
Two-step parameter identification of multi-axial cyclic
constitutive law of structural steels from cyclic

structural responses

Makoto Ohsakia, Bach Doa,∗, Jun Fujiwarab, Toshiaki Kimurac, Takuzo Yamashitad

aDepartment of Architecture and Architectural Engineering, Graduate School of Engineering, Kyoto
University, Kyoto 615-8540, Japan

bEarthquake Disaster Mitigation Research Division, National Research Institute for Earth Science and
Disaster Resilience, Miki 673-0515, Japan

cGraduate School of Design and Architecture, Nagoya City University, Nagoya 464-0083, Japan
dEarthquake Disaster Mitigation Research Division, National Research Institute for Earth Science and

Disaster Resilience, Tsukuba 305-0006, Japan

Abstract

This paper presents a two-step Bayesian optimization (BO) method for identifying the

elastoplastic material parameters of structural steels subjected to multi-axial cyclic load-

ing. A series of simple elastic and elastoplastic shaking table tests is conducted for a

structure that has a steel specimen experiencing elastoplastic response. An inverse prob-

lem is formulated to identify the multi-axial material parameters of the specimen from

the structural responses obtained by the shaking table tests. This is notable because

it is more difficult to carry out multi-axial static cyclic material tests than to conduct

dynamic cyclic structural tests. The inverse problem minimizes the error between the

measured structural responses and those simulated by finite element (FE) analysis. The

two-step BO devised for solving the inverse problem successfully offers a global opti-

mization framework while considerably reducing the number of costly simulations. It

first seeks to infer Young’s modulus values from the cyclic elastic responses of the struc-

ture, thereby validating the FE model in its elastic state. It then finds the parameters

for the nonlinear combined isotropic/kinematic hardening model of the specimen using

the cyclic elastoplastic responses of the structure. Verification results show that the pa-

rameters identified by the proposed method well reproduce the cyclic responses of the

structure under different cyclic loading conditions.

Keywords: Multi-axial constitutive law, Cyclic loading, Parameter identification,

Structural steels, Bayesian optimization.
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1. Introduction

Modeling the cyclic constitutive law of structural steels for an elastoplastic finite element

(FE) analysis plays an important role in detailed evaluation of seismic responses of steel

structures. By combining a proper constitutive law with suitable structural elements for

plastic behavior, FE analysis has successfully provided accurate responses of structural

members, for example, steel hollow-section columns [1] and steel end-plate connections

[2] subjected to cyclic deformation. Residual stresses at welds can also be precisely eval-

uated [3], and detailed seismic responses of medium and super-high-rise steel buildings

are obtained [4, 5] even though they are designed using frame models. It is obvious that

selecting an appropriate constitutive law is important to ensure the accuracy of obtained

response analysis. Many studies, therefore, have been dedicated to construction of differ-

ent constitutive models addressing various aspects of cyclic elastoplastic deformations,

for example, the behavior of different steel grades [6], the cyclic hardening and softening

behavior [7], the yield plateau [8, 9], a decrease in yield stress [10], the Bauschinger and

ratcheting effects [11, 12], and the effects of strain rates and temperatures [13] on the

steel behavior.

In the structural engineering field, cyclic elastoplastic constitutive models for struc-

tural steels are often defined by several parameters. An inverse problem seeks to infer

these parameters by minimizing the error between the experimental and numerical re-

sults. Most of the inverse problems, however, have been formulated based on the results

of uni-axial cyclic loading tests [6, 8, 14–16]. Although the parameters identified from

such experimental results can simulate the behavior of structural components through a

continuum plasticity model, they may not accurately describe the cyclic behavior under

a multi-axial loading, for example, a structural member subjected to multi-directional

seismic motions, because the hardening behavior of a material depends on the loading

history [17]. Thus, it is desirable to identify the elastoplastic parameters from the multi-

axial cyclic test. However, it is difficult to carry out a static cyclic material test in
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multi-axial state. This also motivates the development of an experiment in which an

expected cyclic loading condition can be generated for the elastoplastic specimen of a

structure, and the structural responses under such a loading condition can be measured

to formulate a more reliable inverse problem.

Methods for solving inverse parameter identification problems can be categorized into

probabilistic and deterministic approaches. The probabilistic approach [18–21] relies on

Bayesian updating to handle uncertainties in the material parameters that are inher-

ent and/or caused by noise involved in the properties of specimen and measurements of

experimental response. Bayes’ rule updates a prior probability density function (PDF)

for each material parameter, specified by the user, based on a likelihood function that

is a joint density function of the measured responses and the parameters. Once imple-

mented, the probabilistic approach offers a posterior PDF for each parameter from which

the samples for each parameter can be generated using a posterior sampling technique

such as Markov chain Monte Carlo method [22]. Using the generated samples, each pa-

rameter can be estimated statistically and further used as input to other FE analyses.

A key issue of the probabilistic approach is that it is difficult to find a proper likelihood

function because it is commonly not available in an analytical form or it is too expen-

sive to evaluate [23]. Also, structural engineers still hesitate to perform sophisticated

probabilistic computations in practice [24].

The deterministic approach that offers an estimate for each material parameter [9, 16,

24–29] is commonly adopted in engineering practice because its underlying mathematics

is simple and easy to understand. The approach minimizes an error function describing

the difference between the experimental data and numerical predictions. Regularization

methods [30, 31], for example, generalized Tikhonov, weighting Tikhonov, or total varia-

tional regularization, may be used to handle the ill-posed nature of inverse problems by

adding penalty terms to the error function. The deterministic approach solves the in-

verse problem using an optimization algorithm selected among population-based [27, 32],

gradient-based [28], and hybrid algorithms [26]. The selection of a proper optimization

algorithm depends on the characteristic of the error function, for example, cheap-to-

evaluate or costly-to-evaluate. Since modeling the uni-axial elastoplastic behavior of

structural steels does not arise major computational issue, any optimization algorithms
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can be used for solving the associated inverse problem. However, the optimization algo-

rithm should be carefully selected for solving the inverse problem formulated from the

elastoplastic responses of a structure subjected to multi-axial cyclic loading with a large

number of cycles because the associated simulation demands a substantial computational

cost.

With the rise of computational power and notable advances in machine learning meth-

ods in recent years, the data-driven approach to constructing data-based material models

without using any classical constitutive law has become an active field in mechanics and

materials science [33]. This approach is able to solve inverse problems deterministically

as well as probabilistically [34]. However, its application to cyclic constitutive modeling

for structural steels is still rare because the available experimental data from cyclic tests

of steel specimens, steel members, and steel structures are relatively limited to provide

meaningful data for a data-driven approach.

