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 17 

Abstract 18 

 Viruses infecting microorganisms are ubiquitous and highly abundant in 19 

aquatic environments. They considerably affect the dynamics, diversity, and evolution 20 

of their host microorganisms. In this review, we discuss the ecological implications of 21 

viruses from the perspectives of the biogeochemical cycles, microbial diversity, and 22 

virus–host coevolutionary dynamics in aquatic environments. Generally, viruses redirect 23 

host metabolism toward reproduction through molecular host–virus interactions 24 

characterized by the compositional and stoichiometric changes in intracellular 25 

metabolites, which are eventually released into the environment when the infected host 26 

cells are lysed, thus also changing the chemical composition of the water. Therefore, the 27 

modulation of metabolite biosynthesis and promotion of their recycling are major viral 28 

functions. Viruses also maintain microbial community diversity via increased infection 29 

and lysis rates of the dominant taxa and genotypes in a frequency-dependent manner, 30 

thereby allowing the co-existence of members with various competitive abilities. Finally, 31 

viruses can expand their own genotypic diversity and that of the host through complex 32 

defense and counter-defense interactions, including loss of host fitness due to the cost of 33 

resistance and the possible need for antiviral defense-specific (e.g., intra- vs. 34 

extracellular) changes in the hosts genome diversification. Continuous interactions drive 35 



3 

 

the coevolution of hosts and viruses, thereby increasing both the host and viral 36 

micro-diversity. Hence, these fundamental functions are viral “raison d’etre” and are 37 

essential for the functioning of aquatic ecosystems and its components. 38 

 39 
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1.1 Introduction 44 

 Viruses infecting microorganisms are ubiquitous and abundant in aquatic 45 

ecosystems (Suttle 2005, 2007). They typically are small particles (generally 20–200 46 

nm in length) comprised of nucleic acids (single- or double-stranded DNA or RNA) and 47 

structural proteins and have no intrinsic metabolism. Thus, their reproduction depends 48 

entirely on host cellular metabolism and replication machinery. Viral reproduction can 49 

be classified as lytic or lysogenic (Guttman et al. 2004). During lytic infection, viruses 50 

inject their genomes into host microorganisms, redirect host metabolism for efficient 51 

viral genomic nucleic acid replication and protein synthesis, and are finally released 52 

through host cell lysis (Guttman et al. 2004). In contrast, in lysogenic infection, the viral 53 

genome is integrated into the host genome as a provirus (also called prophage if the 54 
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virus integrates into the bacterial chromosome) and is propagated vertically within the 55 

host lineage until the induction of the lytic cycle under specific conditions (e.g., 56 

depending on host cell density or environmental conditions) (Howard-Varona et al. 57 

2017a). 58 

 Both types of viral infections, lytic and lysogenic, have great potential to affect 59 

microbial communities in aquatic ecosystems. For example, viral-mediated cell lysis 60 

releases nutrients and organic matter from cells to the environment, thus stimulating 61 

biogeochemical cycling (Fuhrman 1999; Suttle 2005, 2007). In addition, viruses affect 62 

host microbial diversity in at least three different ways (Marston et al. 2012). First, 63 

viruses contribute to the maintenance of host microbial diversity by 64 

frequency-dependent infection, often seeming to have a greater effect upon those 65 

microbial taxa and genotypes that either are highly abundant or most metabolically 66 

active in the environment (Thingstad 2000). Second, viruses increase host genetic 67 

diversity via the reciprocal co-evolution of host resistance and viral infectivity 68 

(Buckling and Rainey 2002a). Lastly, viruses affect the genomic evolution and the 69 

fitness of microbial hosts through horizontal gene transfer (HGT) including the presence 70 

and movement of auxiliary metabolic genes (Breitbart et al. 2007; Hurwitz and U’Ren 71 

2016), generalized transduction during lytic infection (Thierauf et al. 2009; Touchon et 72 
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al. 2017), and specialized transduction during lysogenic infection (Gottesman and 73 

Yarmolinsky 1968; Fernandes et al. 1989; Campos et al. 2003; Touchon et al. 2017). 74 

 The ever-growing number of culturable viral isolates, together with recent 75 

advances in sequencing technologies and bioinformatics, provides us with a deeper 76 

understanding of the viral nature in aquatic ecosystems. This chapter summarizes 77 

current understanding of viral effects on biogeochemical cycles, microbial diversity, and 78 

virus–host evolutionary dynamics in aquatic ecosystems. The viral role in the promotion 79 

of HGT that affects host genomic evolution and fitness has been reviewed extensively 80 

elsewhere and is therefore not discussed here (e.g. Balcázar 2018; Yoshida et al. 2019; 81 

