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Abstract Despite its importance in seismic response

analysis, solving an inverse problem to identify the cyclic

elastoplastic parameters for structural steels using con-

ventional optimization algorithms still demands a sub-

stantial computational cost of repeatedly carrying out

many nonlinear analyses. The parameters are commonly

identified based on experimental measures from a sin-

gle loading history, leading them to be biased and giv-

ing inaccurate predictions of structural behavior under

other loading histories. To address these issues, we for-

mulate a multi-objective inverse problem that simul-

taneously minimizes the error functions representing

the differences between simulated responses and those

measured experimentally from various cyclic tests of a

steel specimen or a structural component. We then pro-

pose proximal-exploration multi-objective Bayesian op-

timization (MOBO) for solving the formulated inverse

problem, resulting in an approximate Pareto front of

parameters while limiting the number of costly simu-

lations. MOBO sorts an initial Pareto front and con-

structs Gaussian process (GP) models for the error func-

tions from a training dataset. It then relies on the hy-

pervolume of the current solutions, the GP models, and

a proximal exploration surrounding the current best

compromise parameters to formulate an acquisition func-

tion that guides the improvement of the current so-
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lutions intelligently. Two identification examples show

that the parameters obtained from the multi-objective

inverse problem can reduce the bias induced by using a

single loading history for identification. The robustness

of MOBO as well as a good prediction performance of

the best compromise solution of identified parameters

are demonstrated.
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1 Introduction

Accurately modeling the cyclic constitutive law for struc-

tural steels is a basis for using detailed finite element

(FE) models (Ohsaki et al., 2009; Wang et al., 2013) to

provide reliable analyses of cyclic elastoplastic behav-

ior of steel structures under earthquake excitation. By

parameterizing the constitutive law and incorporating

certain material parameters into an appropriate hard-

ening model, for example, isotropic, kinematic, or com-

bined isotropic/kinematic hardening model (Chaboche,

2008; Yoshida et al., 2002), the material parameters are

identified based on the available experimental measures

of material (or structural) responses before being used

as input to other analyses. The problem formulated

for finding such parameters is called an inverse prob-

lem. Solving this class of problem is computationally

expensive from the requirement of repeatedly carrying

out many nonlinear response history analyses or static

cyclic elastoplastic simulations. Therefore, reducing the

computational cost due to repeatedly calling these sim-

ulations is of paramount importance in identification of

elastoplastic parameters.
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Methods for identifying the material parameters fall

into two main classes: probabilistic (Marwala and Sibisi,

2005; Rappel et al., 2019; Rosić et al., 2013) and deter-

ministic (Carreño et al., 2020; de Carvalho et al., 2011;

Do and Ohsaki, 2022a; Hartloper et al., 2021; Jekel

et al., 2019; Johansson et al., 2006; Ohsaki et al., 2016)

approaches, which belong to the functional analytic and

statistical regularization methods (Arridge et al., 2019),

respectively. The probabilistic approach uses Bayesian

inference to handle uncertainty in the parameters and

observational noise (Beck and Katafygiotis, 1998; Rap-

pel et al., 2019). It specifies a prior probability den-

sity function (PDF) for the parameters and constructs

a likelihood function as the joint density function of

the experimental measures for given parameter values.

Parameter uncertainty and observational noise are in-

corporated in the prior PDF and likelihood function,

respectively. To handle a costly likelihood function, a

rejection sampler of the approximate Bayesian compu-

tation can be used (Turner and Zandt, 2012). Having

the prior PDF and the likelihood function, Bayes’ rule

with support from a posterior sampling technique, for

example, the Metropolis algorithm (Tarantola, 2005),

generates posterior samples for the parameters. From

these samples, the posterior estimates of the parame-

ters, such as mean, variance, and maximum a poste-

riori (MAP), can be found and further used for other

analyses or uncertainty propagation. A drawback of the

probabilistic approach is that it may lead the parame-

ter identification to a wrong direction if the prior PDF

is not selected properly. Nevertheless, it does not spec-

ify how to select a proper prior PDF. The approach

also seems not familiar to practicing structural engi-

neers who are still hesitant to perform sophisticated

probabilistic computations.

In contrast to the probabilistic approach, the de-

terministic approach seeks a deterministic estimate of

each parameter by using an optimization algorithm to

minimize an error function that represents the differ-

ence between the simulated and measured responses of

interest. It works on the assumption that uncertainty

in the parameters can be neglected while observational

noise is normally distributed with zero mean. The deter-

ministic approach is indeed a special case of the prob-

abilistic approach when a constant and the MAP point

are used as the prior PDF and the optimal parame-

ter vector, respectively. Depending on the characteris-

tic of the inverse problem, for example, continuous or

discrete, or cheap-to-solve or expensive-to-solve, the as-

sociated optimization algorithm is selected accordingly,

which can be one of the conventional optimization al-

gorithms such as population-based (Mahmoudi et al.,

2011), gradient-based (de Carvalho et al., 2011), or hy-

brid algorithms (Chaparro et al., 2008). A comparative

evaluation of such algorithms for parameter identifica-

tion in large kinetic models can be found in Villaverde

et al. (2018). Furthermore, since modeling the cyclic

elastoplastic behavior of structural steels demands a

substantial computational cost, the deterministic ap-

proach commonly limits itself to identification problems

formulated for uniaxial cyclic tests with few loading cy-

cles that, in turn, facilitate the use of any optimization

algorithm. Therefore, it is desirable to extend the appli-

cations of the deterministic approach to complex iden-

tification problems, for example, when multiaxial cyclic

behavior of the material or long period cyclic loading is

of interest. Accordingly, the computational cost due to

the calculation of the error functions should be taken

into consideration.