This study presents an experimental program in which a steel specimen is designed as

the only member of a structure that experiences elastoplastic behavior when the struc-

ture is subjected to multi-directional dynamic cyclic loading. Thus, the parameters for

elastoplastic material property under multi-axial cyclic loading can be identified through

the measured structural responses. This is notable because it is more difficult to carry

out static cyclic material tests than to conduct dynamic cyclic structural tests. Complex

loading equipment and supporting parts are needed for multi-axial static tests. It is also

difficult to prevent instability and out-of-plane displacements of specimen during cyclic

elastoplastic deformation.

Two main contributions of this study are the innovative experimental program and

the identification approach to calibrating the elastoplastic material parameters of struc-

tural steels under multi-axial cyclic loading conditions. In particular, multi-axial cyclic

elastoplastic deformation is realized in a specimen attached to a simple elastic frame in

the shaking table test. A detailed FE model of the experimental structure is developed

for identification using responses under various loading conditions that are obtained by

simply replacing the specimen and applying different input waves to the actuators. The

FE model incorporates the nonlinear combined isotropic/kinematic hardening and linear

elastic material models, respectively, to simulate the behaviors of the specimen and other
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members of the structure, and the elastic and plastic material properties are identified

by two identification steps. First, Young’s modulus values are found based on the cyclic

elastic dynamic responses of the structure. This is to validate the FE model in the

elastic state before it is used for carrying out costly cyclic dynamic elastoplastic simu-

lations. Second, the plastic parameters for the nonlinear combined isotropic/kinematic

hardening model are identified based on the cyclic elastoplastic responses of the struc-

ture. To further address the computational cost of modeling the structure, the inverse

problem associated with each identification step is solved using Bayesian optimization

(BO) [35–37], thereby requiring two-step BO for identification of all material parameters.

Finally, the prediction performance of identified parameters is verified by simulating the

experimental results with various cyclic dynamic loading conditions that are not used for

identification.

The remainder of this paper is organized as follows. Section 2 briefly describes the

experimental program that consists of a series of cyclic dynamic tests and three monotonic

tension tests. The FE model of the experiment is detailed in Section 3. Section 4

formulates the two-step identification problem and explains the solution process using

BO. Identification and verification results are provided in Section 5. Section 6 summarizes

and concludes this paper. Appendices A and B, respectively, describe the nonlinear

combined isotropic/kinematic hardening model and the Gaussian process modeling – a

key ingredient of BO.

2. Experimental program

2.1. Cyclic dynamic tests

Consider a small steel frame that is a structure for cyclic dynamic tests carried out on

a shaking table. A “specimen” that exhibits elastoplastic deformation is located at the

center of the structure shown in Fig. 1. The specimen is carefully designed so that it

is the only member of the structure experiencing elastoplastic behavior during a series

of shaking table tests. By designing the specimen and the structure in such a way, we

can investigate the multi-axial cyclic elastoplastic behavior of the specimen through the

measured responses of the structure.
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Figure 1: Schematic drawing of the experiment and some connection details.

In the experimental setup, the upper and lower ends of the specimen are rigidly

connected to an elastic steel frame (i.e., supporting frame) and a floor, respectively;

see Detail 1 in Fig. 1. Four hanging bars T1 connecting the floor and the supporting

frame (Detail 2) are made of high-strength steel to ensure their elastic behavior. Four
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Table 1: Steel profiles and steel grades for members of the structure.

Member Profile Description Grade

C1L and C1U SRB− 32× 35 Solid rectangular bar SN490B

C2 SHS− 50× 50× 3.2 Square hollow section STKR400

T1 SSB− 9× 9 Solid square bar HW685

G11 RHS− 60× 30× 3.2 Rectangular hollow section STKR400

G11A C− 75× 40× 5× 7 Channel SS400

G12 I− 100× 100× 6× 8 Rolled I shape SS400

G13 FB− 60× 16 Flat bar SS400

V1 EA− 40× 40× 3 Equal angle SS400

perimeter beams G11 of the roof are fixed to four columns C2 of the supporting frame

through exterior diaphragm plates and welded connections (Detail 3). The column bases

are connected to the shaking table by spherical bearings (Detail 4) that permit three

axial rotations by using rolling elements at the contact surface. Two I beams G12 of the

floor are welded to each other at their intersection and are connected to four C beams

G11A through fin plate connections. The steel profiles and steel grades for the members

of the floor, supporting frame, and four hanging bars are given in Table 1, where the steel

grades are in accordance with Japanese industrial standards for rolled structural steels

for building and general structures (JIS G 3136-SN490B and JIS G 3101-SS400), for

carbon steel tubes (JIS G 3466-STKR400), and for weldable high-strength steels (WES

3001-HW685). The material of specimen is JIS G 3101-SS400.

Eighteen steel plates of thickness 25 mm are bolted on the floor. The distribution

of steel plates shown in Fig. 2(a) is asymmetric with respect to xz-plane and symmetric

with respect to yz-plane, and is the same for all cyclic tests. Therefore, the x-direction

(x-dir.) excitation triggers a torsional vibration, while the y-dir. excitation causes no

torsional vibration.

The three lowest natural frequencies measured by white noise input with small am-

plitude are 4.79 Hz (x-dir. and z-rot.), 6.70 Hz (x-dir. and z-rot.), and 7.10 Hz (y-dir.),

where rot. is the abbreviation of rotation, i.e., the 1st and 2nd modes are combined
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modes of translation and torsion.

We carried out a total of 21 cyclic dynamic tests using an electro-hydraulic servo-

controlled shaking table that can generate 3-axial displacements and rotations, i.e., 6-

degree-of-freedom input motion. The difference between these tests lies in the directions,

frequencies, and amplitudes of dynamic waves generated by actuators. Among 21 waves,

the 9 waves listed in Table 2 are used for identification, where Type 1 has the maximum

acceleration during 10 seconds; Type 2 gradually increases the amplitude from 80% to

100% during the period of 10 seconds. Although the feedback controller is equipped

in the actuators of the shaking table, an inevitable error exists between the target and

actual displacements of the table. In the following identification, therefore, the table

accelerations are measured and regarded as the input accelerations to the numerical

model.
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Figure 2: Arrangements of mass and measurement devices. (a) Arrangement of steel plate masses on

the floor; (b) A target of a laser displacement sensor; (c) An accelerometer installed; (d) Layout and

label of strain gauges at C1L and C1U columns.
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Table 2: Dynamic waves generated for the cyclic tests.

Wave ID Frequency (Hz) Amplitude (m/s
2
) Type

x− dir. y − dir. z − dir. x− dir. y − dir. z − dir.

1 – 4.5 – – 4.52 – 1

2 4.5 6.0 – 4.07 2.41 – 1

3 4.5 6.0 – 4.07 2.41 – 2

4 4.5 – 4.5 3.82 – 5.08 1

5 – 6.0 – – 4.52 – 1

6 3.5 – – 4.40 – – 1

7 3.5 – 3.5 3.96 – 2.68 1

8 – 4.5 4.5 – 4.52 5.42 1

9 4.5 – 4.5 3.82 – 5.08 2
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Figure 3: Accelerometers at A-TBL1 and A-TBL2 on the shaking table.