Chapter E and therein). 82 

 83 

1.2 Viral influence on biogeochemical cycle 84 

1.2.1 Viral modulation on patterns of geochemical cycling in the ocean 85 

In the ocean, approximately 1029 cells of different microorganisms form the 86 

basis of the marine food web (Whitman et al. 1998). Photosynthetic eukaryotes and 87 

prokaryotes contribute to up to 50% of the total net primary production on Earth (Field 88 

et al. 1998). Approximately half of the resultingly fixed carbon is released into the 89 

environment, re-mineralized by heterotrophic prokaryotes, and then incorporated into 90 

higher trophic levels of the aquatic food web (Azam et al. 1983). This process of 91 
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recycling of photosynthetic products is called “microbial loop” and is an essential 92 

pathway of biogeochemical cycling in the ocean (Azam et al. 1983). 93 

Viruses outnumber prokaryotes, and up to 20% of marine microorganisms are 94 

thought to be infected and lysed by viruses daily (according to a certain view in Suttle 95 

2007). Lysis of infected cells leads to the release of organic matter and nutrients, which 96 

would otherwise be incorporated into higher trophic levels by grazing (Fuhrman 1999; 97 

Wilhelm and Suttle 1999). This pathway of carbon flux regulated by viruses is called 98 

“viral shunt” (Wilhelm and Suttle 1999) (Fig. 1.2.1). Calculations based on the 99 

presumed microbial biomass, its turnover rates, and the predicted daily lysis suggest 100 

that viral shunts are responsible for the release of approximately 25% of primary 101 

production in the surface ocean, which amounts to up to 3 gigatons of carbon into the 102 

oceans per year (Wilhelm and Suttle 1999; Suttle 2005). However, the quantification of 103 

virus-mediated carbon flux in natural environments remains challenging owing to 104 

methodological limitations and ecosystem complexity. Recently, more advanced 105 

nutrient–phytoplankton–zooplankton (NPZ) models, including heterotrophic bacteria 106 

and viruses, have proposed that viral shunts accelerate organic matter recycling and 107 

increase net primary productivity while reducing transfer to higher trophic levels (Weitz 108 

et al. 2015). Moreover, the effect of virus-mediated carbon flux may depend on the 109 
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trophic status of the system and the limiting nutrients (Pourtois et al. 2020). 110 

 111 

Fig 1.2.1. Overview of virus-mediated biogeochemical cycling in aquatic microbial 112 

ecosystem. When viruses lyse their host, intracellular organic matter is released from 113 

host cells to the particulate organic matter (POM) and dissolved organic matter (DOM) 114 

pools, a process that has been termed a Viral shunt. This process is accompanied by 115 

compositional and stoichiometric changes in chemical properties of intracellular 116 

metabolites via viral metabolic redirection, i.e., hijacking host transcription-translation 117 

systems and expression of viral auxiliary metabolic genes (AMG). Viral particles are 118 

also a source of phosphorus-rich DOM (compared with host debris) and consumed by 119 

direct grazing. Viral infection facilitates carbon export to the deeper layer (biological 120 

pump) through particle aggregation driven by the release of lysis products and 121 
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virus-induced alterations in host physiology (Viral shuttle). 122 

 123 

On the other hand, viruses can also contribute to carbon removal from the 124 

surface ocean (Weinbauer 2004; Sullivan et al. 2017; Laber et al. 2018). Cellular debris, 125 

including cytoplasmic material and components of the cell wall, released via viral lysis 126 

can easily aggregate and sink to the deeper layers leading to carbon sequestration 127 

(Weinbauer 2004; Laber et al. 2018). This alternative viral influence on the geochemical 128 

flux that promotes the biological carbon pump is referred to as the “viral shuttle” 129 

(Sullivan et al. 2017) (Fig. 1.2.1). For example, virus-induced carbon transportation has 130 

been extensively studied in Emiliania huxleyi (haptophyte) and its known virus (Laber 131 

et al. 2018). Several laboratory studies have reported that viral infection stimulates the 132 

production of transparent exopolymer particles (TEP), which increases the stickiness of 133 

cells, thus promoting aggregation (Rosenwasser et al. 2014; Nissimov et al. 2018). Field 134 

studies monitoring E. huxleyi blooms in the North Atlantic have revealed that TEP 135 

concentrations increase during the early stages of infection and that infected cells are 136 

preferentially transported to the deep ocean (Sheyn et al. 2018). Considering the huge 137 

abundance of E. huxleyi (reaching 107 cells/mL during their bloom period; Silkin et al. 138 

2020), the virus-mediated sinking of its cells would thus have a significant impact on 139 

the available carbon in the surface ocean. Moreover, laboratory experiments have 140 
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reported that the virus-infected culture of Chaetoceros tenuissimus (Diatomea) is up to 141 

59-fold enriched in particulate organic matter compared with uninfected controls 142 

(Yamada et al. 2018). At the global scale, a metagenomic study based on data from the 143 

Tara Ocean has suggested that the infection and lysis of the widespread and abundant 144 

cyanobacteria Synechococcus significantly contribute to carbon export compared with 145 

other microorganisms (Guidi et al. 2016). Further studies using quantitative methods are 146 

required for a better understanding of the effect of viral shuttles in the global ocean. 147 