Inverse problems are ill-posed as their solutions de-

pend on the experimental data of interest (Arridge et al.,

2019). A small change in the data used for identifica-

tion may lead to large errors in the resulting parame-

ters as well as their prediction performance, which we

call the dataset-specific bias. The effect of such bias

on the identification results, however, is not fully ex-

plored by the methods of using conventional optimiza-

tion algorithms, which simply calibrate the parameters

based on experimental measures from a single load-

ing history. Consequently, the dataset-specific bias may

lead the resulting parameters to inaccurate predictions

of material behavior under other loading histories (Do

and Ohsaki, 2022a). When different loading histories

are available, different sets of identified parameters are

found by solving independent parameter identification

problems. This motivates an investigation of possibility

of simultaneously incorporating multiple sets of exper-

imental measures from different loading histories into

one parameter identification problem, which, as expected,

can mitigate the data-specific bias.

Standard Bayesian optimization (BO) (Frazier, 2018;

Jones et al., 1998; Shahriari et al., 2016; Snoek et al.,

2012) is a sequential sampling technique for solving

a bound-constrained optimization problem having an

expensive-to-evaluate objective function, which is often

evaluated through a costly simulation. BO generates a

dataset of the objective values for a small number of

design variable sets (or parameter sets). This dataset

is then used for selecting a best-observed solution as

well as for constructing a Gaussian process (GP) model

(Rasmussen and Williams, 2006) that probabilistically

describes the relation between the objective function

and the design variables. The best-observed solution

and the GP model enable BO to formulate an acqui-

sition function that specifies a good, new design point

for the next BO iteration without calling any simula-
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tion, thereby reducing the number of simulation calls

considerably. This is brought by a remarkable ability of

the acquisition function to balance exploitation, i.e., im-

proving the best-observed solution in its neighborhood,

and exploration, i.e., searching the design space regions

where uncertainty in GP predictions is large. Following

the success of the standard BO, various BO variants

have been proposed for solving constrained single- and

multi-objective optimization problems (Feliot et al., 2017).

In material and structural engineering designs, BO finds

its successful applications to designing materials with

mixed quantitative and qualitative variables (Zhang et al.,

2020), optimizing auxetic (Tran et al., 2019) and ar-

chitected materials (Vangelatos et al., 2021), handling

structural optimization problems (Do et al., 2021; Math-

ern et al., 2021), and identifying material parameters

for multiscale crystal plasticity models (Kuhn et al.,

2021) and for steels under cyclic loadings (Do and Ohsaki,

2022a).

As a continuation of our recent work on the identifi-

cation of elastoplastic constitutive parameters using the

standard BO (Do and Ohsaki, 2022a), this study intro-

duces a multi-objective inverse problem to finding a set

of compromise elastoplastic parameters for structural

steels subjected to various cyclic loadings. We simulta-

neously minimize the error functions that represent the

differences between the simulated responses associated

with the loadings of interest and those measured ex-

perimentally. By doing so, we aim to mitigate the unfa-

vorable effect of the dataset-specific bias on the predic-

tion performance of identified parameters, which is ob-

served in Do and Ohsaki (2022a). Proximal-exploration

multi-objective BO (MOBO) is then proposed for solv-

ing the multi-objective inverse problem. MOBO sorts

an initial approximate Pareto front of parameters from

a dataset generated for a small number of different sam-

ples of parameters and the corresponding error func-

tion values. It then relies on the hypervolume mea-

sure of the current Pareto front, the GP models, and

an exploration surrounding the current best compro-

mise solution (i.e., proximal exploration) to formulate

an acquisition function that intelligently guides the im-

provement of the approximate Pareto front. Related

MOBO algorithms and proximal-exploration strategies

can be found in Daulton et al. (2021); Do et al. (2021);

Mathern et al. (2021); Roussel et al. (2021). Once im-

plemented, MOBO offers the best-found Pareto front

of parameters to the identification problem, which al-

lows designers to specify a set of material parameters

for their design in a flexible way. Nevertheless, we will

show that the best compromise solution on the obtained

Pareto front can be used for structural response predic-

tions.

The remainder of this paper is composed as fol-

lows. Section 2 briefly describes the nonlinear combined

isotropic/kinematic hardening model for simulating the

cyclic behavior of structural steels. The multi-objective

inverse problem is then formulated. Section 3 details

the proposed MOBO for solving the formulated multi-

objective inverse problem. Performance of MOBO is

verified against a simple bi-objective minimization prob-

lem in Section 4. Section 5 uses MOBO for identifying

the material parameters for a steel specimen and a bi-

material cantilever. It also demonstrates how the pa-

rameters obtained from solving the multi-objective in-

verse problem can reduce the dataset-specific bias. Sec-

tion 6 provides conclusions. Mathematical foundation

of the GP model is provided in Appendix.

