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ABSTRACT While data privacy is a key aspect of Learning Analytics, it often creates difficulty when
promoting research into underexplored contexts as it limits data sharing. To overcome this problem, the
generation of synthetic data has been proposed and discussed within the LA community. However, there
has been little work that has explored the use of synthetic data in real-world situations. This research
examines the effectiveness of using synthetic data for training academic performance prediction models,
and the challenges and limitations of using the proposed data sharing method. To evaluate the effectiveness
of the method, we generate synthetic data from a private dataset, and distribute it to the participants of a data
challenge to train prediction models. Participants submitted their models as docker containers for evaluation
and ranking on holdout synthetic data. A post-hoc analysis was conducted on the top 10 participant’s models
by comparing the evaluation of their performance on synthetic and private validation datasets. Several models
trained on synthetic data were found to perform significantly poorer when applied to the non-synthetic
private dataset. The main contribution of this research is to understand the challenges and limitations of
applying predictive models trained on synthetic data in real-world situations. Due to these challenges, the
paper recommends model designs that can inform future successful adoption of synthetic data in real-world
educational data systems.

INDEX TERMS Synthetic learner data, student modeling, data sharing, data challenge.

I. INTRODUCTION
As educational systems are collecting an increasing amount
of data on the learning behavior of students, its analysis has
given rise to the fields of Educational Data Mining, and more
recently Learning Analytics. As the adoption of digital learn-
ing environments gathers momentum, laws such as General
Data Protection Regulation (GDPR) in the European Union,
and institutional based provisions such as Family Educational
Rights and Privacy Act (FERPA) and the IRB Common
Rule have been implemented to protect student and teacher
privacy. This has given rise to the investigation of methods
for de-identification [1], policies [2], frameworks [3], [4],
and platforms [5], [6] to protect data ownership rights while
fostering research into how educational data can be analyzed
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to improve the effectiveness of learning systems and teaching
practices.

Ethical use and sharing of data have been key issues for
learning analytics since its inception [7]. Privacy and ethical
risks of data sharing have been identified as an important
issue through a survey of researchers and practitioners con-
ducted by a European learning analytics support action [8].
Furthermore, previous studies found that students in higher
education are conservative when it comes to sharing data [9].
While data privacy is of upmost importance in learning ana-
lytics, the protection of personal data often creates difficulty
when promoting research into underexplored contexts as it
can inhibit the sharing of data with researchers outside of
institutions and core project groups. It is also acknowledged
within the research community that data sharing for the pur-
poses of research replication, interoperability and fostering
further research development is critical to broadening the
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acceptance and adoption of learning analytics [10], [11].
Fischer et al. [12], suggest that while there are inherent risks
with sharing learner data due to privacy and personal infor-
mation, there are also risks for not sharing learner data due
to strict policies, such as: comparing and evaluating edu-
cational institution performance, and the impact that edu-
cational programs have on academic performance. This has
led to discussion on how to overcome such problems and
several proposals [13], including the generation of synthetic
data. The later method has been applied to enable greater
scope in analyzing longitudinal data that would otherwise be
inaccessible due to government data sharing policies [14].
However, to date there has been little work that has explored
the adoption and real-world limitations of synthetic datawhen
sharing with the wider research field. Ferguson et al. [15]
proposed a check list consisting of 21 challenges and ethical
dimensions in learning analytics, including ‘‘Share insights
and findings across digital divides’’, ‘‘Anonymize and de-
identify individuals’’, and ‘‘Provide additional safeguards
for sensitive data’’. While sharing insights and findings are
important for progressing the field of learning analytics, the
sharing of important datasets across digital divides can sup-
port greater inclusiveness within the community by providing
access to data that would otherwise be inaccessible to a wide
range of researchers. The successful use of synthetic data is a
promising solution to the key problem of sharing anonymized
sensitive data to the broader learning analytics community.

Student performance prediction research aims to identify
learners who could benefit from early intervention to miti-
gate low academic performance or course drop-out [16]. The
analysis of these research is drawn from pre-course state such
as: socio-economic, psychological traits, questionnaire [17],
and past performance [18], [19], behavioral data from inter-
actions with learning systems [20]–[22], and external systems
such as social media [23], and also multisource data [24].
Investigation into student performance prediction models has
mainly focused on higher education with few works targeting
K-12 [25]. In addition, the type of data analyzed for pre-
diction has tended to target socio-economic or pre-course
performance, with less focus on fine grain behavioral data
which is presented in the current study.

