0 0 t− 1
0 1 t−1 − 1 0

 ,

and we get

EL(t)−1 =


k(t+ t−1 − 2) −t+ 1 1 k(t− 1)

−t−1 + 1 0 0 1
1 0 0 0

k(t−1 − 1) 1 0 −k

 .
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Hence,

log(EL(teh)EL(t)−1)

= log


1 0 0 0
0 1 0 0

−k(t− 1)(eh − 1) t(eh − 1) 1 kt(−eh + 1)
t−1(e−h − 1) 0 0 1



= log
(
I4 +


0 0 0 0
0 0 0 0

−k(t− 1)h th 0 −kth
−t−1h 0 0 0

+


0 0 0 0
0 0 0 0

−1

2
k(t− 1)h2 1

2
th2 0 −1

2
kth2

1

2
t−1h2 0 0 0


+
(
linear sum of matrices with (degree of h) > 2

))

=


0 0 0 0
0 0 0 0

−k(t− 1)h th 0 −kth
−t−1h 0 0 0

+


0 0 0 0
0 0 0 1

−1

2
k(t− 1)h2 1

2
th2 0 −1

2
kth2

1

2
t−1h2 0 0 0

+


0 0 0 0
0 0 0 0

−1

2
kh2 0 0 0

0 0 0 0


+
(
linear sum of matrices with (degree of h) > 2

)
.

Thus, the coefficients of h and h2 of tr log(EL(teh)EL(t)−1) are equal to 0, and this

implies that the coefficient of
h

h

in exp
(
− 1

2
tr⟲ log(EL(teh)EL(t)−1)

)
is also equal to

0. Therefore, by (6), we get that l
D(K,K′)
p = 0.
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