2 Multi-objective inverse problem for

parameter identification

2.1 Nonlinear combined isotropic/kinematic hardening

model

The cyclic constitutive model of structural steel de-

scribes the relationship between the strain and stress

states of the material at each time instant when sub-

jected to cyclic loading. This relationship is established

from the steel status that is either elastic or plastic and

can be detected by the following von Mises yield con-

dition:

F = ∥ξ∥ −
√

2

3
σy ≤ 0 (1)

where ξ = dev[σ] − dev[α] the shifted-stress tensor;

dev[σ] the deviatoric part of σ; ∥ · ∥ the 2-norm of the

tensor; σ the stress tensor at a point of a steel body; α

the back-stress tensor; and σy the yield stress.

Solid mechanics often uses isotropic and kinematic

hardening models for describing the strain hardening

process of structural steel subjected to cyclic loading. In

the isotropic hardening model, the yield surface F = 0

increases its size during the evolution of plastic defor-

mations, while its shape and the location of its center

are fixed. As a result, α does not appear in Eq. (1),

leading the yield surface to be an isotropic function

of stress, which cannot capture the Bauschinger effect

(Lemaitre and Chaboche, 1994). Since structural steel

exhibits a saturation point of stress at a large defor-

mation, the isotropic hardening model can describe the

increment of size of the yield surface using the follow-

ing monotonically increasing nonlinear function (Voce,

1948):

σy = σy,0 +Q∞[1− exp(−bϵpeq)] (2)
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where σy,0 denotes the initial yield stress; Q∞ the dif-

ference of the stress saturation and σy,0; b the isotropic

saturation rate; and ϵpeq the current equivalent plastic

strain determined based on its previous state and the

rate ϵ̇peq.

The kinematic hardening model, on the other hand,

does not change the size and shape of the yield surface

during its evolution process. Instead, the center of the

yield surface, i.e., α, is updated through a rigid trans-

lation in the evolution direction of the plastic strain.

This enables the kinematic hardening model to cap-

ture the Bauschinger effect. For a better approxima-

tion, α can be further decomposed into nk components

as (Chaboche and Rousselier, 1983)

α =

nk∑
k=1

αk (3)

where the rate of αk can be described by a nonlinear

kinematic hardening rule as (Armstrong and Frederick,

1966)

α̇k =

√
2

3
Ck ϵ̇

p
eqn− γk ϵ̇

p
eqαk (4)

where n = ξ/∥ξ∥ the unit normal vector of the yield

surface; and Ck and γk the translation and relaxation

rates of αk, respectively.

The nonlinear combined isotropic/kinematic hard-

ening model was developed with Eqs. (2) and (4) for si-

multaneous use of properties of isotropic and nonlinear

kinematic hardening. Let x = [x1, . . . , xn] ∈ Rn denote

the vector of nmaterial parameters for such a hardening

model. Thus, x = [E,Q∞, b, σy,0, C1, γ1] if we use one
back-stress component in Eq. (3) and a fixed Poisson’s

ratio, where E is Young’s modulus of the material.

2.2 Multi-objective inverse problem for parameter

identification

Recall that the cyclic elastoplastic behavior depends on

loading conditions (Paul et al., 2011), leading the pa-

rameters identified from a single loading history to be

biased and giving inaccurate predictions of structural

behavior under other loading histories. It is important

to take into account this dataset-specific bias when se-

lecting a set of material parameters for a seismic design

because the characteristics of potential earthquakes are

unpredictable. If the experimental measures from differ-

ent loading histories are available for use in parameter

identification, the data-set specific bias may be reduced

and the resulting parameters become more reliable (Do

and Ohsaki, 2022a).

Let fi(x): Rn → R denote the ith error function

that represents the difference between the ith struc-

tural response of interest simulated from a numerical

model of the ith experiment, characterized by x, and

the corresponding measured response. When the ma-

terial (or structural component) is tested under a to-

tal of I different cyclic loading histories, the optimal x

can be identified by simultaneously minimizing the cor-

responding I error functions, namely, fi(x), . . . , fI(x).

Here, fi(x) is formulated from the response associated

with the ith cyclic loading history, i = {1, . . . , I}. As
there exists a trade-off between the minimized values

of the error functions (Do and Ohsaki, 2022a), it is

desirable to formulate a multi-objective minimization

problem for finding the best trade-off between them.

By further assuming that modeling errors are beyond

the scope of this study and uncertainty in the param-

eters can be neglected, the optimal x can be found by

solving the following problem:

minimize
x

[f1(x), . . . , fI(x)]

subject to x ∈ [xl,xu]
(5)

where xl and xu are the specified lower and upper bounds

of x, respectively.