In addition, viral particles themselves contribute to the biogeochemical cycling 148 

of carbon and other nutrients. For example, approximately 0.03 Gt C per year (Bar-On 149 

and Milo 2019), and most of the viral biomass is attributed to the dissolved organic 150 

matter (DOM) fraction (< 0.45 μm) due to the size of the virion (e.g., bacterial viruses 151 

generally range between 20 and 200 nm) (Zsolnay 2003; Leenheer and Croué 2003; 152 

Findlay and Parr 2017). Recently, a relatively large number of marine viruses have been 153 

identified to attach to non-host organisms and particles (Yamada et al. 2020). Thus, if or 154 

when these non-host organisms or particles are predated, their attached viruses 155 

indirectly contribute to classical marine food webs even when they are not infecting any 156 

organisms. Altogether, viral particles could contribute to both DOM and the particulate 157 

organic matter (POM) pools in the ocean. 158 
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A previous study investigating the elemental composition of both virus 159 

particles and viral lysates eluted from their host debris revealed that viral lysates tend to 160 

be more depleted in phosphorus than are uninfected cells because the amount of 161 

genomic nucleic acids contained in progeny viral particles results in those viruses being 162 

relatively phosphorus-rich as compared with their amounts of carbon and nitrogen 163 

(Jover et al. 2014). By extrapolating this model to the ecosystem scale, marine viruses 164 

are predicted to constitute a comparatively high proportion (> 5%) of the total DOP pool 165 

in the surface ocean (Jover et al. 2014). Thus, viruses themselves can be regarded as an 166 

abundant nutrient source. 167 

Predation of viral particles by predators has been demonstrated in several 168 

studies using culture experiments (Suttle and Chen 1992; Bettarel et al. 2005; Lawrence 169 

et al. 2018; Welsh et al. 2020). For example, a co-cultivation study exposing 170 

Phaeocystis globosa and its virus to various predators has demonstrated that viruses can 171 

be effectively removed (up to 98% within 24 h) from the water column by non-host 172 

organisms, including sea anemones, polychaete larvae, sea squirts, crabs, cockles, 173 

oysters, and sponges (Welsh et al. 2020). Therefore, although the rate of viral particle 174 

removal by aquatic protists may vary depending on both the virus and predator strains 175 

(Suttle and Chen 1992; Gonzalez and Suttle 1993; Lawrence et al. 2018; Welsh et al. 176 
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2020), the ingestion of viruses can serve as a possible source of nutrients, especially 177 

phosphorus. 178 

These viral influences on the biogeochemical cycles fluctuate across short- and 179 

long-time scales. On a long-term scale, for instance, the microbial community exhibits 180 

seasonal compositional changes (Cram et al. 2015; Parada and Fuhrman 2017; 181 

Needham et al. 2018; Choi et al. 2020), which are followed by the seasonal dynamics of 182 

their viruses (Needham et al. 2017; Ignacio-Espinoza et al. 2020). Furthermore, diverse 183 

taxa of photosynthetic microorganisms and even some heterotrophic ones show diel 184 

activity in culture and environmental studies, which is partly explained by the viral 185 

infection cycle (Morimoto et al. 2020 and references therein). Both the seasonality and 186 

the diel cycle activity of microorganisms and their viruses suggest that host–virus 187 

interactions could generate temporal fluctuations in geochemical cycles in aquatic 188 

environments.  189 

 190 

1.2.2 Virus–host interactions-mediated modification of host cell metabolism 191 

Viruses switch their host metabolism from cellular replication to progeny 192 

production. Compared with non-infected hosts, metabolically reprogrammed cells can 193 

be generally distinguished based on changes in the host transcription program, 194 
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eventually leading to distinctiveness in the proportion of end-point products between 195 

infected and uninfected cells (Ankrah et al. 2014; Jover et al. 2014; Rosenwasser et al. 196 

2014; Ma et al. 2018) (Fig. 1.2.1). For instance, disproportioning of phosphorus 197 

between infected and uninfected hosts (as discussed in the previous section) could be 198 

attributed to a viral reprograming mechanism in which viruses degrade host DNA and 199 

utilize the resultant nucleic acids for the synthesis of viral DNA (Wikner et al. 1993; 200 

Kutter et al. 2018). 201 

Currently, cell metabolic reprogramming by viruses has been studied using 202 

both transcriptomic and metabolomic analyses and is found to be a highly regulated 203 

process. For instance, the infection strategy of T4-like viruses follows the three 204 

temporal expression classes of early, middle, and late genes, corresponding to host 205 

takeover, replication, and virion morphogenesis, respectively, and occurs in accordance 206 

with the downregulation of genes related to host replication (Roucourt and Lavigne 207 

2009). Such transcriptional regulation by viruses has also been investigated in several 208 

lineages of marine and freshwater prokaryotic as well as eukaryotic phytoplankton 209 

(Lindell et al. 2007; Rosenwasser et al. 2014; Bachy et al. 2018; Moniruzzaman et al. 210 

2018; Morimoto et al. 2018; Ku et al. 2020) and heterotrophic bacteria (Ankrah et al. 211 