Laser displacement sensors are used to measure the displacements in x- and y-dirs. at

the specified locations on the floor and roof of the structure. As indicated in Fig. 1, DX1,

DX2, DX3, and DX4 are four locations for measuring x-dir. displacements, and DY1,

DY2, DY3, and DY4 for measuring y-dir. displacements. Figure 2(b) shows the target of
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the laser displacement sensor DY2. To measure the accelerations of interest in x-, y-, and

z-dirs., a total of six servo-type tri-axis accelerometers are installed at two locations A1

and A2 on the floor (i.e., on the steel plate masses), two locations A3 and A4 on the roof

(see Fig. 1), and two locations A-TBL1 and A-TBL2 on the shaking table (see Fig. 3).

Figures 2(c) and 3 show the photos of the accelerometers at A2 and A-TBL2, respectively.

Moreover, a total of 16 strain gauges are attached at two sections of short columns C1L

and C1U supporting the lower and upper ends of the specimen, respectively, to measure

the axial strains on four sides of each section. From the measured axial strains, the

bending moments at C1L and C1U are calculated as detailed in Section 4. The labels of

eight strain gauges at each section and their layout are detailed in Fig. 2(d).
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  Figure 4: Geometric property of the rods used in three monotonic tension tests and stress–strain curves

obtained from these tests. (a) engineering stress–strain; (b) true stress–strain.

2.2. Monotonic tension tests

To facilitate the determination of Young’s modulus E and the initial yield stress σy,0 for

the material model of the specimen, we also conducted monotonic tension tests on three

rods extracted from the same lot of the specimen used in the cyclic tests. The testing

and measurements of mechanical characteristics are according to JIS Z 2241. Figure 4

shows the geometric property of the rod and the relation between the engineering stress

σ̂ and engineering strain ϵ̂ obtained from the monotonic tension tests. The true stress

σ and true strain ϵ are also derived from σ̂ and ϵ̂. The three σ̂ − ϵ̂ (or σ − ϵ) curves

are almost identical and each has an obvious yield plateau. The monotonic hardening
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process shows the feature of a nonlinear function, which can facilitate the selection of

a nonlinear hardening model. Young’s modulus values obtained from the first, second,

and third monotonic tension tests are 208.01, 207.15, and 204.17 GPa, respectively, and

the corresponding initial yield stress values are 268.22, 276.86, and 275.38 MPa. The

ultimate stress is about 440 MPa for the three tests, roughly 1.6 times the initial yield

stress, and the ratio of the strain at ultimate stress to the yield strain is roughly 150.

3. Numerical simulation
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Figure 5: FE model of the structure and FE mesh of the specimen.

All simulations are performed using Abaqus 2020 [38]. The FE model of the structure

and the mesh of the specimen are shown in Fig. 5. The members of the structure, except

the specimen, are modeled using beam elements of type B31. Bending moments are

fully-released at the ends of several beam elements connected by bolted connections, for

example, two ends of brace V1 on the roof. This, however, is not applicable to the

beams on the floor because the end rotations of these beams are restrained by the rigid

steel plates. To reduce the sensitivity of simulation results to the FE mesh density, we

generate a fine mesh consisting of 1440 eight-node linear-brick elements of type C3D8,

128 six-node wedge elements of type C3D6, and 2215 nodes for modeling the specimen.

Column C2 and hanging bar T1 are modeled by three and four beam elements along their

axis, respectively. In addition, concentrated masses, as detailed in Fig. 5, are assigned at
11
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Figure 6: First three mode shapes of the structure for E = 205 and E1 = E2 = E3 = 200 GPa. (a) 1st

mode; (b) 2nd mode; (b) 3rd mode.

nine nodes on the floor (i.e., m1×2, m2, m3×2, m4, m5×2, and m6) and four nodes on

the roof (i.e., m7 × 4). The values of m1,m2, . . . ,m7 are 8.92, 22.84, 29.46, 39.27, 13.75,

43.58, 1.00 (kg), respectively. Note that the concentrated masses on the floor include the

total mass of the steel plates, measurement devices, and spacers, and those on the roof

are from the masses of the exterior diaphragm plates of Detail 3 in Fig. 1.

To further incorporate the mass from connection bolts and stiffeners on the floor, we

assign the mass density of the floor beams as 7870 kg/m
3
instead of 7860 kg/m

3
for other

members. Poisson’s ratio is 0.3 for all steels of the structure. The material behavior of

the specimen is simulated using the nonlinear combined isotropic/kinematic hardening

model as described in Appendix A, which allows an exponential hardening law. Such a

hardening model, when using only one back-stress component and a specified value of

Poisson’s ratio, is parameterized by six parameters, namely, Young’s modulus E, initial
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yield stress σy,0, isotropic hardening parameters Q∞ and b, and nonlinear kinematic

hardening parameters C1 and γ1. Also, the linear elastic material model parameterized

by Young’s modulus is used for simulating the material behavior of beams and columns.

Since the monotonic tension tests for materials of beams and columns are not available,

we first assign E, E1, E2, and E3 as Young’s modulus values for columns C1L and C1U,

columns C2 and beams on the roof, beams on the floor, and hanging bars, respectively.

Note that the same value E as the specimen is assumed for columns C1L and C1U,

because they are serially connected to the specimen, and it is difficult to distinguish the

elastic properties of specimen and column in the identification process. We then identify

them based on the cyclic elastic behavior of the structure in the first identification step.

To take into account gravity, the stress field for gravity is computed before performing

dynamic analysis. The first three mode shapes of the structure corresponding to E = 205

and E1 = E2 = E3 = 200 GPa are depicted in Fig. 6. Similar to the experimental results,

x-dir. displacement and torsion around z-axis dominate and interact in modes 1 and 2,

while mode 3 corresponds to a y-dir. vibration. The the three lowest frequencies are 4.85,

6.96, and 7.37 (Hz), which are slightly larger than those obtained by the experiment. The

Rayleigh damping coefficients are calculated using a 2% damping ratio for the first and

third modes of the structure.

The “rigid body” is used to define the kinematic constraints between the specimen

and the columns C1U and C1L, respectively. The column bases are modeled as pin joints

that are kinematically coupled with a reference node O that is the center of the shaking

table as shown in Fig. 3. Here, the shaking table is considered as a rigid body, and its

entire motion is governed by the motion of O. Thus, the input accelerations are assigned

in the horizontal plane at O of the FE model. The calculation of such input accelerations

relies on the acceleration records from the accelerometers at A-TBL1 and A-TBL2, which

is detailed as follows.