Let dsi,t denote the simulated value of the response

of interest at the tth time step of the ith cyclic loading

history of Ni discrete steps, and dmi,t represent the cor-

responding measured value. Following the root-mean-

square deviation, fi(x) is formulated as (Ohsaki et al.,

2016)

fi(x) =

√√√√ 1

Ni

Ni∑
t=1

(
dsi,t(x)− dmi,t

)2
(6)

A common approach to finding Pareto-optimal (or

compromise) solutions to multi-objective optimization

problems is to use population-based algorithms, for ex-

ample, the non-dominated sorting genetic algorithm II

(NSGA-II) (Deb et al., 2002). These algorithms directly

evaluate the objective functions for all individuals of a

population. Unfortunately, it is too costly to use them

for solving problem (5) because direct evaluation of

fi(x) for all individuals of the population demands a

substantial computational cost for calculating dsi,t(x).

To solve the problem effectively, we propose proximal-

exploration MOBO in the next section. As all the error

functions fi(x) are treated equally, we drop the sub-

script hereafter to simplify the exposition.
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Fig. 1: Examples of the expected and upper bound HVI values for a bi-objective minimization problem. (a)

Expected HVI ; (b) Upper confidence bound HVI.

3 Parameter identification using

proximal-exploration multi-objective Bayesian

optimization

3.1 Proximal-exploration multi-objective Bayesian

optimization

The proposed MOBO starts by generating a training

dataset D = {xk, fk}Nk=1, where xk ∈ Rn is a vector of

material parameters, and fk ∈ R the value of f at xk.

The samples xk are randomly generated using Latin-

hypercube sampling (Santner et al., 2018). The number

of initial samples is problem-dependent, which is recom-

mended as N = 10n (Do and Ohsaki, 2022a). To eval-

uate fk, the nonlinear combined isotropic/kinematic

hardening incorporated in the FE model of the experi-

ment evaluates dsi,t in Eq. (6) using xk as the input of

material properties for the ith loading history used in

the cyclic test. From the members of D, MOBO finds

a set of approximate Pareto-optimal solutions to prob-

lem (5) using a non-dominated sorting algorithm (Tom,

2019) and sequentially improves this set until it can no

longer be improved or until the budgeted computational

cost has been reached.

Let Ω = {f1, ..., fM} ∈ RI be the set of M approxi-

mate Pareto-optimal solutions sorted from D. The im-

provement of Ω performs the following five steps: (1)

construct a total of I GP models as surrogates for the

error functions; (2) find the best compromise solution

from the members of Ω using a fuzzy-based method; (3)

formulate the acquisition function based on the current

GP models, Ω, and the current best compromise solu-

tion; (4) maximize the formulated acquisition function

for updating D; and (5) sort new Pareto-optimal so-

lutions from the updated D and reiterate from (1) if

MOBO is still in process.

In the first step of solution improvement, MOBO

uses the DACE toolbox (Lophaven et al., 2002) to con-

struct a GP model that approximates the error function

f(x) ∈ {f1(x), . . . , fI(x)}. By conditioning a Gaussian

probability distribution over possible regression func-

tions on D, the GP model describes the relation be-

tween f and x, denoted as f̂(x), using a conditional

Gaussian. Detailed derivations of this conditional Gaus-

sian are provided in Appendix. Following Eq. (A.7), the

GP prediction of the error function at a particular x

reads

f̂(x) ∼ N
(
µf(x), τ

2
f (x)

)
(7)

where N denotes a univariate Gaussian; and µf(x) and

τf(x) the mean and standard deviation of f̂(x), re-

spectively. Eq. (7) probabilistically maps the parameter

space onto the error function space.

The second step for improving Ω is to find its best

compromise member, or equivalently, the best compro-

mise solution of parameters, denoted as x0. This can be

done using the fuzzy-based method that computes the

following membership function for the ith error func-

tion of each member of Ω (Abido, 2003):

mi,j =


1 if fi,j = fmin

i

fmax
i − fi,j

fmax
i − fmin

i

if fmin
i < fi,j < fmax

i , i = 1, . . . , I

0 if fi,j = fmax
i

(8)

where j indicates the jth solution among M members

of Ω; fi,j the ith error function value of the jth solution;
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and fmin
i and fmax

i the minimum and maximum values

among M values of the ith error function, respectively.

Subsequently, a normalized membership function cor-

responding to mi,j reads

mj =

I∑
i=1

mi,j

M∑
j=1

I∑
i=1

mi,j

(9)

The best compromise solution x0 corresponds to a mem-

ber of Ω that has the largest value of the normalized

membership function mj . If Ω has only two members,

either can be selected. Also, the second-best compro-

mise solution, which is used in Section 5, has the second-

largest value of mj .

The third step for improving Ω is to formulate a

hypervolume-based acquisition function that intelligently

guides MOBO (Do and Ohsaki, 2022b; Do et al., 2021).