This paper examines the effectiveness and challenges of
creating and distributing a synthetic dataset that has been
generated from a private dataset that would otherwise not be
distributable due to data privacy restriction policies. To inves-
tigate this method, a dataset consisting of two types of data:
reading behavior data that was collected from a digital read-
ing system [6] and the final academic performance scores,
was used to train a generative model. This model was then
used to generate a synthetic data for distribution to third
parties. The authors conducted a data challenge to recruit
various third parties from research and the private sector to
train prediction models on synthetic data. This ensured that
therewas competition between the data challenge participants
to train high performing prediction models. Participants were
given the task of predicting the academic performance of

learners based on the analysis of their reading behavior, and
were encouraged to submit models that had been constructed
by analyzing the distributed synthetic dataset. For the pur-
poses of the data challenge, the models were evaluated ini-
tially on a holdout synthetic dataset generated using the same
technique. Post-hoc analysis of the submitted models was
performed using the original private dataset to investigate the
effectiveness of implementing the sharing of synthetic data to
third parties to construct prediction models and effectiveness
in deploying models in a real-world scenario.

The novel contributions of this paper are summarized as
follows:

• We propose a method of generating educational syn-
thetic data for a digital learning material reading system
and students final scores.

• A comparison of academic achievement predictionmod-
els trained on real and synthetic data is conducted to
verify the effectiveness of the method.

• The synthetic data was provided to third parties as a part
of a competitive data challenge to construct early warn-
ing prediction models. This shows promising results
from data sharing.

• Discussion of challenges and limitations that led to poor
model transfer from a practical implementation of syn-
thetic data use.

• Propose recommendations on model design that can
inform future successful adoption of synthetic data in
real-world educational data systems.

II. RELATED WORK
The analysis and use of artificial data in education consists
of two main branches: simulated learners and synthetic data.
Simulated learners are often used when it is not possible
for actual learners to use the system, and a model of antic-
ipated learning behavior is constructed as a proxy, such as:
when a learning system is in the conceptual, development,
or testing stage where it is still unknown how interaction
with the system will unfold, or as agents in the education of
actual learners or teachers. Synthetic data on the other hand is
generated from a model trained on actual data collected from
real user interactions with the learning system. The latter can
be employed to overcome a range of different issues relating
to data use and privacy concerns.

A. SIMULATED LEARNERS
There is a long history of using simulated learners in edu-
cational technology for a range of different purposes, with
the seminal research by VanLehn et al. [26] proposing simu-
lated learners as a tutor training system for teachers, learning
partners for students, and a testing ground for instructional
designers to perform formative evaluation of existing learning
systems [27]. While simulated learners draw some parallels
with pedagogical agents in that they can populate and play a
role in learning systems, but they can also be used to examine
problems with the design and use that could potentially be too
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costly or not possible to implement with human subjects [28].
The simulation of learner data has also been put forward as a
possible solution for investigating problems at scales which
might otherwise be impossible to examine due to lack of
data that can be ethically collected [13]. In student modeling,
the role that small differences can play in prediction perfor-
mance have been investigated by modifying characteristics of
simulated learners [29]. Simulated students have also proved
useful for examining the inner workings of knowledge tracing
models and support the testing of hypotheses on appropriate
evaluation metrics which could translate directly to better
correlation with improvements of knowledge estimation [30].
While the role of simulated learners will continue to play
an important role in artificial intelligence in education and
learning analytics, there are some limitations that should be
considered. Simulations are based on theoretical assumptions
use to inform the design of models that generate simulated
interactions, and real students could behave differently due to
real-world factors such as affect and fatigue [31]. This could
potentially limit the utility of such methods, especially for
exploratory investigation, and modeling of student behaviors
to predict learning outcomes.

B. SYNTHETIC DATA
The concept of synthetic data has played an important role in
enabling access to data, with early incarnations of methods
used to anonymize confidential tabularmicrodata as proposed
by Rubin [32]. As use of internet-based services increased,
interest in temporal and sequential synthetic data generation
gained greater attention with the use of sequence networks
and other methods to model and generate clickstream data
for the training of personalized recommender systems from
private data where privacy policies restricted publication and
sharing [33]. More recently with the success of deep neural
network-based models there has been renewed interested
in the use of synthetic data in many fields ranging from
automated driving algorithms [34] to medical imaging [35].
Greater use of synthetic data has also prompted the discussion
of methods for evaluating the appropriateness of the gener-
ated synthetic data and effectiveness for use. El Emam [36]
proposed several methods for evaluating the utility of syn-
thetic data, including the structural similarity to the original
data, general utility metrics, bias and stability assessment.
Based on these guidelines, we ensure that the generated syn-
thetic data in this paper has the same structural composition,
and conduct a preliminary evaluation to measure the utility of
the data for the proposed purpose.