2014; Howard-Varona et al. 2017b, 2020). The metabolic regulation of host cells may 212 
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also depend on host taxonomy and thus differ between various species (e.g., 213 

cyanoviruses with broad and narrow host range seem to have different infection 214 

strategies; E. huxleyi virus EhV possesses five gene expression phases during infection) 215 

(Lindell et al. 2005; Clokie et al. 2006; Doron et al. 2016; Morimoto et al. 2018; Ku et 216 

al. 2020). In addition, it may be influenced by host physiological states, which in turn 217 

depends on nutrient availability (e.g. phosphate) (Kelly et al. 2013; Lin et al. 2016; 218 

Bachy et al. 2018). Thus, viruses could affect the proportion of end-point products in the 219 

infected cells while those hosts either directly or indirectly are responding to 220 

environmental conditions. 221 

Viruses can also possess host-derived genes (also called as auxiliary metabolic 222 

genes, AMGs) that are expressed during infection, thus altering host metabolism, and 223 

increasing the efficiency of viral reproduction (Breitbart et al. 2007; Hurwitz and U’Ren 224 

2016). These AMGs can largely be classified into two classes (Class I and II) based on 225 

their function according to the Kyoto Encyclopedia of Genes and Genomes database 226 

(Hurwitz and U’Ren 2016). Viral-encoded AMGs not only maintain cellular functions 227 

necessary for viral DNA replication and virion production (e.g., ATP production and 228 

nucleotide synthesis) during infection (Lindell et al. 2004, 2005), but also both down 229 

and up-regulate a range of targeted metabolic pathways that can substantially alter cell 230 
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stoichiometry and nutrient metabolism (De Smet et al. 2016, 2017). Most AMGs that 231 

have been identified to date are directly involved in either the utilization and uptake of 232 

limiting nutrients or energy production (Enav et al. 2014; Hurwitz and U’Ren 2016), 233 

which in turn may have (at least temporarily) a positive feedback effect on the host cell 234 

by improving its fitness during infection (Zeng and Chisholm 2012): the acquisition and 235 

metabolism of carbon (e.g., psbA and psbD; Lindell et al. 2004, 2005; Thompson et al. 236 

2011), nitrogen (e.g., amt; Monier et al. 2017), and phosphorus (e.g., pstS and phoA; 237 

Zeng and Chisholm 2012). New putative AMGs are continuously being discovered in 238 

bacterial (Breitbart 2011; Crummett et al. 2016; Breitbart et al. 2018; Warwick-Dugdale 239 

et al. 2019), eukaryotic (Schvarcz and Steward 2018; Needham et al. 2019), and archaea 240 

viruses (Ahlgren et al. 2019) or the more broadly defined environmental viromes 241 

(Williamson et al. 2008; Anantharaman et al. 2014; Hurwitz et al. 2015; Moniruzzaman 242 

et al. 2020; Schulz et al. 2020; Kieft et al. 2020). Thus, considering that viral-encoded 243 

AMGs are abundant and widespread in aquatic environments (Williamson et al. 2008), 244 

AMG-mediated metabolic reprogramming can substantially contribute to major 245 

biogeochemical cycles and ecosystem functioning at the global scale (Sieradzki et al. 246 

2019). 247 

 Indeed, changes in metabolites mediated by virus–host interactions have been 248 
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observed in both eukaryotes and prokaryotes using a metabolomic approach 249 

(Rosenwasser et al. 2014; Ma et al. 2018). For example, E. huxleyi virus EhV 250 

downregulates host de novo sphingolipid genes and simultaneously promotes the 251 

induction of a viral-encoded homologous pathway, resulting in the metabolic shift 252 

toward viral sphingolipid production (Rosenwasser et al. 2014). A recent culture-based 253 

study on Synechococcus and its viruses revealed that the composition of chemical 254 

compounds (proteins, carbohydrates, and lipids) of organic matter differs between 255 

infected and uninfected cells (Ma et al. 2018). Such compositional changes induced by 256 

viruses have been detected during viral infection of Sulfitobacter (C:N ratio of host cell 257 

shifted to nitrogen-rich state compared with uninfected cells) (Ankrah et al. 2014). 258 

 Thus, from an ecological perspective, the virus-induced metabolic 259 

reprograming depends on both the virus-host pair (and therefore on the diversity and 260 

composition of microbial assemblages) and the host physiological state during infection 261 

and can modulate the generation as well as the diversity of end-point products, thus 262 

leading to altered biogeochemical cycling. It is also speculated that halting the viral 263 

reproduction at various infection stages using antiviral responses, including signal 264 

transduction, cell cycle regulation (Moniruzzaman et al. 2018), and metabolic pathway 265 

(Rosenwasser et al. 2014), might establish metabolite diversity in the infected cells via 266 
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the generation of intermediate products of viral progeny (Zborowsky and Lindell 2019) 267 

or unusual proteins in the uninfected cells. 268 

 269 

1.3 Viral infection shaping microbial community diversity 270 

1.3.1 Contribution of lytic infection to microbial diversity maintenance 271 

 In aquatic ecosystems, diverse microorganisms compete for nutrient resources 272 

but can co-exist and account for a large proportion of total aquatic biodiversity, a 273 

concept that has been known as the classical question “paradox of the plankton” 274 