This formulation is natural because (1) the acquisition

function, a key ingredient of BO, directs the algorithm

toward better solutions by mapping our belief about an

improvement in the current solutions to a measure of

how promising each parameter vector in the parameter

space is if it is specified in the next optimization iter-

ation; and (2) the hypervolume (HV) measure is often

used in the field of multi-objective design to assess the

quality of different sets of solutions (Emmerich et al.,

2006). Let fR ∈ RI denote a fixed reference point in

the error function space so that it is dominated by all

members of Ω. Each element of fR can be assigned a

sufficiently large value of the corresponding error func-

tion at which the prediction error is unacceptable. As

an example, Fig. 1 shows the HV defined by a set of four

Pareto-optimal solutions to a bi-objective minimization

problem and a reference point dominated by these so-

lutions. Mathematically, the HV of Ω is a Lebesgue

measure of the I-dimensional subspace dominated by

Ω and bounded above by fR, such that

HV(Ω, fR) = Λ
({

f ∈ RI | ∃fj ∈ Ω : fj ⪯ f and f ⪯ fR
})

(10)

where Λ(·) denotes the Lebesgue measure defined for

a set on RI as the I-dimensional volume of this set,

for example, Λ(·) is equivalent to the standard measure

of length, area, or volume of set (·) if I = 1, 2, or 3,

respectively; f a point in the error function space; and

fj ⪯ f indicates fj dominates f. The HV in this study

is evaluated using an algorithm developed by Fonseca

et al. (2006).

Now suppose MOBO is processing its sth iteration

and has to specify a new parameter vector xs+1 in the

next iteration (i.e., s+ 1) at which a simulation is per-

formed to update the current dataset D as well as the

current solution setΩ. Since we wish to reduce the num-

ber of simulations as much as possible, xs+1 should be

ideal in the parameter space as it maximizes the im-

provement of Ω. Maximizing the improvement of Ω,

therefore, coincides with maximizing the difference of

the HV defined by the union of f(x) and Ω, and that

defined by Ω, where f(x) is evaluated at an arbitrary

vector x in the parameter space. This difference is fur-

ther represented by the following hypervolume improve-

ment (HVI) indicator (Do and Ohsaki, 2022b; Do et al.,

2021):

HVI(f(x) | Ω, fR) = HV(f(x)∪Ω, fR)−HV(Ω, fR) (11)

where f(x) ∪Ω denotes the union of f(x) and Ω.

Since the error function values are evaluated through

costly simulations, it is inefficient to maximize HVI by

direct evaluation of HV(f(x) ∪ Ω, fR). Fortunately, the
expected value of HVI can be estimated by integrating

HV(f(x) ∪ Ω, fR) over a non-dominated region of the

error function space defined by the current Ω and the

Gaussian models for the error functions (e.g., shading

in Fig. 1(a)). In this way, the non-dominated region

can be decomposed into a set of small disjoint cells

over which the integral can be approximated using an

analytical form (Couckuyt et al., 2014). However, the

calculation of the expected HVI using such an integral

is not advantageous for quickly finding xs+1 (Roussel

et al., 2021). Thus, we replaced HV(f(x) ∪ Ω, fR) with
HV(µf(x) ∪ Ω, fR) (Do and Ohsaki, 2022b; Do et al.,

2021), leading to an expected measure of HVI as illus-

trated by the hatched area in Fig. 1(a), where µf(x)

is the Gaussian mean vector of the error functions at x

given in Eqs. (7) and (A.8). The reason for this replace-

ment is that it is often more computationally efficient

to perform more optimization iterations than to do an

exact calculation of HVI at each iteration. Roussel et al.

(2021) further enhanced exploration ability of MOBO

using HV(µf(x) − βτf(x) ∪ Ω, fR) for defining an up-

per confidence bound HVI, as shown by the hatched

area in Fig. 1(b), where τf(x) is the Gaussian standard

deviation vector of the error functions at x given in

Eqs. (7) and (A.9), and β a positive scalar that con-

trols the trade-off between exploration and exploita-

tion of MOBO. A large value of β prioritizes MOBO

exploration. Here, the upper confidence bound HVI is

an extension of the GP-upper confidence bound crite-

rion, which is an aquisition function for solving single-

objective optimization problems (Srinivas et al., 2010).

As we aim to use the best compromise solution x0

of identified material parameters for structural response
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predictions, we bias MOBO exploration toward the non-

dominated region surrounding the best compromise mem-

ber of Ω and multiply the upper confidence bound HVI

by an exponential function of − 1
2∥xn − x0n∥, where xn

and x0n are normalized values of x and x0, respectively.

This is to address the selection of an efficient set of

material parameters after having the Pareto solutions,

and is inspired by two previous exploration schemes.