The rising use of synthetic data has also prompted research
into general methods for generating synthetic data. Domain
agnostic methods learn the relation of different features from
the private dataset, such as DataSynthesizer [37] which con-
structs Bayesian networks to model correlated features from
tabular datasets. These methods are often applicable to tab-
ular data, such as: demographics. Recent research has also
examined generic methods for spaciotemporal data, such as
SynSys [38] which constructs a generative model based on

hidden Markov models and regression models based on a
private dataset from sensors used for at home healthcare
intervention. While these techniques may be applicable to
a wide range of problems in which synthetic data can be
applied, El Emam [36] suggests that the structure of data in
complex systems and its analysis is often domain specific in
nature, therefore making it difficult to use generic methods.

The use of synthetic data in learning analytics over the last
half decade has been growing, with a two-day hackathon at
LAK16 focusing on synthetic data for applications ranging
from large scale performance testing to developing central
data governance practices [39]. The concept of peer reviewed
synthetic data generators was proposed, and these could be
used to generate standardized datasets by applying repeatable
recipes that could be used for the distribution of data between
education institutes, encouraging the reproduction of results.
It was also proposed that this could be developed at the infras-
tructure level to address ethical and privacy risks throughout
the service cycle. Dorodchi et al. [40] proposed using generic
off the shelf systems to generate synthetic data from demo-
graphic educational data. A Random Forest classifier was
trained on both datasets, and resulted in a drop of 6.6% and
0.07 for accuracy and F1 respectively. However, this method
is limited to categorical or continuous features and could not
be applied to time-series data that is often the target of recent
studies. Peña-Ayala [41] suggests that while there are various
works in learning analytics into the prediction of student
dropout and at-risk prediction, there is also an equal bal-
ance of research that looks into issues to effectively support
these tasks, such as sourcing data from multimodal systems,
training, testing, synthetic data generation, and deployment
to applications. This shows the importance of techniques that
are required to support key tasks within the field.

C. COLLABORATIVE LEARNING ANALYTICS
Collaborative learning analytics is defined as a partnership
between educational researchers, data scientists, and prac-
titioners, as well as those from various fields that share
the same goal of improving learning based on data [42].
Experts from these fields need to work together to examine
the full breadth of learning analytics and educational data
mining [43], however few research institutes have experts
from each field working closely together and sharing data.

Previous research into supporting collaborative learning
analytics has examine methods of study replication and anal-
ysis of private data. Berg et al. [39] discussed data sharing
in two case studies of an institution wide project, UvAIN-
FORM, and the Jisc learning analytics architecture which
would share data at the regional or national level between
participating organizations. While these case studies aim to
enable data sharing, it is limited to participants within a closed
group. Gardner et al. [44] proposed the MORF framework to
abstract data from the development of predictive modeling,
allowing researchers to submit their work to a server and eval-
uating the effectiveness on raw MOOCs data that would oth-
erwise not be available for analysis due to privacy restrictions.
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FIGURE 1. Research procedure diagram.

The main aim of the framework is to support replication stud-
ies and transparency for student modeling research. Submis-
sions are made as a batch job in the form of a docker container
image, python controller script, and a job metadata file, with
the results and container image being automatically published
and metrics are sent via email. This enables the analysis and
replication of experiments on sensitive data, however there
are several limitations that still exist, such as: difficulty of use
due to batch submission of experiments as docker containers,
and security issues of handling non-anonymized data. Also,
researchers may have to change their workflow to accom-
modate the requirements of the framework, making it inef-
ficient to conduct analysis. As noted by Fischer et al. [12],
because of the challenges involved in pursuing a collaborative
learning analytics approach, there are few projects where
data is shared by adopting the open science values in an
interdisciplinary team. Addressing these challenges, such as
balancing privacy and data sharing is important because of the
potential that can be achieved through big data in education.