We decompose the motion of O into translation vector and rotation about the vertical

axis. Let aO, aTB1, and aTB2 denote the translational acceleration vectors at O, A-TBL1,

and A-TBL2, respectively. Each of these vectors has two components: accelerations ax

and ay in x- and y-dirs. Let α = αk and ω = ωk represent the angular acceleration

and angular velocity vectors of the rotation, respectively, where k is the unit vector in
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z-dir. (see Fig. 3), and α and ω take positive values if the rotation is counter-clockwise

when viewed from the top. Also, let r1 and r2 denote the vectors locating A-TBL1 and

A-TBL2 from O, respectively. Kinematics of the rigid shaking table reads

aTB1 = aO + αk× r1 − ω2r1,

aTB2 = aO + αk× r2 − ω2r2.
(1)

Thus, we have

aTB1 − αk× r1 + ω2r1 = aTB2 − αk× r2 + ω2r2. (2)

Projecting Eq. (2) onto x- and y-dirs. leads to a linear system of two equations in two

variables α and ω. Since ax and ay components of aTB1 and aTB2 are known from the

two accelerometers at A-TBL1 and A-TBL2, α and ω can be found easily by solving

the linear system. With α and ω, aO can be found from Eq. (1). Then, aO and α are

assigned at O as the input accelerations for the FE model. The maximum increment for

each acceleration history is set as 0.01 s.
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Figure 7: Example of histories of normal and shear stresses at the first integration point of an element

of the specimen model. (a) Element of consideration; (b) Normal stress; (c) Shear stresses.
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Figure 7 shows an example of histories of normal and shear stresses at the first

integration point of an element of the specimen model when the structure is subjected

to wave 2 in Table 2 and the material parameters have been identified. The element

corresponds to the region where plastic deformations in the specimen occurred. It is

confirmed that there is a complex multi-axial stress state in this element and the normal

stress (i.e., σz) is dominant in this case.

4. Two-step parameter identification

4.1. Responses of interest

The responses of interest are defined for each cyclic test to detect the cyclic hardening pro-

cess during the test and to formulate the identification problem. Let (ux1, ux2, ux3, ux4)

denote the x-dir. displacements measured at locations (DX1, DX2, DX3, DX4), and

(uy1, uy2, uy3, uy4) denote the y-dir. displacements at locations (DY1, DY2, DY3, DY4).

The relative displacements between the floor and roof in x- and y-dirs. are obtained as

δx =
1

2
(ux1 + ux2 − ux3 − ux4),

δy =
1

2
(uy1 + uy2 − uy3 − uy4).

(3)

Let (ϵz1, ϵz2, ϵz3, ϵz4) indicate the axial strains measured by the strain gauges (XN1,

XN2, XP1, XP2) of column C1L (see Fig. 2(d)), and (ϵz5, ϵz6, ϵz7, ϵz8) indicate the axial

strains by (YN1, YN2, YP1, YP2) of column C1L. Since column C1L remains elastic

during all cyclic tests, the average moments about x and y axes of the section, where the

strain gauges are attached, can be defined by

Mx = ϵ1ESx, My = ϵ2ESy, (4)

where Sx and Sy are the elastic sectional moduli about the axes parallel to x and y axes

of C1L section, respectively; and

ϵ1 =
1

4
(ϵz5 + ϵz6 − ϵz7 − ϵz8),

ϵ2 =
1

4
(ϵz1 + ϵz2 − ϵz3 − ϵz4).

(5)

Similarly, Mx and My can be calculated for the section of column C1U. Note that Mx (or

My) values for columns C1U and C1L have the same absolute value with opposite sign.
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  Figure 8: Examples of My − δx and Mx − δy curves in elastic and elastoplastic states of the structure,

and acceleration histories at A1 and A2 on the floor. (a) My − δx curves; (b) Mx − δy curves; (c) ax and

ay histories at A1 and A2.

Thus, column C1U, the specimen, and column C1L behave symmetrically with respect

to the specimen like a column of a moment-resisting frame subjected to a lateral load.

Figures 8(a) and (b), respectively, show My − δx and Mx − δy curves obtained from

the experimental results of four different cyclic tests. The upper and lower figures of

Fig. 8(a) show two My − δx curves corresponding to the elastic and elastoplastic states

of the specimen (or the structure), respectively, when the structure is subjected to two

x-dir. waves with different magnitudes. Similar figures in Fig. 8(b) are for y-dir. waves.

In the elastic state, the relationship between the moment and the relative displacement

is measured, although it is not perfectly linear due to noise involved in the strain and

displacement measurements. Meanwhile, the curves in the elastoplastic state confirm

the hysteresis behavior of the specimen under severe cyclic loading. Thus, elastic and
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elastoplastic responses of interest are reliable indicators of cyclic elastic and elastoplastic

properties of the specimen, respectively.

We are also interested in the accelerations at A1 and A2 on the floor because plastic

deformations in the specimen are mainly triggered by the floor accelerations. The upper

and lower figures of Fig. 8(c) show the histories of ax and ay, respectively, at both A1

and A2 measured from the cyclic tests associated with waves 4 and 8. As is clear, ax

at A2 is much larger than ax at A1, and so with ay at A1 and ay at A2. Thus, ax at

A2 and ay at A1 are considered as the accelerations of interest for the cyclic tests using

waves 4 and 8, respectively.

By investigating the experimental results from all cyclic tests, we can classify the

responses of interest into the following three groups according to the generated dynamic

wave:

� x-dir. and (x-dir. and z-rot.) waves: ax at A2, δx, and My.

� y-dir. and (y-dir. and z-rot) waves: ay at A1, δy, and Mx.

� (x- and y-dirs.) wave: ax at A2, ay at A1, δx, My, and Mx.

Table 3: Ten cyclic tests used for parameter identification and verification.

No. Wave ID Specimen behavior Responses of interest

1 1 (50%) elastic ay at A1, δy, Mx

2 2 (120%) elastoplastic ax at A2, ay at A1, δx, My, Mx

3 3 (150%) elastoplastic ax at A2, ay at A1, δx, My, Mx

4 4 (140%) elastoplastic ax at A2, δx, My

5 5 (120%) elastoplastic ay at A1, δy, Mx

6 6 (80%) elastic ax at A2, δx, My

7 6 (150%) elastoplastic ax at A2, δx, My

8 7 (150%) elastoplastic ax at A2, δx, My

9 8 (150%) elastoplastic ay at A1, δy, Mx

10 9 (120%) elastoplastic ax at A2, δx, My
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4.2. Parameter identification problem

The experimental results of ten cyclic tests are selected for both identifying the material

parameters and verifying the prediction performance of the resulting parameters. The

selected tests, the status of the specimen, and the associated responses of interest are

given in Table 3, where the number inside the brackets of wave ID is the scale factor for

the corresponding wave amplitude in Table 2. Histories of the input accelerations at O

calculated for the FE models associated with the selected tests are depicted in Fig. 9.

