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Abstract

Optimal shapes are found for reduced beam section of a cantilever H-beam subjected to forced

cyclic displacement at the free end. The beam is discretized to finite elements, and a commercial

software package called ABAQUS is used for elastoplastic analysis. The numerical results are

first compared with experimental results to verify the accuracy. The objective function to be

maximized is the dissipated energy throughout the loading history. The constraint is given

for the maximum equivalent plastic strain at the welded section. Global optimal solutions are

searched by a heuristic approach called simulated annealing, which is successfully combined

with ABAQUS. It is shown that the energy dissipation capacity is significantly improved by

optimizing the flange shape.
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1 Introduction

Most of the optimization approaches for steel frames are concerned with stiffness de-

sign of beams and columns, where the cross-sectional properties are considered as design

variables. Elastic responses such as stresses and displacements under static loads are usu-

ally considered as design constraints. However, it is possible to optimize the cross-sectional

properties of members to maximize plastic energy dissipation under seismic excitations [1].

On the other hand, in the fields of mechanical engineering and aeronautical engineering,

shapes of structural components or parts, such as airfoil wing of aircraft and engine mount

of automobile, are optimized using finite element discretization [2, 3]. However, in these

studies, only elastic responses are considered.

In the 1994 Northridge earthquake, we experienced serious damage to steel moment-

resisting frames mainly due to brittle fracture near the beam-to-column flange groove

welds. In response to such damage, a wide variety of connection concepts have been

developed and revisited [4, 5]. Among them, the Reduced Beam Section (RBS) connection

attained much popularity, particularly in the West Coast of U.S. A significant amount of

research has already been conducted including the tests on RBS connections with constant

cuts and tapered cuts prior to Northridge earthquake [6, 7], and the tests and analyses

on RBS connections including circular cut after the earthquake [8–12]. Shen et al. [13]

investigated the seismic performance of a frame with RBS. Kassegne [14] developed a

finite element model for a beam with RBS.

In an RBS moment connection, portions of the beam flanges are selectively trimmed

to force a plastic hinge to be located within the reduced section, and thereby reduce the

likelihood of fracture occurring at the beam-to-column flange groove welds. Optimizing the

shape of the RBS cut can increase the energy dissipation capacity of the connection, and

further minimize the likelihood of fracture in the flange by realizing widely distributed

plastification with less maximum plastic strain. According to a summary of the tests
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before 2000 [15], the circular cut tends to minimize stress concentration compared with

the constant cut or tapered cut, both of which have reentrant corners. However, most of

the investigations on optimization of cutout shape up to date are based on predetermined

shapes [16]. Pan et al. [17] investigated optimal flange shape under monotonic loads.

However, for application to seismic design, cyclic loads should be considered.

Optimization of elastoplastic structures has been extensively investigated in 1990s in-

cluding sensitivity analysis of path-dependent problems [18–21]. Approximation methods

such as response surface method are currently applied to an elastoplastic optimization

problem, because it usually has multiple local optima and application of gradient-based

approach is not desirable.

Heuristic approaches have been developed to obtain approximate optimal solutions

within reasonable computational time, although there is no theoretical proof of conver-

gence [22]. The most popular approach is the genetic algorithm, which is a multi-point

method that has many solutions at each iterative step called generation. Since compu-

tational cost for function evaluation is not small for structural optimization problems, a

multi-point strategy may not be appropriate especially for structures with large degrees

of freedom under path-dependent constraints.

Simulated Annealing (SA) is categorized as a single-point search heuristic approach

that is based on local searches and improves ability of finding global optimal solution

by allowing the move to a non-improving solution with a specified probability [23]. SA

has been successfully applied to many structural optimization problems [24, 25], and is

applicable to both problems with continuous and discrete variables.

Shape optimization of continuum structures has been investigated mainly for elastic

problems. It is well known that the optimal boundary shape may not be smooth due

to numerical instability if the locations of all the boundary nodes of the finite elements

are considered as independent variables [26]. Therefore, smoothing by Bézier curves or

B-spline curves has been presented using the techniques of computer-aided geometrical
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design [27], which are widely used for shape optimization of curved surfaces [28].

In this paper, we present a method of optimizing shapes of reduced beam section based

on SA, which is successfully combined with a commercial finite element analysis software

package called ABAQUS [29]. The objective function to be maximized is the dissipated en-

ergy under cyclic static load. Constraint is given for the maximum equivalent plastic strain

along the welded section at the beam-to-column connection. It is shown in the numerical

examples that the energy dissipation capacity under cyclic loading can be significantly

improved by optimizing the shape of the flange.