III. METHODS
In this paper, we propose a method of creating a model to
generate synthetic data trained on the characteristics of a
private dataset. As the main objective for using this method is
to broaden the scope of researchers that can have access to and
analyze the data, without impeaching on the personal infor-
mation rights of learners and teachers. An overview of the
research procedure, including the methods and experiments
flow is shown in Figure 1. First, we collect the reading behav-
ior log data and assessment data from the learning systems as
a private dataset that is not shared with third parties. Second,
a generative model is trained on the private dataset, and then
themodel is used to generate the synthetic dataset. The appro-
priateness of the synthetic dataset for predicting academic
performance is then validated. The synthetic dataset is then
distributed to third parties who train prediction models on the
synthetic data. Finally, a comparison of the evaluation of the
models is conducted using the private and synthetic data to
evaluate the effectiveness of using shared synthetic data to
train prediction models.

A. LEARNING SYSTEM FOR DATA COLLECTION
Digital learning material reading systems are a core part
of modern formal education. Recently, in many countries

FIGURE 2. The user interface of the BookRoll digital learning material
reader.

around the world there has been a push toward digitizing
learning materials, and in particular existing paper textbooks
and exercise books. In Japan this has been happening at the
government level, with a plan to deploy nationwide digital
learning material reading systems to compulsory education
and abolishing paper-based textbooks [45]. For this reason,
we decided to focus on reading behavior data as such sys-
tems are playing an increasingly important role in education.
In addition to serving as a learning material distribution plat-
form, it is also an important source of data for learning analyt-
ics into the reading habits of students. The action events of the
readers are recorded, such as: turning to the next or previous
page, jumping to different pages, memos, comments, book-
marks, and markers indicating parts of the learning materials
that are hard to understand or are of importance. The reading
behavior of students has previously been used to visualize
class preparation [45] and review patterns [46]. A digital
learning material reading system can be used to not only log
the actions of students reading reference materials, but also
to distribute lecture slides.

In the present work, the non-proprietary BookRoll digital
learning material reading system [6] was used to serve lecture
materials and capture learners reading behavior for analysis.
As shown in Figure 2, the user interface supports a variety of
functions, including navigation and annotation, audio narra-
tion playback, and features for measuring the learners internal
state through feedback.

Currently, learning material content can be uploaded to
BookRoll in PDF format, and it supports a wide range of
devices, including: notebook computers, tablets, and smart-
phones, as it can be accessed through a standard web browser.
Reading behavior while using the BookRoll system is sent
using the xAPI standard in the form of a pseudonymized
learning event logging and collected in an LRS. Learners
can access BookRoll from the course site on the educational
institutions LMS via LTI (Learning Tools Interoperability).
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TABLE 1. A sample of events recorded from user interaction with
BookRoll.

TABLE 2. Operation names and descriptions for learning behavior
interactions captured with BookRoll.

The data collected by BookRoll is a simple event log of
the users’ interactions with the system, and Table 1 presents
a sample of learner behavior logs that have been extracted
from an LRS into tabular format. This data can be processed
further to extract information about how long learners are
spending on reading and other tasks while using the BookRoll
system [47].

In the logs there are many types of operations which
represent different interactions with the BookRoll system,
for example, ‘‘OPEN’’ means that the student opened an
e-book and ‘‘NEXT’’ means that he or she clicked the next
button to move to the subsequent page. An overview of the
types of operations and description of the interaction that
is represented is shown in Table 2. A system was proposed
by Flanagan & Ogata [6] that defined a framework for a
learning analytics platform that can collect learner behavior
data similar to that which is analyzed in the present research.

The learning system on which the proposed method is
built on focuses mainly on learning, revising, and assessment
which is provided in context within the BookRoll digital
learning material reading system.

B. CHARACTERISTICS OF THE PRIVATE DATASET
The private dataset was collected using the LEAF plat-
form [6] shown in Figure 3 at a secondary school in a math-
ematics class over the course of 4 months in a semester in

FIGURE 3. Overview of the LEAF Platform used for data collection.

FIGURE 4. Distribution and pair plots of academic performance (score)
and frequency of reading behavior operations.

early 2020. All students were provided a notebook computer
to use the system and were able to read the materials in class
and also outside the classroom. The learning materials that
were read using the BookRoll system ranged from textbooks
to teacher created handouts, contents andworksheets. In addi-
tion to the reading behavior data, academic achievement data
of the students in the class during the collection period was
also provided by the school, consisting of periodic tests and
final exam scores. These scores were aggregated using the
method use to calculated a single academic achievement
score by the school that was normalized to a scale from 0 to
100. The reading behavior logs were filtered to remove data
of students that did not consent to data collection, or had
missing academic achievement data due to absences. A total
of 120 students’ data was collected, consisting of 65,387
reading behavior logs.