We divide the parameter identification process into two steps. The first step, as

mentioned in Section 3, identifies Young’s modulus values E, E1, E2, and E3 from the

cyclic elastic responses of the structure. This step is to validate the FE model in the

elastic state before it is used to carry out costly cyclic elastoplastic simulations. The

second step identifies the plastic parameters σy,0, Q∞, b, C1, and γ1 from the cyclic

elastoplastic responses of the structure. Thus, the first step uses the experimental results

from tests No. 1 (y-dir. wave) and No. 6 (x-dir. wave) listed in Table 3 where the

structure is within the elastic state, while the second step uses the experimental results

from the remaining eight cyclic tests.

Let fi(xi): Rni → R denote the error function associated with the ith identification

step (i = 1, 2). fi(xi) represents the difference between the measured histories of the

responses of interest and the corresponding histories simulated from the FE model in

Fig. 5, which is characterized by xi and a specified set of input accelerations in Fig. 9.

Here n1 = 4 and n2 = 5 because there are four and five material parameters to be

identified in the first and second identification steps, respectively. By further assuming

that modeling errors and observational noise are beyond the scope of this study and

uncertainty in the parameters is neglected, the optimal xi in the ith identification step

can be found by solving

minimize
xi

fi(xi)

subject to xi ∈ [xil,xiu] (i = 1, 2),

(6)

where x1 = [E,E1, E2, E3]; x2 = [σy,0, Q∞, b, C1, γ1]; and xil and xiu the specified lower

and upper bounds of xi, respectively.

The error function fi(xi) can be formulated based on one of the responses of inter-

est defined in Section 4.1. Nevertheless, as the floor accelerations intrinsically trigger
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Figure 9: Input acceleration histories for the FE models associated with ten cyclic tests used for param-

eter identification and verification. (a)−(j) Nos. 1−10, respectively.

plastic deformations in the specimen, they are used to formulate fi(xi), and the relative

displacements and bending moments are used to verify the prediction performance of

identified parameters. Moreover, since it is computationally affordable to perform two

cyclic elastic simulations for the structure, the accelerations of interest from tests Nos. 1
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and 6 are simultaneously used for formulation of the error function in the first identi-

fication step. This aims to reduce the bias toward the experimental results obtained

from a single cyclic test that may lead the identified parameters to inaccurate predic-

tion of material behavior under other loading histories [24]. The second identification

step, however, only uses the acceleration of interest from a single cyclic test to formulate

the associated error function because using multiple waves is hindered by an enormous

computational cost to complete a cyclic elastoplastic simulation for the structure. In our

case, a single elastoplastic simulation averagely takes 40 minutes using a PC with an

Intel(R) Xeon(R) E5-2643V4 3.40 GHz CPU and 64 GB memory.

Let as1,t and am1,t denote the simulated and measured values of the floor acceleration

of interest at the tth time step of an acceleration history consisting of N1 discrete steps

measured from test No. 1. Similarly, as6,t and am6,t are defined for test No. 6 with an

acceleration history of N6 discrete steps. Following the root-mean-square deviation [9],

the error function f1(x1) reads

f1(x1) =

√√√√ 1

N1

N1∑
t=1

(
as1,t(x1)− am1,t

)2
+

√√√√ 1

N6

N6∑
t=1

(
as6,t(x1)− am6,t

)2
. (7)

In the same manner, f2(x2) can be formulated as

f2(x2) =

√√√√ 1

Nk

Nk∑
t=1

(
ask,t(x2)− amk,t

)2
, (8)

where ask,t and amk,t are similarly defined as as1,t and am1,t, respectively. However, they are

associated with an acceleration history of Nk discrete steps measured from the kth test

among eight cyclic tests that are used in the second identification step. If the responses

of interest of the kth test include both ax at A2 and ay at A1, for example, for tests

Nos. 2 and 3, ax at A2 is selected for formulating f2.

4.3. Solving the identification problem using Bayesian optimization

It may be infeasible to solve problem (6) using a gradient-based optimization algorithm

because it is too costly to numerically evaluate the gradient of the error function f1(x1)

and especially f2(x2). Although it is possible to use a population-based optimization al-

gorithm, a large number of simulations required for obtaining a good solution makes its
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application restricted. BO [35–37], therefore, becomes an ideal candidate for solving the

problem as it can provide a global-optimization framework for identification while keep-

ing the number of costly simulations as small as possible. Our recent work [24] showed

that BO outperforms some population-based algorithms in terms of the optimized error

function value as well as the prediction performance of responses using identified param-

eters when expending the same number of simulation calls. In the following, we briefly

describe the BO approach to handling problems (6), which is the same as the approach

used in Ref. [24] with noise-free observations. To further simplify the exposition, we

drop the subscripts of f1(x1) and f2(x2) hereafter because we equally treat the error

functions and parameters in the two identification steps.

BO first creates a training dataset D = {xn, fn}Nn=1, where x
n is a set of the parame-

ters in the identification step of consideration and fn the error function value associated

with xn. The number of samples N is problem-dependent [24], and is assigned as 5n1

(i.e., 20) and 5n2 (i.e., 25) for the first and second identification steps, respectively. The

samples xn are randomly generated using Latin-hypercube sampling [39]. With xn and

the specified input acceleration histories, FE analyses of the experiment are carried out to

evaluate as1,t and as6,t in Eq. (7) or ask,t in Eq. (8), and fn can be found accordingly. Once

D has been created, we can sort the best parameter vector that provides the smallest

error function value among those of D, and let fmin = min{f1, . . . , fN}.

Subsequently, BO constructs from D a Gaussian process (GP) model to probabilisti-

cally approximate the error function f , which is either f1 in Eq. (7) or f2 in Eq. (8). This

GP model describes the relationship between f and x by a conditional Gaussian, denoted

as f̂(x). The construction of f̂(x) is detailed in Appendix B. Following Eq. (B.6), the

GP prediction of the error function value at a particular x reads

f̂(x) ∼ N
(
µf(x), τ

2
f (x)

)
, (9)

where N denotes a univariate Gaussian; and µf(x) and τf(x) the mean and standard

deviation of f̂(x), respectively.

Now suppose BO has completed its sth iteration and has to specify a new sampling

point xs+1 at which the FE analysis is carried out to evaluate f(xs+1) in the next step,

i.e., (s+1)th step, that, in turn, updates the current training dataset, the best-observed

parameter vector, and the current GP model. Since we aim to reduce the number of
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costly simulations as much as possible, xs+1 should be ideal in the parameter space, and

finding it should not require any costly simulation. For this purpose, BO allows us to

transform how promising each point in the parameter space is into a measure of our

belief about an improvement in the best-observed parameter vector using an acquisition

function formulated based on the current GP model. Thus, the new sampling point xs+1

is the maximizer of such an acquisition function. By further adopting the well-known

expected improvement (EI) acquisition function proposed by Jones et al. [35], xs+1 can

be found by solving [24]

find xs+1 = argmax
x

EI(x)

subject to x ∈ [xl,xu],

(10)

where xl and xu represent xil and xiu, respectively; and

EI(x) = (fmin − µf(x)) Φ

(
fmin − µf(x)

τf(x)

)
+ τf(x)ϕ

(
fmin − µf(x)

τf(x)

)
, (11)

where µf(x) and τf(x) are defined in Eq. (9); and Φ(·) and ϕ(·) the standard normal

cumulative distribution and probability density functions, respectively. Because EI is

formulated from fmin and the current GP model, finding xs+1 does not require any

additional costly simulation. The power of this acquisition function arises from its ability

to perfectly balance exploitation (the first term) and exploration (the second term) in

the parameter space. Another advantage in use of EI is that maximizing it does not

reselect the members of D because it always takes non-positive values at these members.