The first exploration scheme by Daulton et al. (2021)

focused on a trust region (in the error function space)

surrounding a member of Ω that has maximum HV

contribution. The second exploration scheme by Rous-

sel et al. (2021) carried out exploration in the neighbor-

hood of the most recently observed point (in the param-

eter space) for minimizing the traveling distance by the

optimization steps. As mentioned above, we formulate

the following acquisition function to specify xs+1:

α(x) = HVI(µf(x)−βτf(x)|Ω, fR) exp
(
−1

2
∥xn − x0n∥

)
(12)

Here xn and x0n are the normalized values to prevent

dependence of the exponential function value on the

parameter units. The components of xn and x0n are

derived from the corresponding components of x, x0,

xl, and xu as

xn =
x− xl
xu − xl

; x0n =
x0 − xl
xu − xl

(13)

Thus, the next parameter vector xs+1 can be found

by solving

xs+1 = argmax
x

α(x)

subject to x ∈ [xl,xu]
(14)

The exponential in Eq. (12) measures the similar-

ity between x and x0. Thus, when multiplying HVI by

this exponential, we are likely to find xs+1 in the neigh-

borhood of x0 which, as expected, can have the most

contribution to the improvement in the current HV of

Ω. Such an exploration is referred to as proximal explo-

ration. It can also make the improvement of HV more

stable than that observed when using only HVI to guide

MOBO (Do and Ohsaki, 2022b). Moreover, although

x = x0 maximizes the exponential, we do not reselect

x0 because the HVI at x0 equals zero. It is worth noting

that it is not necessary to restrict xs+1 to the neighbor-

hood of x0 because a new parameter vector that is far

from x0 can also be selected if it provides a large value

of HVI.

The fourth step for improving Ω is to solve prob-

lem (14) using an appropriate optimization algorithm.

Create initial training 

dataset   

Start

Sort solutions among 

available candidates

Termination?

End

Call FE analysis to 

evaluate fi(xs+1) for xs+1 

Add xs+1 and fi(xs+1) to 

the training dataset

Construct GP models for 

fi(x)

Find xs+1 by solving 

problem (14)

no

yes

 

  Fig. 2: Proposed MOBO for parameter identification.

Such an algorithm should avoid using the gradient in-

formation of α(x) for finding the search direction be-

cause it is difficult to evaluate the gradient of the upper

confidence bound HVI in Eq. (12). Thus, a population-

based method (e.g., genetic algorithm (GA)), a direct

method (e.g., pattern search), or a stochastic method

(e.g., simulated annealing) can be a viable choice.

With xs+1, MOBO terminates if it satisfies one of

the following stopping conditions: (1) the number of

iterations reaches a pre-specified upper limit, and (2)

xs+1 is identical to any available sample of parameters

in D. Otherwise, MOBO updates D and starts a new

iteration.

3.2 Identification procedure

Fig. 2 summarizes the identification procedure using

the proposed MOBO.We implement the following seven

steps:

• Step (0): Randomly generate initial samples of x

using Latin-hypercube sampling. Create D by per-

forming FE analyses for the generated samples. Find

Ω from D.

• Step (1): Based on D, construct GP models for the

error functions; see Appendix.

• Step (2): Find x0 associated with the best compro-

mise member of Ω using Eqs. (8) and (9).

• Step (3): Formulate α(x); see Eq. (12).

• Step (4): Find xs+1 by performing proximal explo-

ration surrounding x0, or equivalently, solving prob-

lem (14).
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Fig. 3: MOBO for solving problem (15). (a) Surfaces of two objective functions and the exact solutions; (b) Histories

of HVs for two MOBO attempts; (c) Initial and additional design points for the first MOBO attempt; (d) Initial

and additional design points for the second MOBO attempt.

• Step (5): Terminate the identification process and

output the approximate Pareto-optimal parameters

if one of the mentioned stopping conditions is met.

The best compromise solution x0 on the final Pareto

front may be used for prediction of structural re-

sponses. Otherwise, proceed to Step (6).

• Step (6): Evaluate the error function values corre-

sponding to xs+1 by calling the FE analyses, update

D as well as Ω, and reiterate from Step (1).

4 Test problem

Before being used for parameter identification, the per-

formance of MOBO is verified against a bi-objective

minimization problem. The problem is stated as (Rous-

sel et al., 2021)

minimize
x

[f1(x), f2(x)]

subject to xi ∈ [−2, 2], i = 1, 2
(15)

where

f1(x) = ∥x− 1∥; f2(x) = ∥x+ 1∥ (16)

Fig. 3(a) shows the exact Pareto-optimal solutions

to problem (15). Their image in the objective function

space is the line segment connecting [f1, f2] = [0, 2
√
2]

and [2
√
2, 0], as illustrated in Fig. 3(c).

We perform MOBO two times, each starts with a

random set of ten sampling points. The numbers of it-

erations for the first and second MOBO attempts are

limited at 20 and 40, respectively. The assigned refer-

ence point fR = [5, 5] leads to an exact HV of 21 (i.e.,

5 × 5 − 0.5 × 2
√
2 × 2

√
2). Problem (14) is solved in
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Table 1: Parameters for GA.

Parameter Value

Population size 200
Maximum number of generations 50
Crossover fraction 65%
Elite transfer 2
Fitness function tolerance 10−12

D

200

40

16

[mm]

 

  Fig. 4: Steel specimen and three loading histories for

cyclic tests (Do and Ohsaki, 2022a; Yamada and Jiao,

2016).

each iteration of MOBO using GA, whose parameters

are listed in Table 1. The parameter β in Eq. (12) is

assigned as 0.01 since we focus on MOBO exploitation

for improving HV. The effect of β on the convergence

speed of MOBO may be of interest when fixing the ini-

tial dataset; however, this is not our focus here. The

HV and additional sampling point after each MOBO

iteration are recorded.