In Figure 4 the distributions and pair plots of reading
behavior operations and the academic achievement score
from the original data is shown. It can be seen that the scores
have a relatively normal distribution when compared to oper-
ation frequency, which have mainly long tail distributions.
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TABLE 3. Relationship of academic performance (score) and frequency of reading behavior operations.

It should be noted that BookRoll will always record an
‘OPEN’ operation when an ebook is opened from the list of
contents, however if a student completes a reading session
by terminating the web browser it is not possible to record a
‘CLOSE’ operation and therefore there is a large difference
in the frequency of these two operations.

The correlation of academic performance and frequency of
reading behavior operations is shown in Table 3. It should
be pointed out that the only operations that have signifi-
cant weak correlation with academic performance are the
‘OPEN’ and ‘CLOSE’ operations which indicates that stu-
dents who have frequent reading sessions tend to have higher
academic achievement. Some of the significant correlation
between operations could be explained by user interface
design choices, such as ‘SEARCH’ which represents text
searching within a material then ‘SEARCH JUMP’ which
indicates that a user selected a search result.

IV. SYNTHETIC DATA GENERATION
There are several aspects that need to be taken into account
when training a model to generate synthetic reading behavior
data that might otherwise not be applicable in other behav-
ioral or temporal [48] data domains. One such aspect is the
inherent limitations of the material that is being modeled: a
digital learning material that is created in a similar manner to
a traditional book or pdf. For data generation, a generative

model was first trained on the original data. While recent
methods of synthetic data have proposed using deep neural
network-based methods such as generative adversarial net-
works in medical imaging classification [35], these methods
often require a large amount of real data samples to effectively
generate synthetic data. Due to the amount of student data
available in the private dataset, we decided to adapt a first-
order Markov model from the Pomegranate python pack-
age [49] to the task of generating reading behavior data as
similar methods have been successfully applied to synthetic
data generation in previous research [38].

Actions by the learner were represented as states in the
Markov model and transition probabilities between states
were learned from the original data. Reading sessions in
the original data were extracted by detecting the ‘OPEN’
and ‘CLOSE’ events, periods between events that are longer
than 20 minutes, or a change in the learning material that
is being read. The beginning and finish of sessions were
represented by the ‘Start’ and ‘End’ states in the Markov
model respectively. For each student in the synthetic data
simple attributes such as the timestamp of the last event
generated are used to inform the timing of consecutive events.
Timestamps for each reading behavior event are generated
using Monte Carlo sampling to ensure that the distribution of
the generated values resembles that of the original data. For
example, when a reading session begins, the initial timestamp
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FIGURE 5. Overview of the synthetic data generation model.

is selected based onMonte Carlo sampling of the time of day,
day of week from the last event timestamp for the student.
Subsequent events timestamps are generated depending on
the state of theMarkovmodel and the distribution of the asso-
ciated the timestamps from the original data. Figure 5 shows
an overview of how theMarkovmodel and timestamp genera-
tion was constructed, with each state generating a time stamp
based on the previous state before the transition. As the target
of the data generation is to predict the academic achievement
based on reading behavior, the transition probabilities of
the model were also determined according to the score that
was generated for the particular student, thus capturing the
differences in reading behavior of students at different levels
of academic achievement.

A. FITNESS OF GENERATED SYNTHETIC DATA FOR MODEL
TRAINING
To verify that the generated synthetic data is a viable alterna-
tive to the private dataset for training models, we evaluated
the difference in performance of a model trained on the
original data and compared it to the performance of a model
trained on the generated synthetic data. In both cases the
model performance was assessed by predicting the academic
achievement from student data in the holdout dataset from the
private data.

We based the model on previous research that predicted
academic achievement from reading behavior data in the
higher education context. Akçapınar, et al. [50] evaluated
the performance of 13 prediction algorithms on aggregate
features from log data and found that RandomForest had high
accuracy in predicting academic achievement, and this has
also been confirmed in similar studies that analyzed learning
interaction data [25], [22], [19]. Based on this, we decided
to train Random Forest regression models to compare the
performance of using synthetic and real training data.

The features shown in Table 4 were generated from the
raw log data, and the aggregate counts were normalized by
percentile rank PR for each student as shown in the equation
below, where fb is the number of students with values less
than the single student’s value of the percentile rank, fw is the
number of students with values the same value as the value of
the single student’s percentile rank, and N is the total number
of values.

PR =
fb + 1/

2fw
N

(1)

TABLE 4. Description of aggregate features [41].