2 Optimization problem and flange model

Consider a cantilever beam discretized to finite elements, which represents a half of a

beam in a frame. The free end corresponds to the inflection point at the mid-span of the

beam. Optimal flange shapes are to be found under cyclic static loading condition defined

by forced displacement at the free end.

The shape of flange is defined by a cubic spline curve, and the design variables are

the locations of the control points. Let y denote the vector consisting of the variable

coordinates of the control points. The upper and lower bounds for y are denoted by yU

and yL, respectively. In the following, a component of a vector is indicated by subscript;

e.g., y = (y1, . . . , ym), where m is the number of design variables.

The objective function is the dissipated energy throughout the loading history, which is

denoted by E(y) as a function of y. Since the loading is given as a forced displacement, an

unfavorable local plastification can be avoided by maximizing E(y). The upper bound ε̄p is

given for the maximum equivalent plastic strain εp among the elements along the fixed end

to prevent fracture at the beam-to-column flange groove welds. Hence, the optimization
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problem is formulated as

maximize E(y) (1)

subject to εp(y) ≤ ε̄p (2)

yL
i ≤ yi ≤ yU

i , (i = 1, . . . , m) (3)

In the numerical example, optimal flange shapes are to be found for a cantilever beam

with a cross-section of H-300×150×6.5×9. The length L of the cantilever beam is 1218

mm. Hence, the span-height ratio of the beam to be simulated is 1218× 2/300 = 8.12.

Fig. 1 shows the normal flange shape. The flange width is to be varied at the 450 mm

region from the welded section. The control points for the cubic spline curve are given

as shown in Fig. 1. The (x, y)-coordinates (mm) of the points 0, 1, 2 and 7 are fixed at

(0.0,75.0), (25.0,75.0), (50.0,75.0) and (450.0,75.0), respectively. The points 3–6 can move

only in y-direction, and their x-coordinates are fixed at 130, 210, 290 and 370 (mm),

respectively. Therefore, the number of design variables is 4 considering the symmetry

condition with respect to the x-axis. The upper and lower bounds of the variables are

75.0 mm and 25.0 mm, respectively; i.e., only reduction is allowed for the flange width at

the control point. However, the width between the control points may slightly increase as

a result of cubic interpolation.

The history of the average deflection angle θ under cyclic forced displacement at the

free end is specified as shown in Fig. 2. The elastic modulus is 2.05 × 105 N/mm2 and

Poisson’s ratio is 0.3. Elastoplastic analysis is carried out by ABAQUS Ver. 6.5.3 [29].

S4R, which is a 4-node quadrilateral thick shell element with reduced integration and a

large-strain formulation, is used, and a combined nonlinear kinematic-isotropic hardening

with Ziegler’s rule is adopted. The total numbers of elements and degrees of freedom of

displacements are 1200 and 7650, respectively, for the RBS models for optimization.
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3 Verification of finite-element analysis

Before carrying out numerical optimization, the results of finite element analysis is com-

pared with experimental results for verification of accuracy of the finite element model.

Fig. 3 shows the geometry of the specimen as well as the locations of the loading and

measuring devices. The vertical beam, for which the flange shape is to be varied, is sup-

ported by a pair of horizontal columns, which has the cross-section of H-250×250×9×14.

The measured thicknesses of the flange and web of the beam are 8.8 mm and 6.35 mm,

respectively. The horizontal columns are pin-supported at the two ends, and the forced

displacement is applied at the top of the vertical beam using a 1 MN capacity hydraulic

jack. Out-of-plane movement is prevented by lateral restraints at the endplate close to

the loading point. The displacements d1, . . . , d5 are measured as indicated in the figure.

The material properties of beam and columns are listed in Table 1, and the results of

monotonic coupon test for the flange and web of the beam are shown in Figs. 4(a) and

(b), respectively. The dotted and solid lines in Figs. 4(a) and (b) show the relations be-

fore and after interpolation near the yield point. The interpolated approximate data are

assigned to ABAQUS, which automatically identifies the nonlinear hardening parameters.

Note that the data have been interpolated so that the stress is an increasing function of

the plastic strain, because otherwise parameter identification by ABAQUS failed.

In the experiment, the rotation θJ of the joint is canceled to compute θ as

θ =
d1 − (d2 + d3)/2

L
− θJ (4)

where θJ is given as

θJ =
d4 − d5

H
(5)

with H = 291 mm as indicated in Fig. 3.