(Hutchinson 1961). Viruses are currently thought to contribute to the co-existence of 275 

microbial species and genotypes. 276 

 Basically, viruses are believed to infect their specific microbial hosts in a 277 

frequency-dependent manner (Fuhrman and Suttle 1993). Therefore, viral infection 278 

checkmates microbial species that become dominant through the competition among 279 

co-existing microorganisms that possess different substrate affinity, and thereby enables 280 

the co-existence of multiple competing microbial species (“Kill the Winner” hypothesis) 281 

(Thingstad 2000) (Fig. 1.3.1). Indeed, several culture and environmental studies have 282 

demonstrated that viral top-down control modulates microbial abundance, which is 283 

consistent with the results expected from a Kill the Winner hypothesis (Tarutani et al. 284 

2000; Schwalbach et al. 2004; Bouvier and Del Giorgio 2007; Yoshida et al. 2008a; 285 



17 

 

Rodriguez-Brito et al. 2010; Kuno et al. 2012; Parsons et al. 2012; Kimura et al. 2013; 286 

Needham et al. 2013; Cram et al. 2016). 287 

 The viral-mediated co-existence mechanism, by which viruses are expected to 288 

affect host diversity in a frequency dependent manner according to the Kill the Winner 289 

hypothesis, could provide a mechanism that explains the continuing co-existence of 290 

diverse genotypes within a single microbial species (or closely related lineage) rather 291 

than the co-existence of diverse microbial species. Conventionally, the philosophy has 292 

been that phenotypic and genotypic diversity within a microbial population was 293 

expected to become homogenized to a greater level of fitness in the environment. The 294 

microbial population (species or closely related lineage) that are genetically cohesive 295 

and ecologically distinct are called an “ecotype” (ecotype hypothesis) (Maharjan et al. 296 

2006; Cohan and Koeppel 2008). The ecotype had been believed to be periodically 297 

replaced as fitter ecotypes emerged after profitable mutation or preferable 298 

environmental changes (Maharjan et al. 2006; Cohan and Koeppel 2008). However, 299 

metagenome sequence alignment analyses have demonstrated that several genomic 300 

regions (metagenomic islands; MGIs) are underrepresented even within a single 301 

microbial population in similar environments (Coleman and Chisholm 2007; 302 

Cuadros-Orellana et al. 2007; Kettler et al. 2007; Wilhelm et al. 2007; Frias-Lopez et al. 303 
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2008; Rodriguez-Valera et al. 2009; Rodriguez-Valera and Ussery 2012). This suggests 304 

that diverse genotypes coexist within a single microbial population. Furthermore, these 305 

MGIs include diverse accessory genes, such as extracellular structure-related genes that 306 

can be viral recognition sites (Reva and Tümmler 2008; Sharma et al. 2008; 307 

Rodriguez-Valera et al. 2009; Rodriguez-Valera and Ussery 2012) and antiviral 308 

response-related genes such as CRISPR in addition to genes that affect 309 

restriction-modification (Sorek et al. 2008; Wilmes et al. 2009). Therefore, MGIs are 310 

thought to play an important role in the ability of hosts to escape or survive from viral 311 

infection, in which host genotypic diversity is driven by viral predation pressure, 312 

thereby leading to the co-existence of multiple competing microbial genotypes 313 

(“Constant Diversity dynamics” model) (Rodriguez-Valera et al. 2009) (Fig. 1.3.1). 314 

Indeed, multiple genotypes of Microcystis aeruginosa possessing different CRISPR 315 

arrays and its virus Ma-LMM01 coexist and oscillate during the massive bloom of this 316 

nuisance and toxic species (Kuno et al. 2012, 2014; Kimura et al. 2013). Hence, lytic 317 

viruses play important roles in not only the co-existence of microbial species but also 318 

the maintenance of high diversity within a single microbial population.  319 

 320 
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 321 

Fig 1.3.1. Schematic diagram of mechanisms in virus-mediated maintenance of 322 

microbial community diversity. Preferential viral infection of abundant species 323 

enables the co-existence of diverse competing microbial species by preventing the 324 

dominance of only few species (“Kill the Winner” hypothesis). Similar viral top-down 325 

control is proposed as a mechanism to maintain high genotypic diversity within a single 326 

microbial population (“Constant Diversity dynamics” model). Lastly, the prevalence of 327 

lysogeny in dominant microbial population may be another potential mechanism that 328 

allows abundant host species to be dominant by taking advantages benefit from 329 

lysogenic conversion such as superinfection exclusion (“Piggyback-the-Winner” 330 

model). 331 

332 
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 333 

1.3.2 Potential contribution of lysogenic infection to microbial diversity maintenance 334 

So far, we have focused on lytic viruses and described their contribution to the 335 

maintenance of microbial diversity in aquatic environments. Another key question 336 

related to viral impact on microbial diversity is whether temperate viruses also 337 