TABLE 5. A preliminary comparison of the performance of Random
Forest regressors trained on original and synthetic data.

To evaluate the performance of the models RMSE of the
predictions was averaged using 5-fold stratified cross valida-
tion over 20 randomized trials as proposed by Japkowicz &
Shah [51]. Further, we conducted a t-test on the results of the
randomized trials to test the significance of the predictions
from the models trained on private and synthetic data as
shown in Table 5. The private data trained model (M =

23.10, SD = 2.17) compared to the synthetic data trained
model (M = 23.58, SD = 1.21) indicate that there was no
significant difference of predictive performance measured by
RMSE when evaluated over 20 randomized trials, t(19) =
−1.08, p = 0.29. The model trained on the private data has
a marginally but not significantly better performance than
that of the synthetic data model, and therefore confirms that
the synthetic data can be a viable alternative for training a
Random Forest model to predict academic achievement on
private data.

B. SYNTHETIC DATA DISTRIBUTION
A synthetic dataset consisting of 12.6 million generated read-
ing behavior interaction logs from 10,000 unique students
was distributed to 60 registered participant teams as part of
a data challenge. Figure 6 is an overview of the types of data
that were distributed to the teams, including both the reading
activity log data, final exam score data and small subsets to
be used as test data. A holdout dataset was not distributed
to participants, and was used to evaluated the performance
of submitted models. Participating teams ranged from higher
education research institutes to private sector ICT and EdTech
companies involved in providing proprietary digital learning
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FIGURE 6. Overview of data generation and types of data distributed.

FIGURE 7. Distribution of participant association (n = 60).

platforms, and the distribution of the participants association
is shown in Figure 7.

Over the span of the data challenge, teams were encour-
aged to submit their models as docker containers for evalu-
ation on a synthetic holdout dataset that was not released to
participants, and evaluation submissions were limited to once
every 24 hours to limited the ability to tune the results for the
specific evaluation. The directory structure was based defined
as shown in Figure 8 to ensure compatibility when testing and
replicating the evaluation of the submission on held-out data
at two difference higher education institutions. The design
of the container layout was based on that proposed for the
MORF framework [44], and modified it to suite the data
structure and data challenge requirements, such as: automated
testing and evaluation at scale. The container structure allows
for easy substitution of data by utilizing dockers files system
mount feature to inject external fileswithout having tomodify
the container directly. The app directory contains two shell
files evaluate.sh and train.sh that can be run to perform a
model evaluation or training respectively. Model files from
training can be saved in the model directory for evaluation at
a later time. The data directory contains three different types
of data: evaluate data which is analyzed to predict student
performance, resultwhich contains the model prediction out-
put, and source which holds synthetic data that is analyzed to

FIGURE 8. Standardized file structure of submission docker image.

train a prediction model. The schema for the EventStream.csv
and QuizScore.csv files are shown in Table 6 and 7. It should
be noted that the QuizScore.csv file in the evaluate directory
does not contain any values for the score column. The out.csv
file which contains the predictions of student performance
should be output in the same order as the userid in the
evaluation QuizScore.csv file.

V. EXPERIMENT
One of the primary goals of predicting academic performance
based on learner behavior logs is to identify underperforming
students that require intervention support [16], [42]. It is
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TABLE 6. The schema of the EventStream.csv file.

TABLE 7. The schema of the QuizScore.csv file.

beneficial for an intervention to be carried out as soon as
possible, and therefore models should be evaluated at dif-
ferent points in time during the course, and typically this
is defined as a fixed period in relation to the duration of
the course. Previous research on predicted academic per-
formance from reading behavior data has found that model
accuracy increases fromweek 3-5 onwards in 15-week higher
education courses [50], [52]. Based on this it was decided
that the model evaluation should be carried out at 5-week
intervals from the start of the course to measure the effec-
tiveness of models to predict academic performance. The
model evaluation was performed by RMSE of the predicted
score using data up to the 5th, 10th and 15th week of the
data collection period. To evaluate the overall performance
of models, the mean of the RMSE for all evaluation periods
was calculated. The mean RMSE results of the evaluation
were provided on a public leaderboard in the data challenge
to encourage competition between the teams. The final data
challenge evaluation results were confirmed at two Japanese
national universities.