In summary, the following five substeps are sequentially performed in each identifica-

tion step:

� Substep 1: Generate initial samples of parameters x using Latin-hypercube sam-

pling. Then, create the training dataset D by performing FE analyses for the

generated samples.

� Substep 2: Find the best parameter vector among the samples of D that is asso-

ciated with fmin. Terminate the identification and output the parameters if the

number of BO iterations reaches a specified upper limit. Otherwise, proceed to

Substep 3.

� Substep 3: Construct GP model for f(x) based on D; see Appendix B.
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� Substep 4: Find xs+1 by solving problem (10).

� Substep 5: Evaluate f(xs+1) using the FE analysis, update D by adding xs+1 and

f(xs+1), and go to Substep 2.

5. Identification and verification results

5.1. Initial settings

Table 4 provides the intervals for nine material parameters to be identified in the two

identification steps. Small intervals assigned for E and σy,0 are derived from the exper-

imental results of the monotonic tension tests in Section 2.2. The intervals for E1, E2,

and E3 cover the common Young’s modulus values for structural steels. Those for Q∞,

b, C1, and γ1 are taken from Ref. [24].

Table 4: Material parameter intervals.

Parameter Lower bound Upper bound

E [GPa] 200 210

E1, E2, E3 [GPa] 185 215

σy,0 [MPa] 270 290

Q∞ [MPa] 10 100

b 5 25

C1 [MPa] 2000 10000

γ1 10 100

BO is performed three times in the first identification step, thereby producing three

sets of Young’s modulus values. Each of these sets is then used as input to the FE

model for finding the plastic parameters in the second identification step. The second

identification step, in turn, selects five among eight elastoplastic cyclic tests in Table 3

for finding the plastic parameters. The selected tests include No. 2 (x- and y-dir. wave),

No. 5 (y-dir. wave), No. 7 (x-dir. wave), No. 8 (x-dir. and z-rot. wave), and No. 9

(y-dir. and z-rot. wave), which are further indexed as identification cases 1, 2, 3, 4, and

5, respectively. Thus, each identification case, together with the three Young’s modulus
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sets found in the first identification step, offers three sets of material parameters, and the

best set of identified parameters corresponds to the smallest value of f2. The remaining

three elastoplastic cyclic tests, namely, No. 3 (x- and y-dir. wave), No. 4 (x-dir. and z-

rot. wave), and No. 10 (x-dir. and z-rot. wave) are used as verification tests to assess the

prediction performance of the best set of identified parameters from each identification

case.

Problem (10) is solved in each BO iteration using genetic algorithm (GA). Parameters

for GA including the population size, maximum number of generations, crossover fraction,

number of elite transfer, and tolerance for the objective and constraint functions are 2000,

50, 65%, 2, and 10−6, respectively. Here, GA uses a large population size to increase

the chance of finding the global maximizer of EI in each BO iteration predicted by the

current GP model, which can reduce the effect of its randomness on the BO performance.

The numbers of BO iterations for the first and second identification steps are limited at

25 and 30, respectively. Thus, the respective numbers of simulation calls are 90 (i.e.,

20× 2 = 40 for training the initial GP model and 25× 2 = 50 for BO iterations) and 55

(i.e., 25 for training the initial GP model and 30 for BO iterations).

 

  
Figure 10: Histories of three BO attempts of the first identification step.

5.2. Young’s modulus values from the first identification step

Figure 10 shows the histories of three BO attempts for three different training datasets

generated in the first identification step. The value of f1 from each BO is not considerably

improved since the very first iterations of the algorithm, and there is no major difference
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in the final values of f1 obtained from the three BO attempts. This may be explained by

the fact that the best set of Young’s modulus values found in the first iteration of each

BO attempt can accurately predict the accelerations measured from tests Nos. 1 and 6

as the allowable ranges of Young’s modulus are very small. Table 5 compares three sets

of Young’s modulus values obtained from the three BO attempts. Three sets of E, E2,

and E3 are quite similar. A considerable difference in three E1 values indicates that it

is less important to the sensitivity of f1 than E, E2, and E3.

Table 5: Comparison of three sets of Young’s modulus values obtained from three BO attempts of the

first identification step.

Parameter 1st attempt 2nd attempt 3rd attempt

E [GPa] 206.35 210.00 205.34

E1 [GPa] 202.42 212.90 196.77

E2 [GPa] 209.24 211.23 207.43

E3 [GPa] 215.00 215.00 215.00

f1 [m/s2] 1.304 1.296 1.307
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Figure 11: Comparison of test data and simulated values of the responses of interest from tests Nos.

1 and 6 with use of Young’s modulus values identified from the 3rd BO attempt for the predictions.

Arrows indicate the responses used for formulating f1. (a) Test No. 1; (b) Test No. 6.

Figure 11 compares the histories of the responses of interest measured from tests Nos.

1 and 6, and the corresponding histories simulated using the set of Young’s modulus
25



values obtained from the 3rd BO attempt, where the arrow at the lower-left corner of

the figure indicates the acceleration history used for formulating f1, and the error value

f is evaluated using Eq. (7) for the response in the figure. Although the 3rd BO attempt

provides the worst optimal value of f1 among the three values obtained in this step, there

is a good agreement between the measured and simulated histories of the responses of

interest from tests Nos. 1 and 6. This result also validates the FE model when it is used

for simulating the cyclic behavior of the structure in the elastic state.
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Figure 12: Histories of three BO attempts of each identification case in the second identification step

and the comparison of the minimum values of f2 obtained from the 3rd BO attempt, GA, and PSO.

(a)−(e) Cases 1−5, respectively.

5.3. Plastic parameters from the second identification step and verification

Figure 12 shows the histories of three BO attempts of each identification case in the

second identification step. In all identification cases, BO considerably reduces the error

function as it terminates. It is also natural to obtain three different optimized values of

f2 in each identification case because the 1st, 2nd, and 3rd BO attempts of each case

use the 1st, 2nd, and 3rd sets of Young’s modulus values found in the first identification

step, respectively. The 3rd BO attempt of identification cases 1, 3, and 5 offers the best
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Table 6: Comparison of the best parameter sets obtained from five identification cases in the second

identification step.