Fig. 3(b) confirms that the HV values during the

two MOBO attempts increase as much as possible and

tend to converge to the exact HV when increasing the

number of MOBO iterations. As a result, the additional

sampling points by MOBO, as shown in Figs. 3(c) and

(d), well capture the exact solutions. These results in-

dicate a good performance of the proposed MOBO in

solving problem (15).

5 Identification examples

5.1 Parameters for a steel specimen

The elastoplastic parameters are identified to simulate

the uniaxial cyclic behavior of a steel specimen in Fig. 4,

which was used in our previous works on single-objective

inverse problems (Do and Ohsaki, 2022a; Ohsaki et al.,

2016). The specimen was tested under three different

static cyclic loading histories SS1, SS2, and SS3 by Ya-

mada and Jiao (2016).

The axial force and corresponding axial deformation

of the specimen were measured in the static cyclic tests.

Time in the horizontal axis of Fig. 4 refers to a loading

path parameter of each test. The measured axial force

and deformation values were used for calculation of the

engineering stress σe and the engineering strain ϵe at

every time instant of interest, respectively. More specif-

ically, σe was calculated by dividing the measured axial

force by the initial cross-sectional area of the specimen

while ϵe was evaluated by dividing the axial deforma-

tion of the specimen by its initial length. The true stress

σ and the true strain ϵ were derived from σe and ϵe as

σ = (1 + ϵe)σe (17)

ϵ = ln (1 + ϵe) (18)

Test results for the specimen, therefore, consist of three

experimental datasets of σ and ϵ corresponding to the

three loading histories.

For identification, Young’s modulus of the specimen

is kept constant at E = 205.94 GPa, which is calibrated

from the results of monotonic tension tests (Yamada

and Jiao, 2016). Poisson’s ratio of the specimen steel is

0.3. Thus, there are five parameters to be identified for

the specimen, i.e., x = [Q∞, b, σy,0, C1, γ1]. The interval

associated with each parameter, as listed in Table 2,

is taken from Do and Ohsaki (2022a). Note that the

monotonic tension tests facilitate the determination of

interval for σy,0.

Table 2: Material parameter intervals for the specimen.

Parameter Lower bound Upper bound

E [GPa] 205.94 −
σy,0 [MPa] 250 260
Q∞ [MPa] 10 100
b 5 25
C1 [MPa] 2000 8000
γ1 10 100

To investigate the effect of experimental datasets

used for identification on the resulting parameters as

well as their prediction performance, we classify the
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(a) (b) (c)

(d) (e) (f)
 

  
Fig. 5: Histories of HVs for different groups of experimental datasets from cyclic tests of the specimen. (a) Ten

MOBO attempts, group 1; (b) Ten MOBO attempts, group 2; (c) Ten MOBO attempts, group 3; (d) The first

five MOBO attempts and five ParEGO attempts, group 1; (e) The first five MOBO attempts and five ParEGO

attempts, group 2; (f) The first five MOBO attempts and five ParEGO attempts, group 3.

three experimental datasets into three groups, namely,

groups 1, 2, and 3, which correspond to SS1 & SS2, SS2

& SS3, and SS3 & SS1, respectively. For each group,

problem (5) is formulated with two objectives that are

the error functions evaluated using Eq. (6) for the mea-

sured and simulated σ − ϵ curves of the two individ-

ual tests. To further examine the robustness of MOBO,

ten different training datasets are generated for each

group. Each of these training datasets at the beginning

of MOBO has 50 random samples of parameters and

the corresponding error function values are evaluated

by carrying out FE analyses for each sample. As a re-

sult, a total of ten Pareto fronts of material parameters

are found for each group. The best Pareto front of each

group corresponds to the largest HV value among ten

values associated with the ten Pareto fronts. To demon-

strate their prediction ability, the best and second-best

compromise solutions on the best Pareto front of each

group are used as input to the FE model for calculation

of the error function associated with the loading history

not used for identification.

As the specimen was axially loaded during the cyclic

tests, it is modeled using one Abaqus linear hexahedral

element with reduced integration of type C3D8R (Das-

sault Systèmes, 2017). The maximum increment size for

each loading history is set as 0.01 s.

We limit the number of MOBO iterations at 50.

Thus, the maximum number of simulations required for

each MOBO attempt is 200 (i.e., 100 for generating the

initial training dataset, and maximum 100 for perform-

ing MOBO iterations). The reference point and the pa-

rameter β in Eq. (12) are assigned as fR = [150, 150]

MPa and 0.01, respectively. We solve problem (14) in

each MOBO iteration using GA with a large population

size of 4000, which is to increase the chance of find-

ing the global optimizer of the acquisition function by

which the effect of the GA randomness on the MOBO

performance can be reduced. Other parameters for GA

are given in Table 1.

For comparison, we perform NSGA-II ten times,

each treats the variables as real numbers and requires a

total of 200 simulation calls (i.e., 20 individuals and five

generations) for finding approximate Pareto fronts for

each group. The solutions from NSGA-II are baselines

to assess the quality of the Pareto fronts by MOBO.