To measure the effectiveness of training models on syn-
thetic data for real-world academic performance prediction,
we designed a post-hoc test using the top 10 performing
models from the data challenge as they had similar or better
performance than the baseline Random Forest model used to
assess the fitness of synthetic data. The pretrainedmodels that
were submitted by teams in the data challenge were evaluated
both on a synthetic and original private dataset to measure the
difference in performance. A large difference in performance
between the synthetic and original private dataset indicates
that using synthetic data to train models was not effective.
Conversely, if there was little difference in prediction perfor-
mance then training a model on synthetic data could be seen
as an effective method of sharing sensitive private datasets.

TABLE 8. The performance of each model by RMSE for evaluation on the
synthetic holdout dataset and the original private dataset, ordered by
average performance on the synthetic dataset.

The performance of the models on synthetic and original
private datasets is carried out for individual predictions at
5, 10, and 15 weeks of data, and the overall average of the
performance for all periods.

VI. RESULTS
The top 10 performing models submitted by participating
teams were selected from the final evaluation of the data chal-
lenge, with most models performing better when evaluated on
synthetic data than the baseline Random Forest model trained
on aggregate features as mentioned in the methods section.
The results of the comparison between models from the top
10 teams using the synthetic data and actual data are shown in
Table 8, with the left half representing the final data challenge
results that were evaluated on a synthetic holdout dataset,
and the right half the performance of the same models when
predicting academic achievement of students in the original
private dataset.

Team 1 achieved an average of 10.89 on the synthetic
holdout dataset, with performance at the 5th and 15th week
being better than at the 10th week. It should be noted that
models from most other teams also have similar fluctuations
in the three prediction evaluations. However, when the same
model that was trained on the synthetic dataset is use to
predict the academic achievement of students in the private
dataset the evaluation is markedly worse with a mean RMSE
of 23.85 which is comparable to the baseline Random Forest
model trained on aggregate features. The top 3 scoring teams
were asked to explain the methods they used to take the
prediction problem at the data challenge results presentation.
Team 1 indicated that they employed aggressive feature selec-
tion on sequence features based on n-grams and data sam-
pling techniques to achieve their final model. The remaining
2 teams fitted neural network models for each of the three
time periods and selected the model to be applied based on
analysis of period to which the input data belonged. The
disparity between the results is also present in the evaluation
of other models as well.

Team 8 has the most consistent results with the difference
between the average performance on the synthetic and private
dataset being less than 1 RMSE. It should also be noted that
this model also had the best performance of all of the models
submitted by teams on the private dataset. Compared to other
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teams, the model from team 8 is relatively simple, consisting
of a scikit learn linear regression model trained on aggregate
feature frequency that is similar to the Random Forest model
used to verify the usefulness of the synthetic data. Minimal
optimization of the model is also performed, and therefore
increases its generalizability to datasets other than those on
which the model was trained.

VII. DISCUSSION AND LIMITATIONS
Over the last half decade within the learning analytics com-
munity there has been discussion on how research should
not promote the one size fits all approach to predicting aca-
demic success, and instead opting for models that are tailored
for specific courses and learning design [53]. The results
presented in the present paper also highlight the need for a
balance between prediction performance and generalization
of models when using synthetic data. This is particularly
apparent from the disparity in results of participants models
when tested on the synthetic and private datasets. A range of
techniques were employed by teams to enhance the prediction
performance of models, and this led to unintended conse-
quences such as selecting models that were inappropriate for
the input data from a multi-model method. Also, the selection
of features that are optimal for the data inwhich that are fit for,
but inflexible when applied to unseen datasets. In particular,
the use of features that are specifically coded for learning
materials or tasks that might be transient in nature, such as
teacher made handouts that could be specific to a learning
design. This result suggests that it could bemore applicable to
identify reading behavior associated with particular learning
materials by their semantic role in the learning design, for
example the knowledge or topic which the learning mate-
rial covers. This could allow for features that have seman-
tic meaning and could be applicable to a wider range of
course and learning designs. To assist in the generation of
such features, data challenges or published datasets could
provide a list of knowledge, topics and tasks which are asso-
ciated with learning materials that were read, thus potentially
providing greater flexibility of analysis and further insights
that would not otherwise be possible. These suggestions are
also similar to that of Pelánek, Rihák, & Papoušek [54],
who highlighted the impact that data collection and publi-
cation, implementation, and evaluation can have on student
models.