contribute to shaping microbial community diversity. 338 

 Provirus integration can occur either through repeated random transposition 339 

events or at specific integration sites (e.g., host tRNA genes; also called site-specific 340 

recombination) and is associated with the immediate transcriptional suppression (e.g. 341 

via specific virus repressors) of lytic promoters and genes associated with virion 342 

production (Casjens and Hendrix 2015). This mode of viral infection that generates 343 

lysogenic cells (Hobbs and Abedon 2016) is considered as an adaptive strategy of 344 

temperate viruses to ensure their persistence in the environment, in which novel 345 

phenotypic or metabolic advantages are sometimes conferred to host microorganisms 346 

via concomitant effects by mechanisms such as HGT (Hendrix et al. 2000; 347 

Howard-Varona et al. 2017a), the capability of up and down-regulation of host genes 348 

(Argov et al. 2017), and integration-driven gene disruption (Feiner et al. 2015). 349 

Although one study estimated that approximately half of 100 marine bacterial 350 

isolates harbored temperate viruses in their genomes (Paul 2008), proviruses are rarely 351 
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found in the marine-dominant bacterial lineages (e.g., only one provirus was recently 352 

reported in SAR11 clades; see Morris et al. 2020) possibly due to genome streamlining, 353 

in which a bacterial genome is minimized to a highly constrained gene set that confers 354 

maximum fitness (Touchon et al. 2016). Therefore, the ecological significance of 355 

lysogenic infection on microbial diversity maintenance in marine ecosystems remains 356 

under debate. Traditionally, it was believed that bacterial viruses control their host 357 

abundances in a frequency-dependent manner as described above, and thus viral 358 

abundance is typically 10-folds higher than that of prokaryotes (Wommack and Colwell 359 

2000; Weinbauer 2004). Therefore, lysogenic infection is presumed to be the preferred 360 

viral strategy under conditions of reduced host cell number and activity (Stewart and 361 

Levin 1984; Sime-Ngando 2014; Brum et al. 2016). However, viral metagenomic and 362 

metadata approaches have revealed that viral particles are relatively less abundant at 363 

high microbial densities (Knowles et al. 2016; Wigington et al. 2016). Likewise, it was 364 

demonstrated that the virus/host genome abundance ratio was negatively correlated with 365 

the host abundance at the genus or phylum levels (Coutinho et al. 2017). Additionally, 366 

the relative abundance of hallmark genes encoded by temperate viruses increased with 367 

microbial density in a coral reef (Knowles et al. 2016). These findings suggest that 368 

lysogenic infection may become dominant at high-cell densities because proviruses can 369 
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replicate quickly in a way that will keep pace with their fast-growing host and 370 

provirus-mediated superinfection resistance might become increasingly important at 371 

high cell densities (called “Piggyback-the-Winner” model) (Knowles et al. 2016, 2017; 372 

Coutinho et al. 2017) (Fig. 1.3.1). 373 

 374 

Footnotes 375 

Paradox of the plankton: The concept arguing paradoxical situation of coexistence of 376 

various plankton species competing for identical resources in homogeneous and 377 

resource limited environment (Hutchinson 1961). 378 

Kill the Winner hypothesis: A model proposing the dynamics of virus-host interactions 379 

in which an increase of host population (winner) is accompanied with increasing of its 380 

infectious viruses, and thereby viruses prevent their hosts from becoming dominant 381 

through increased mortality of the winner (Thingstad 2000). 382 

Constant Diversity dynamics model: A hypothetical model proposing that the diversity 383 

of prokaryotic populations is maintained by viral predation, because the best-adapted 384 

populations are selected by viral predation. The hypothesis assumes that each microbial 385 

population has distinct viral receptor (Rodriguez-Valera et al. 2009). 386 

Piggyback-the-Winner model: A hypothetical model proposing that lysogeny would be 387 
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favored when a bacterial host is dominated in the environment because a provirus can 388 

replicate rapidly together with host DNA replication (Knowles et al. 2016). 389 

 390 

1.4 Evolutionary roles of viruses that generate genotype-level microbial 391 

diversification 392 

 In short-term laboratory experiments, host–virus coevolution appeared to be 393 

suppressed by the emergence of a viral-resistant genotype, which the virus could not 394 

evolve to overcome (Dennehy 2012). In particular, de novo mutations that cause 395 

changes in those bacterial cell-surface structures which serve as viral receptor sites are 396 

one of the major factors that prevent viral attachment, and thereby confer the potential 397 

host with resistance against viral infection (Lenski and Levin 1985). Therefore, 398 

host–virus coevolution has been considered to be constrained by the asymmetry of 399 

evolutionary potential between hosts and viruses (Cannon et al. 1971; Cowlishaw and 400 

Mrsa 1975; Barnet et al. 1981; Lenski and Levin 1985; Waterbury and Valois 1993; 401 

Middelboe et al. 2001; Wei et al. 2010, 2011). 402 

On the other hand, long-term evolutionary laboratory studies have indicated 403 

that the host and its virus undergo persistent coevolution over a prolonged period, as 404 

evidenced with the soil bacterium Pseudomonas fluorescens (Buckling and Rainey 405 