Parameter Case 1 Case 2 Case 3 Case 4 Case 5

E [GPa] 205.34 210.00 205.34 206.35 205.34

E1 [GPa] 196.77 212.90 196.77 202.42 196.77

E2 [GPa] 207.43 211.23 207.43 209.24 207.43

E3 [GPa] 215.00 215.00 215.00 215.00 215.00

σy,0 [MPa] 270.00 271.37 272.58 270.12 277.77

Q∞ [MPa] 10.00 12.75 10.20 10.37 10.03

b 22.51 7.32 11.50 5.00 5.01

C1 [MPa] 2000.00 3666.18 7594.39 2000.62 9984.83

γ1 39.96 10.01 13.64 91.85 11.81

f2 [m/s2] 1.645 2.624 0.476 0.773 0.966

optimal value of f2 among the three attempts even though it corresponds to the worst

set of Young’s modulus values. The 3rd BO attempt of identification cases 2 and 4 also

provides good values of f2.

For comparison purpose, we use GA and particle swarm optimization (PSO) algo-

rithm, each characterized by five generations and a population of size 12, to directly solve

problem (6) formulated for each identification case with the 3rd set of Young’s modulus

values obtained from the first identification step. Thus, the number of simulation calls

required for either GA or PSO is 60, which is greater than 55 for the BO attempt of

each identification case. The minimum values of f2 obtained from GA and PSO provide

baselines for comparison with f2 obtained from the 3rd BO attempt of each identification

case. Comparison results in Fig. 12 show that the minimum values of f2 obtained from

GA as well as PSO are not significantly better or even worse than f2 obtained from

the 3rd BO attempt of each identification case, let alone that BO quickly reaches the

minimum value of f2 before it terminates. This indicates the robustness of BO to solve

the identification problem.

Table 6 lists the best parameter set identified from each identification case. σy,0

values obtained from cases 1, 2, 3, and 4 are similar, and are slightly smaller than the

27



value obtained from case 5. Q∞ from all cases tends to concentrate to its lower bound,

indicating that the stress saturation of the specimen is not far from σy,0. The identified

values of b, C1, and γ1 are case-dependent.
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Figure 13: Comparison of test data and simulated values of the responses of interest from the test used

for identification and from the verification tests using the best parameter set found from case 1 (i.e., No.

2) for the predictions. Arrow indicates the response used for formulating f2. (a) Test No. 2; (b) Test

No. 3; (b) Test No. 4; (d) Test No. 10.

Figures 13, 14, 15, 16, and 17 compare the measured and simulated responses of

interest from the three verification tests (i.e., Nos. 3, 4, and 10) using the best parameter

sets identified from cases 1, 2, 3, 4, and 5 for predictions, respectively. The comparison
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between the measured and simulated responses of interest from the test used in each

identification case is also given. The arrow in each figure indicates the acceleration history

used in the identification case to formulate f2. It is confirmed that the best parameter set

found in each identification case can reproduce the histories of the responses of interest

measured from the verification tests that are not used for identification. They can also

predict the responses that are not used for formulating f2 in each identification case with

acceptable accuracy.

Table 7: Comparison of prediction performances of the best parameter sets obtained from five identifi-

cation cases on three responses of interest of test No. 3 (x- and y-dir. wave).

Identification case f for ax at A2 f for δx f for My

[m/s2] [mm] [Nm]

Case 1 (x- and y-dir.) 1.802 1.255 40.117

Case 2 (y-dir.) 2.074 1.722 47.419

Case 3 (x-dir.) 2.414 1.693 53.075

Case 4 (x-dir. and z-rot.) 2.192 1.637 46.995

Case 5 (y-dir. and z-rot.) 2.035 1.667 41.683

To quantitatively compare the prediction performances of the best parameter sets

obtained from the five identification cases, we use Eq. (8) to evaluate the error (i.e.,

f2) values for the measured and simulated responses of ax at A2, δx, and My from

verification test No. 3 (x- and y-dir. wave). The resulting error values associated with

each identification case are shown in Figs. 13(b), 14(b), 15(b), 16(b), and 17(b), and also

listed in Table 7. Comparison results show that the prediction performance of the best

parameter set in case 1 (x- and y-dir. wave) is much better than that in cases 2 (y-dir.

wave) and 3 (x-dir. wave). The prediction performance of the best parameter set in case

4 (x-dir. and z-rot. wave) is better than that in case 3 (x-dir. wave), and so with case

5 (y-dir. and z-rot. wave) and case 2 (y-dir. wave). These results indicate that the

best set of material parameters identified from the structural response associated with a

multi-directional wave has a better prediction performance than that associated with a

single-directional wave. Moreover, there exists the dataset-specific bias as the parameter
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Figure 14: Comparison of test data and simulated values of the responses of interest from the test used

for identification and from the verification tests using the best parameter set found from case 2 (i.e., No.

5) for the predictions. Arrow indicates the response used for formulating f2. (a) Test No. 5; (b) Test

No. 3; (b) Test No. 4; (d) Test No. 10.

set identified from case 1 (x- and y-dir. wave) provides extremely good predictions of

the responses measured from test No. 3, which also uses x- and y-dir. wave. Note that

it is also desirable to simulate the cyclic uni-axial behavior of the specimen using the

parameters identified from the multi-axial cyclic loading tests. However, cyclic material

tests are not available for the specimen.
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  Figure 15: Comparison of test data and simulated values of the responses of interest from the test used

for identification and from the verification tests using the best parameter set found from case 3 (i.e., No.

7). Arrow indicates the response used for formulating f2. (a) Test No. 7; (b) Test No. 3; (b) Test No.

4; (d) Test No. 10.
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  Figure 16: Comparison of test data and simulated values of the responses of interest from the test used

for identification and from the verification tests using the best parameter set found from case 4 (i.e., No.

8). Arrow indicates the response used for formulating f2. (a) Test No. 8; (b) Test No. 3; (b) Test No.

4; (d) Test No. 10.
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Figure 17: Comparison of test data and simulated values of the responses of interest from the test used

for identification and from the verification tests using the best parameter set found from case 5 (i.e., No.

9). Arrow indicates the response used for formulating f2. (a) Test No. 9; (b) Test No. 3; (b) Test No.

4; (d) Test No. 10.
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6. Conclusions

We have proposed a two-step BO approach to inverse identification of the cyclic consti-

tutive law for a steel specimen of a structure subjected to multi-axial cyclic loading. A

series of cyclic tests is conducted on the structure where the specimen is the only mem-

ber experiencing the hardening process when the structure is subjected to cyclic loading.

The cyclic responses of the structure at the locations of interest are measured, and then

used for formulating an inverse problem to identify the material parameters for an FE

model that incorporates the linear elastic and nonlinear combined isotropic/kinematic

hardening models to simulate the cyclic behaviors of the structure in both the elastic and

elastoplastic states. Subsequently, the formulated inverse problem is solved using BO to

keep the number of costly simulations as small as possible. Finally, the prediction perfor-

mance of the identified material parameters is verified against the experimental results

from different cyclic tests with various cyclic loading conditions. The main conclusions

are summarized as follows:

� With the presented experimental program, the multi-axial cyclic elastoplastic be-

havior of a steel specimen can be investigated through the acceleration responses

of a structure. This is remarkable because it is more difficult to carry out a cyclic

material test than to perform a cyclic structural test.