The locations of the control points 3–6 of the three specimens are shown in Table 2, and

the finite element models for verification of numerical results are shown in Fig. 5(a)–(c).
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The width exceeding the normal value 150 mm due to cubic interpolation is truncated at

150 mm. The relations between the average deflection angle and the applied load by the

experiment are plotted in dashed lines in Fig. 6(a)–(c).

The relations between the average deflection angle and the applied load by numerical

analysis are plotted in solid lines in Fig. 6(a)–(c). Good agreement can be observed between

experimental and numerical results for the overall relations between the load and the

average deflection angle.

The strains in the compressive flange in x-direction at the load level 20, 40, 60, 80 and

95 (kN), before the initial peak at t = 0.125 in Fig. 2, are plotted in Fig. 7(a)–(c). Note

that the load at t = 0.125 of Shape 3 is about 98 kN. The strain gages are mounted on the

beam flange at the points (1)–(6) indicated in Fig. 5(a). It can be seen that the strains

near the fixed end of Shapes 2 and 3 are below yield strain. The largest strain is observed

at point (3) in the region of reduced section of Shape 3 that has the smallest width among

the three cases.

4 Simulated annealing

SA is an optimization algorithm categorized as a statistical search method. It is based

on the local search and prevents convergence to a local optimal solution by allowing

the move to a solution that does not improve the objective value. The term simulated

annealing comes from the fact that it simulates the behavior of the metals in annealing

process.

In this paper, the SA for continuous variables by Goffe et al. [30] is used. The main

feature of this method is that it controls the size of the most promising area defined

by the vector s = (s1, . . . , sm) composed of maximum distance for each variable to the

neighborhood solutions, which is initially moderately large, and gradually reduced to reach

the global optimum. The speed of reduction is controlled by a parameter NS as described
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below.

The constraint εp ≤ ε̄p is incorporated by a penalty function approach. Let η (> 0)

denote the penalty parameter. The objective function is transformed to Ẽ as

Ẽ(y) = E(y)− η max(0, εp(y)/ε̄p − 1) (6)

The algorithm is summarized as follows, where the superscript ( · )(k) denotes a value at

the kth iteration:

Step 1 Specify the parameters NS, NT, µ, η, the scaling parameter c for the temperature,

and assign the initial values for s and the temperature parameter T . Note that NT

and µ control the speed of reduction of T . Randomly generate the initial values y
(0)
i

(i = 1, . . . , m) of the variables, and set the iteration counter k = 0.

Step 2 Choose i ∈ {1, 2, . . . , m} and generate a random number ri ∈ [0, 1) to obtain a

neighborhood solution y∗ of the current solution y(k) by modifying the ith variable as

y∗i = y
(k)
i + (2ri − 1)si (7)

If y∗i < yL
i or y∗i > yU

i , assign a randomly selected value for y∗i satisfying yL
i ≤ y∗i ≤ yU

i .

Define ∆Ẽ = Ẽ(y∗)− Ẽ(y(k)). If ∆Ẽ > 0, let y(k+1) = y∗. Otherwise, accept y∗ by the

probability P defined as

P = exp

(−∆Ẽ

cT

)
(8)

Update the counter as k ← k + 1, and carry out this step m times for i = 1, 2, . . . , m.

Step 3 At every mNS function evaluations, decrease each component of s as described

below.

Step 4 If the number of function evaluations at the same temperature level exceeds

mNTNS, decrease the temperature parameter as T ← µT .

Step 5 Go to Step 2 if the stopping criteria are not satisfied. Otherwise, output the best

solution satisfying the constraint, and terminate the process.
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The parameter si is adjusted as follows so that about 50% of neighborhood solutions

are accepted:

Step 3.1 Let NA
i denote the number of trials accepted for modification of yi. Let Ri =

NA
i /NS (i = 1, 2, . . . , m).

Step 3.2 For each i ∈ {1, 2, . . . , m}, multiply si by λi, which is defined as

λi =





1 + 2(Ri − 0.6)/0.4 for Ri > 0.6

1/(1 + 2(0.4−Ri)/0.4) for Ri < 0.4
(9)

If si > yU
i − yL

i , replace si by yU
i − yL

i .

The idea is that if T is large relative to yU
i − yL

i , the neighborhood solution for most case

will be accepted, forcing si to increase. On the other hand, si decreases as T is reduced

to maintain about 50% acceptance ratio. When T decreases to a small value, the local

search can be done in the most promising small area for global optimum.