2002a, b; Brockhurst et al. 2007; Hall et al. 2011a, b) and E. coli (Mizoguchi et al. 406 
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2003). Similar co-evolutionary dynamics have also been observed in the marine bacteria 407 

Prochlorococcus (Avrani et al. 2011), Synechococcus (Marston et al. 2012), and 408 

Cellulophaga baltica (Middelboe et al. 2009). 409 

 The above-mentioned co-evolution scenario, based on the 410 

one-virus-to-one-bacteria relationship, predicts that the genetic contents of both bacteria 411 

and virus would converge over repeated interactions. As described above, however, 412 

genotypic diversity is observed in MGIs even within a single microbial population 413 

(Coleman and Chisholm 2007; Cuadros-Orellana et al. 2007; Kettler et al. 2007; 414 

Wilhelm et al. 2007; Frias-Lopez et al. 2008; Rodriguez-Valera et al. 2009; 415 

Rodriguez-Valera and Ussery 2012). Additionally, under-represented genomic regions 416 

have been found in marine viruses (metaviromic islands) with a large fraction of their 417 

identified genes (e.g., 59 out of 138) associated with host recognition of viruses 418 

(Mizuno et al. 2014). Thus, the recent understanding of host–virus coevolution is based 419 

on multiple genotype (strain)-level interactions within both the microbial host and viral 420 

species which seem to represent defense and counter-defense strategies (e.g., CRISPR 421 

and mutation in protospacer) or resistance and overcome of resistance (e.g., mutation in 422 

cell surface and viral tail gene) (Fig. 1.4.1). 423 



25 

 

 424 

Fig. 1.4.1 Proposed mechanisms in host pan-genome expansion via virus–host 425 

interactions. (a) Under the viral top-down control toward dominant species and 426 

genotypes, “Red Queen” like host–virus co-diversification can be established in 427 

abundant host and abundant viruses. Continuous arms race via intracellular defense (e.g., 428 

CRISPR-Cas system) and extracellular resistance (e.g., viral recognition sites) plays a 429 

part in genomic diversification of both host and virus. (b) A complicated balance 430 

between trade-off and specificities of each defense mechanism can affect the arms race. 431 

For example, extracellular resistance (e.g., surface modification) is preferable to 432 

intercellular defense (e.g., CRISPR-Cas) under conditions of high viral genetic diversity 433 
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because the former promotes resistance toward against broader viral genotypes. 434 

However, because extracellular resistance may result in a higher cost, such as the 435 

impairment of nutrient uptake ability, intercellular defense is possibly preferable under 436 

competitive situations with host competitors. 437 

 438 

 In freshwater ecosystems, host-virus coevolution have been intensively studied 439 

in the bloom-forming cyanobacterium M. aeruginosa and its viruses (Yoshida et al. 440 

2005, 2008a, b; Kimura et al. 2012, 2013, 2018; Kuno et al. 2012, 2014; 441 

Yoshida-Takashima et al. 2012; Morimoto et al. 2019). Interestingly, the most abundant 442 

Microcystis CRISPR genotype is known to coexist with that derived by novel spacer 443 

acquisitions from cyanoviruses in the environment. This finding suggested that both 444 

abundant host and viral genotypes have diversified in the bloom without a complete 445 

selective sweep (Kimura et al. 2018). Thus, the Red Queen like dynamics could be 446 

established, to some extent, between the abundant host genotype and its cyanoviruses 447 

under high viral contact rate; with reciprocal adaptation via defense and counter-defense 448 

continuously occurring in multiple-to-multiple relationships (Koskella and Brockhurst 449 

2014), thus subsequently increasing the diversity of host organisms and viruses (Fig. 450 

1.4.1). Also, a recent metagenomic survey revealed the co-existence of highly 451 

host-specific (narrow host range) and broad host range Microcystis viruses and the high 452 
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co-expression of antiviral defense and viral genes in the environment (Morimoto et al. 453 

2019). Considering that they often induce antiviral responses, broad host range viruses 454 

might be important for host genotype diversification (Morimoto et al. 2019). 455 

 In contrast with freshwater cyanobacteria typically having the greatest overall 456 

numbers of defense genes (Makarova et al. 2011), marine prokaryotes rarely possess 457 

distinctive defense genes such as CRISPR-Cas due to their genome streamlining 458 

(Touchon et al. 2016). However, instances of co-existence between dominant marine 459 

prokaryotes and their viruses were observed, which are presumably sustained by Red 460 