� The proposed two-step BO approach has successfully identified the material pa-

rameters for modeling the material behavior of the structure using its responses

while limiting the number of costly simulations. The identified parameters can ac-

curately predict the cyclic responses of the structure under different cyclic loading

conditions, and in both elastic and plastic states.

� Verification results indicate that the material parameters identified from the struc-

tural response associated with a multi-directional wave may have a better prediction

performance than those associated with a single-directional wave.

� The error function obtained from BO approaches outperforms those from GA and

PSO, even though BO expends less number of costly simulations than GA and

PSO. This indicates the effectiveness of BO to solve the formulated identification

problem.
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� Results in Table 7 show that there exists the dataset-specific bias leading the pa-

rameters identified from the response associated with a loading condition to provide

very good predictions of responses associated with a similar loading condition. In

other words, the resulting parameters may lead to an overfitted numerical model.

Do and Ohsaki [24] showed that such a model may give inaccurate predictions of

material behavior under other loading conditions and suggested utilizing several

datasets for identification. This requires further research on overfitting, its effects

on structural response predictions, and how to avoid it in parameter identification.
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Appendix A: Nonlinear combined isotropic/kinematic hardening model

The relationship between strain and stress states of structural steel is established from

its current status that is either elastic or plastic, and can be detected using the following

von Mises yield condition:

F = ∥ξ∥ −
√

2

3
σy ≤ 0, (A.1)

where ξ = dev[σ]− dev[α] the shifted-stress tensor; dev[·] the deviatoric part of [·]; ∥ · ∥

the 2-norm of the tensor; σ the stress tensor at a point of a steel body; α the back-stress

tensor; and σy the yield stress.

Isotropic and kinematic hardening models are often used for describing the strain

hardening process of structural steels subjected to cyclic loading. The isotropic hardening

model only increases the size of the yield surface F = 0 during the evolution of plastic

deformations. Thus, α does not appear in Eq. (A.1), leading the yield surface to be
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an isotropic function of the stress that cannot capture the Bauschinger effect [40]. As

structural steels exhibit a saturation point of the stress at large deformation, the isotropic

hardening model can describe the increment of the size of the yield surface using the

following Voce hardening law [41]:

σy = σy,0 +Q∞[1− exp(−bϵpeq)], (A.2)

where σy,0 denotes the initial yield stress; Q∞ the difference of the stress saturation

and σy,0; b the isotropic saturation rate; and ϵpeq the current equivalent plastic strain

determined based on its previous state and the rate ϵ̇peq.

The kinematic hardening model, on the other hand, does not change the size and

shape of the yield surface. Instead, it updates the center of the yield surface using a rigid

translation in the evolution direction of the plastic strain. This enables the kinematic

hardening model to capture the Bauschinger effect. The back-stress tensor α can be

further decomposed into nk back-stress components for a better approximation as [42]

α =

nk∑
k=1

αk, (A.3)

where the rate of αk can be described by a the following nonlinear kinematic hardening

rule [43]:

α̇k =

√
2

3
Ck ϵ̇

p
eqn− γk ϵ̇

p
eqαk, (A.4)

where n = ξ/∥ξ∥ the unit normal vector of the yield surface; and Ck and γk the trans-

lation and relaxation rates of αk, respectively.

The nonlinear combined isotropic/kinematic hardening model was developed with

Eqs. (A.2) and (A.4) for simultaneous use of the properties of isotropic and nonlinear

kinematic hardening. Let x = [x1, . . . , xn] ∈ Rn denote the vector of n material pa-

rameters for such a hardening model. Thus, x = [E,Q∞, b, σy,0, C1, γ1] if we use one

back-stress component in Eq. (A.3) and a fixed Poisson’s ratio, where E is Young’s

modulus of the material.

Appendix B: Gaussian process modeling

Consider the training dataset D = {xn, fn}Nn=1, where xn are vectors of the material

parameters and fn the corresponding error function values. Based on D, we wish to
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establish the mapping from x to f , i.e., f = f̂(x).

GP modeling assumes that any finite subset of an infinite set of the error function

values has a joint Gaussian distribution [44]. Thus, for the set {x1, . . . ,xN}, the corre-

sponding error function values {f1, . . . , fN} are distributed according to
f1

...

fN

 ∼ NN



m(x1)

...

m(xN )

 ,


k(x1,x1) · · · k(x1,xN )

...
. . .

...

k(xN ,x1) · · · k(xN ,xN )


 , (B.1)

where NN denotes an N -variate Gaussian; and m(x) = E[f̂(x)] and k(x,x′) the mean

and covariance kernel functions, respectively. Here, the mean function is set as m(x) = 0

because k(x,x′) is flexible enough to handle the role of m(x) [44]. k(x,x′) is defined

for any pair of the parameter vectors x and x′ to measure the similarity between two

corresponding error function values f = f̂(x) and f = f̂(x′), such that

k(x,x′) = E
[(
f̂(x)−m(x)

)(
f̂(x′)−m(x′)

)]
. (B.2)

We use the well-known squared exponential kernel as

k(x,x′) = exp

(
− (x− x′)T (x− x′)

2l2

)
, (B.3)

where l denotes the characteristic length-scale parameter that is determined by using the

maximum likelihood estimation of D [44].

Once l has been determined, we wish to use the information in Eq. (B.1) for predicting

the error function value f∗ at a new parameter vector x∗, i.e., f∗|f = f̂(x∗), where

f = [f1, . . . , fN ]T . As the GP nature, the joint PDF of f∗ and f is also a Gaussian asf∗

f

 ∼ NN+1

m(x∗)

m(X)

 ,

 k(x∗,x∗) K(x∗,X)

K(x∗,X)T K(X,X)

 , (B.4)

where X = [x1, . . . ,xN ]T , m(X) = [m(x1), . . . ,m(xN )]T , and

K(x∗,X) =
[
k(x∗,x1), . . . , k(x∗,xN )

]
,

K(X,X) =


k(x1,x1) · · · k(x1,xN )

...
. . .

...

k(xN ,x1) · · · k(xN ,xN )

 .
(B.5)
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The conditional Gaussian variable f∗|f = f̂(x∗) can be derived from Eq. (B.4) using

the standard conditioning rule [44], such that

f∗|f ∼ N
(
µf∗(x

∗), τ2f∗(x
∗)
)
, (B.6)

where

µf∗(x
∗) = m(x∗) +K(x∗,X)K(X,X)−1 (f−m(X)) ,

τ2f∗(x
∗) = k(x∗,x∗)−K(x∗,X)K(X,X)−1K(x∗,X)T .

(B.7)
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