5 Optimization results

Optimal shapes of reduced beam section are found for a cantilever H-beam subjected to

cyclic loading condition defined in Fig. 2. The detailed geometry and material properties

have been shown in Sections 2 and 3.

The parameters for SA are NT = 2, NS = 20, µ = 0.85, c = 100 and the initial

temperature is 1.0. The value of the penalty parameter η is set so that the magnitude

of the penalty term in (6) is about 10-times as large as the possible value of E at the

initial temperature. The initial value of si is 10.0. These parameters have been adjusted

by several trial runs. If the search region becomes small too rapidly, then the value of NS

should be increased. If too many non-improving solutions are accepted, the value of NT

should be decreased. The stopping criterion is given such that the improvement of Ẽ is less

than the small value 0.1 within consecutive four steps of decreasing the temperature. The
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ABAQUS analysis is iteratively called from the SA algorithm. See Appendix for details.

A personal workstation with AMD Opteron 2.6 GHz (2 CPUs), 2GB RAM is used for the

computation.

Response of the beam with normal flange (referred to as Case 0 hereafter) is first

computed to determine the upper-bound values for the optimization problem. Let ε̄p0 =

0.47342 denote the maximum equivalent plastic strain among the elements along the fixed

end. We generate optimal shapes for the two cases as

• Case 1: ε̄p = ε̄p0/10 = 0.047342

• Case 2: ε̄p = ε̄p0/50 = 0.0094683

The optimal shapes for Cases 1 and 2 are shown in Figs. 8(a) and (b), respectively.

The y-coordinates y3, . . . , y6 of the control points 3–6 of the normal and optimal shapes

are listed in Table 3. Basically, the optimal shapes share a similar pattern featured with

a single concave region, which has two functions: (1) shift the maximum deformation

demand from the welded section to a middle section, and (2) increase the plastification

area throughout the specified loading history.

The dissipated energy E and the maximum equivalent plastic strain εp are listed in

Table 4 for Cases 0–2. It is seen from this table that the dissipated energy decreases with

the decrease of allowable maximum equivalent plastic strain. This is quite reasonable from

optimization point of view; i.e., the objective function is smaller for stricter constraints

in a maximization problem. It is seen that the dissipated energy of Case 0 is not much

different from those of Cases 1 and 2, whereas its maximum equivalent plastic strain is

significantly larger than those of Cases 1 and 2. For instance, almost the same (with a

difference of about 1.6%) dissipated energy of Case 0 is achieved by the optimal shape for

Case 1 with less than 10% of εp.

Figs. 9(a)–(c) show the distributions of the von Mises stress for Cases 0–2, respectively,

at time t ' 1.875 corresponding to θ = −0.04. Figs. 10(a)–(c) show the distribution of
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the equivalent plastic strain at the final state also for Cases 0–2, respectively.

In Figs. 9 and 10, darker color represents larger values. As is seen, the maximum equiv-

alent plastic strain of Case 0 exists at the welded section, whereas it is successfully shifted

to the middle section at the concave region for Cases 1 and 2. The distribution of the von

Mises stress shows that the lengths of the plastified region of Cases 1 and 2 are larger

than that of Case 0. This is particularly because the optimal concave shape allows larger

plastified region by realizing a smooth deformed shape against the specified average de-

flection angle. Owing to the enlarged region, the total plastified areas of Cases 1 and 2

are not much smaller than the area of Case 0, although the concavity decreases the flange

width of the plastified region.

It should also be noted from Fig. 8 that the optimal shapes of reduced beam section

depend on the value of ε̄p. Obviously, larger reduction of the flange width is needed for

smaller value of ε̄p to suppress the deformation at the welded section for the specified

history of deflection at the free end. The value of ε̄p in practice can be defined by the

design criteria along with the concept of the performance-based design.

To further demonstrate the effect of flange shape optimization, the values of E and θ of

the normal beam considering the upper bounds 0.047342 and 0.0094683 for εp are listed

in Table 5, where the time at which constraint is satisfied in equality is also listed. It can

be observed by comparing Tables 4 and 5 that the dissipated energy of normal beam is

far smaller than that of an optimal beam for the same value of ε̄p. For ε̄p = 0.0094683;

e.g., the dissipated energy is about 1.5% of the optimal value (Case 2 in Table 4). Hence,

the energy dissipation capacity and deformation capacity are significantly increased by

optimization.