Queen-like co-evolution dynamics. For example, the dominance of the SAR11 clade 461 

bacteria and their viruses was predicted to be maintained by host rapid adaptation to 462 

viruses. The rapid adaptation was achieved by high recombination rates among SAR11 463 

in their variable genomic region that encoded genes involved in synthesis of cell surface 464 

proteins, and this hypothesis is possibly supported by their high host cell density (King 465 

of the Mountain hypothesis) (Zhao et al. 2013). Furthermore, constant turnover of 466 

single-nucleotide polymorphism variants in relatively abundant marine viruses also 467 

suggests that Red Queen-like virus–host coexistence could be established by perpetually 468 

changing minor variants. 469 

 As described in this section, one of the major forces driving host and viral 470 
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genotypic diversification is the reciprocal defense and counter-defense that occur 471 

through extracellular (e.g., de novo mutation of cell-surface structure) and intracellular 472 

resistance (e.g., acquisition of novel CRISPR spacers). Comparative antiviral resistance 473 

analyses in Synechococcus and Prochlorococcus provided new insights into 474 

host-favored antiviral defenses in narrow and broad host range viruses (Doron et al. 475 

2016; Zborowsky and Lindell 2019). Host cyanobacteria resist against narrow host 476 

range viruses irrespective of the viral family by preventing viral entry into the cell, 477 

whereas intracellular resistance arrests the infection cycle of broad host range viruses at 478 

various infection stages (Doron et al. 2016; Zborowsky and Lindell 2019) (Fig. 1.4.1). 479 

These differences in antiviral responses that seemingly occur according to viral host 480 

range are speculated to be associated with fitness trade-offs in extracellular and 481 

intracellular antiviral responses. In extracellular antiviral responses, mutations in 482 

cellular surface structures can impair nutrient uptake and utilization but can protect 483 

against diverse viral attacks, leading to an increase in host fitness trade-off favoring the 484 

host (Winter et al. 2010; Avrani et al. 2012) (Fig. 1.4.1). On the other hand, choosing to 485 

modify intracellular antiviral responses techniques may be energetically favorable, 486 

especially the CRISPR-Cas system, because the cost of a new spacer acquisition is 487 

speculated to be low, although it is possible that additional types of resistance costs may 488 



29 

 

exist (Thingstad et al. 2014) (Fig. 1.4.1). Indeed, recent studies focusing on the 489 

differences in biotic complexity between in vitro and environments have revealed that 490 

coexistence among human pathogens amplified the fitness trade-offs associated with 491 

viral receptor mutations in Pseudomonas aeruginosa and therefore enhanced the 492 

evolution of CRISPR-based resistance (Alseth et al. 2019). Higher viral genetic 493 

diversity can also influence CRISPR-based evolution, with an example being that the 494 

majority of a Pseudomonas population more favorably evolved based on the mutation 495 

of viral receptors to resist a broader range of viral genotypes than CRISPR-based 496 

specific resistance (Broniewski et al. 2020). Thus, fitness trade-offs in bacterial host 497 

species and diversity of both bacterial host and viruses in the environment could be 498 

another important factor that affects host–virus coevolution. From the perspective of 499 

fitness trade-off, most recently, the “pan-immune system” concept has been proposed. 500 

This states that a single strain can access immune defense mechanisms in closely related 501 

strain via HGT, although it cannot possess all possible defense systems (Bernheim and 502 

Sorek 2020). 503 

 504 

Footnotes 505 

Red Queen like dynamics: A hypothesis proposing co-evolutionary process between 506 
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competing species (Valen 1973); in the case of virus-host interactions, this hypothesis 507 

explains continuous dynamics of resistance acquisition in microbial hosts and viral 508 

avoidance to the host resistance (Brockhurst et al. 2014). 509 

King of the Mountain hypothesis: A hypothesis proposing that high recombination rate 510 

enables dominance of a competitive prokaryote in the ecosystem via horizontal transfer 511 

of genes involved in resistance to viral infection (Zhao et al. 2013). 512 

 513 

1.5 Conclusion 514 

 Viruses, which are highly abundant biological entities lacking their own 515 

metabolism, can reprogram host cells toward the production of virus progeny, after 516 

which the host cell is lysed, releasing new virions into the surrounding environment. 517 

This reprogramming viral strategy can change the content and composition of host 518 

metabolites and releases a large amount of organic matter, thus considerably affecting 519 

biogeochemical cycles. In addition, viral infection checkmates not only microbial 520 

species that become dominant but also abundant genotypes within a single microbial 521 

species, and thereby enables the coexistence of diverse microbial species and genotypes 522 

in the aquatic ecosystem. Thus, viral infection is one of the key factors shaping 523 

microbial community diversity and maintaining high diversity within a single microbial 524 

population. Likewise, because temperate viruses may be prevalent under specific 525 
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combinations of environment and conditions, they could affect microbial diversity via 526 

superinfection exclusion during either the lysogenic cycle or induction of lytic cycle. 527 

Meanwhile, microorganisms have evolved extracellular and intracellular antiviral 528 

mechanisms with different fitness costs and specificities. Therefore, viruses with diverse 529 

host range and genetic diversity interact with abundant hosts by a complex balancing 530 

between fitness trade-offs and the specificity of extracellular- and intracellular antiviral 531 

resistance in hosts. Together, this results in continuous virus–host coevolution, leading 532 

to diversification in aquatic ecosystems. Collectively, viruses are important biological 533 

entities that sustain and generate microbial diversity and control the biogeochemical 534 

cycle in aquatic environments. 535 
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