The results of this research have important implications
for collaborative learning analytics researchers when design-
ing data sharing methods using synthetic data techniques.
While this method offers a way to share datasets within the
research community, appropriate precautions should be taken
to ensure that artifacts from analyzing synthetic data, such
as models, are validated against private data to verify valid
predictions. It may also be necessary to recalibrate models by
retraining on private data before it is put to use in real world
learning systems. The implementation of data challenges
to promote development within the research community by
using synthetic data should also consider periodic validation

by both synthetic and private data. This will help to detect and
avoid possible problems in inflexible model designs as seen
in this research. As more studies into the use of synthetic data
are conducted, a set of guidelines for model designs could be
drawn from these experiences to help inform future research
into educational predictive modeling.

It is important to note that the present study has several lim-
itations. Firstly, the studywas conductedwith a homogeneous
dataset from several classes over a period of 4 months in a
mathematics course, and therefore the analysis could be influ-
enced by the learning design or domain specific characteristic
of the course. A more diverse dataset from several courses
might mitigate such issues, however it could also introduce
additional challenges in reliably generating synthetic dataset
from a heterogeneous private dataset. Courses from different
domains and learning design could vary widely in the number
of materials that are provided on the reading system, such as:
a teacher using the system to distribute handouts to the class
each lesson, or providing a large number of reading materials
for exercises such as extensive reading [55].

Secondly, due to the nature of many of the model sub-
missions, unfortunately it was not possible to retrained all
of the models using the private dataset. This was due to
model programs containing functions that implemented data
depended processing that caused errors or abnormalities dur-
ing the process. Problems encountered ranged from hard
coded reading material IDs, predetermined sets of features,
sampling, to pretrained models that could not be retrained
on unseen datasets. Retraining models on the private dataset
could possibly have overcome the reduction in prediction
performance, however the data challenge was conducted
only using synthetic data. Retraining on the private dataset
could also inhibit data specific tuning during the process and
highlights an important problem for the field: the transition
from data challenge models where performance is optimized,
to real world use where generalization is important to ensure
usable predictions frommodels. Therefore, it would be advis-
able to design data challenges or processes where third parties
analyze synthetic data in a way to mitigate possible problems
in real world application, such as: the requirement for models
to be retrainable on unseen data without manual tuning or the
use of heuristic methods that could be rendered invalid under
unexpected conditions. In the design of a data challenge, this
could involve check point evaluations on a private dataset
in addition to frequent evaluations that were provided to
participants in this study. This could help to uncover problems
with the possible real-world adoption and generalization of
models designed on synthetic data while protecting the details
of the private dataset from being revealed.

VIII. CONCLUSION
This study investigated reducing limitations that are placed
on private datasets by implementing real-world synthetic data
sharing for the learning analytics task of predicting student
academic performance. A method of generating educational
synthetic data for a digital learning material reading system
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was proposed. A preliminary evaluation using a Random
Forest model was conducted to verify the suitability of the
synthetic data for training prediction models. It was found to
not be significantly different from the performance of amodel
trained on the original private dataset.

A data challenge was conducted and third party partici-
pating teams were encouraged to submit docker containers
containing their prediction model for evaluation. A standard
structure of the container was implemented for reproducibil-
ity and to enable scaled-up automated evaluation. The data
challenge showed promising results when evaluation was
conducted on the holdout synthetic data.

However, many of the top performingmodels from the data
challenge did not perform so well when predicting academic
performance on data from the original private dataset. This
highlights a possible limitation of using synthetic data sharing
with third parties for the purposes of developing and con-
structing academic performance prediction models. Some of
these limitations could be mitigated to some extent through
the implementation of periodic checkpoints to verify how
models generalize and transfer to original private datasets.
Also, some considerations for model design, such as: avoid-
ing the selection of a static set of limited features that inhibit
generalization of the model.

The study presented in this paper focused on digital mate-
rial reading system behavioral data, and there is much scope
in future work for implementation of similar techniques and
recommendations from findings in this paper to be applied
to other parts of learning systems. The suggested use of
methods for synthetic data sharing in collaborative learning
analytics, such as periodic private data checkpoint validation,
should be further investigated to determine the effective-
ness in mitigating overfitting to synthetic data. As research
into synthetic educational data is still in the early stages,
further investigation into synthetic data generation methods
is required, in particular the use of Generative Adversarial
Networks that have produced promising results in other fields
for large private datasets [35]. However, it is important to take
into consideration the nature of the learning systems when
designing synthetic generation models and this will require
further investigation to identify suitable methods. Finally,
methods of synthetic data sharing that have been shown to
be effective through empirical evaluation could be integrated
into existing learning analytics platforms at various levels
to systematically support the sharing of data. This could
improve access to critical data for research by third parties
for the betterment of education and further development of
the educational data mining and learning analytics research
communities.
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