The reaction forces of the normal and optimal beams are plotted in Fig. 11 with respect

to the average deflection angle. It can be confirmed that a smaller ε̄p leads to a weaker

beam in terms of initial stiffness and strength. However, the initial stiffness and final

strength are only slightly reduced by optimization.
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The convergence property of the objective function is shown in Fig. 12 for Case 2. As

is seen, a large reduction of the objective value is allowed in the initial stage, and the

objective value gradually converges to the optimal value. Note that a good approximate

solution is found in about 300 analyses. The optimization process is terminated at 3000

analyses, and the elapsed time for optimization is 144 hrs. The average CPU time for one

analysis is 170 sec. The time for preprocess, postprocess, ABAQUS license checking, and

SA algorithm are very small, and almost all of the elapsed time is used for analysis.

6 Conclusions

Optimal shapes of reduced beam section have been found for a cantilever H-beam

subjected to cyclic static forced displacement at the free end of the cantilever beam. The

objective function to be maximized is the plastic dissipated energy. The constraint is given

for the maximum equivalent plastic strain at the welded section (fixed end) at the final

state.

The accuracy of the numerical results by finite element analysis has been verified in

comparison to the experimental results. It has been shown that the optimal shapes can be

successfully obtained by SA in conjunction with a commercial finite element analysis code.

The optimal shape strongly depends on the upper bound of the equivalent plastic strain,

which is to be specified in practice based on the performance required for each frame. The

energy dissipation capacity can be significantly improved by optimization compared with

the normal beam with uniform flange width.
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Appendix

The procedure for connecting ABAQUS and the SA program is described below.

As shown in Fig. 13, the SA program generates new coordinates of the control points,

which are the design variables of the optimization problem. This information is transmitted

to ABAQUS preprocessing module that creates the beam model. The entire preprocessing
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module is controlled by a Python script language [31] that serves as the programming

interface of ABAQUS. The control script consists of the following six steps:

(1) Two parts, i.e., a flange part and a web part, are created. The cutout shape of the

flange is determined using a cubic spline curve in reference to the control points.

(2) Materials and section geometries are defined, and assigned to respective parts.

(3) Two instances of the flange part, which represents the upper and lower flanges, and

a instance of the web part are imported to form an assembly. The assembly is further

merged to a single beam assembly.

(4) Boundary and loading conditions are defined for the analysis.

(5) The beam assembly is discretized to S4R quadrilateral shell elements.

(6) An analysis job is submitted to ABAQUS.

In the analysis, ABAQUS/Standard is used for solving the problem defined in the ‘.inp’

file created by ABAQUS preprocessing module. An ‘.odb’ file, which contains the analysis

results, is generated. A postprocessing module also written by the Python script language

is used to extract the necessary data such as the dissipated energy and the maximum

equivalent plastic strain near the beam-column connection from the ‘.odb’ file. The data

are returned to the SA program for the new round of iteration.
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Fig. 6. Load-deflection relation by experiment and numerical analysis.
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Table 1. Material properties of the beam and columns.

yield stress tensile strength maximum elongation
(N/mm2) (N/mm2) (%)

beam flange 365 467 25.0
H-300×150×6.5×9 web 393 479 19.0

column flange 276 433 32.5
H-250×250×9×14 web 298 443 30.5
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Table 2. (x, y)-coordinates (mm) of control points of the experimental models.

Point 3 4 5 6
Shape 1 (130.0,75.0) (210.0,75.0) (290.0,75.0) (370.0,75.0)
Shape 2 (130.0,75.0) (210.0,57.0) (290.0,74.8) (370.0,74.8)
Shape 3 (130.0,62.3) (210.0,47.7) (290.0,70.8) (370.0,74.9)
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Table 3. y-coordinate (mm) of the control points of the normal and optimal shapes.

y3 y4 y5 y6

Case 0 75.0 75.0 75.0 75.0
Case 1 74.528 47.150 71.012 72.681
Case 2 70.766 37.990 74.135 71.916
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Table 4. Dissipated energy E and maximum equivalent plastic strain εp at the connection.

Case ε̄p E (kN ·mm) εp

Case 0 — 47611 0.47342
Case 1 0.047342 46828 0.030721
Case 2 0.0094683 42531 0.0083073
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Table 5. Dissipated energy E of the normal beam considering the upper bound εp for the maxi-
mum equivalent plastic strain at the fixed end.

ε̄p E (kN ·mm) time
Case 1 0.047342 4714.5 0.72422
Case 2 0.0094683 701.54 0.30078
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