Moreover, ParEGO (Knowles, 2006), which is an exten-

sion of the single-objective efficient global optimization

algorithm to solving multi-objective optimization prob-
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(g) (h) (i)

(d) (e) (f)

(a) (b) (c)

 

  Fig. 6: Evolution of approximate Pareto-optimal solutions during the first three MOBO attempts for different

groups of experimental datasets from cyclic tests of the specimen. (a), (b), (c) From group 1; (d), (e), (f) From

group 2; (g), (h), (i) From group 3.

lems, is carried out five times, each characterized by 50

iterations uses the same training dataset as that at the

beginning of each of the first five MOBO attempts. This

is to compare the largest HV values associated with the

final Pareto fronts fromMOBO and ParEGO when they

start at the same training dataset.

To show that the solutions to the multi-objective in-

verse problem of the specimen can reduce the dataset-

specific bias, we compare the best and second-best com-

promise solutions by MOBO with those obtained by

solving other six single-objective inverse problems for-

mulated for the specimen. The first, second, or third

problem, denoted as SIG 1, SIG 2, or SIG 3, respec-

tively, is formulated with single objective as the individ-

ual error of SS1, SS2, or SS3, respectively. The fourth,

fifth, or sixth problem, denoted as SUM 1, SUM 2, or

SUM 3, respectively, is formulated with single objective

as the weighted-sum (with equal weights) error of SS1 &

SS2, SS2 & SS3, or SS3 & SS1, respectively. For brevity,

we use “single-objective formulation” to represent prob-

lems SIG 1, SIG 2, and SIG 3, and “weighted-sum for-

mulation” to represent SUM 1, SUM 2, and SUM 3,

even though they all have one objective. Detailed for-

mulations of these problems and how to solve them us-

ing the standard BO can be found in Do and Ohsaki

(2022a). Here, we only provide the identification results
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Fig. 7: Comparison of solutions by ten MOBO attempts and by ten NSGA-II attempts for different groups of

experimental datasets from cyclic tests of the specimen. (a) From group 1; (b) From group 2; (c) From group 3.

obtained from solving these problems to enable a com-

parison with the solutions by MOBO.

Fig. 5 shows the histories of HV from the ten MOBO

attempts of each group as well as the comparison be-

tween the HV histories from the first five MOBO at-

tempts and those from the corresponding five ParEGO

attempts. Although starting at different initial values,

the HVs from each group tend to converge to a value

as MOBO terminates. Moreover, the final HV values

by most of the MOBO attempts are better than those

by the ParEGO attempts when they start at the same

training dataset. The optimized HV values associated

with ten MOBO attempts of each group are reported

in Table 3.

Table 3: Optimized HVs associated with ten MOBO

attempts for different groups of experimental datasets

from cyclic tests of the specimen [×103 (MPa)2].

Attempt Group 1 Group 2 Group 3

1 14.477 13.275 13.129
2 14.480 13.261 13.143
3 14.479 13.262 13.109
4 14.402 13.183 13.128
5 14.457 13.262 13.132
6 14.444 13.265 13.123
7 14.454 13.248 13.140
8 14.446 13.259 13.154
9 14.454 13.175 13.044
10 14.383 13.206 13.152

Fig. 6 illustrates the evolution of approximate Pareto-

optimal solutions during the first three MOBO attempts

of each group. As observed, MOBO considerably im-

proves the solution quality. Fig. 7 shows the similarity

in shapes of the Pareto fronts at the last iterations of

ten MOBO attempts of each group, regardless of their

difference at the very first iterations (see the first itera-

tion along each row of Fig. 6 for the first three MOBO

attempts of each group). This observation is consistent

with the convergence of HV in Fig. 5. Fig. 7 also con-

firms that the optimization results by all MOBO at-

tempts of each group outperform those by the corre-

sponding ten NSGA-II attempts even though the num-

ber of simulation calls required for MOBO does not

exceed that required for NSGA-II.

Table 4 provides the best (1) and second-best (2)

compromise solutions on the best Pareto front of each

group. It also provides the error function values asso-

ciated with SS1, SS2, and SS3, namely, f1, f2, and f3,

respectively, where the boldface value indicates the ex-

perimental dataset used for identification. The identi-

fied parameters and the corresponding error function

values from SIG 1, SIG 2, SIG 3, SUM 1, SUM 2, and

SUM 3 are also given (Do and Ohsaki, 2022a). As the

ten Pareto fronts of each group are similar, the best

and second-best compromise solutions among those on

these Pareto fronts are slightly different. As observed

in Table 4, there is no major difference in the values

of σy,0, b, C1, and γ1 for the best and and second-best

compromise solutions among those obtained from the

three groups. However, Q∞ is group-dependent.

Using the results in Table 4, we wish to compare

the data-specific bias levels for different sets of identi-

fication results obtained from different inverse problem

formulations for the specimen. Here, we consider four

different sets of identification results from three prob-

lem formulations (i.e., multi-objective, single-objective,

and weighted-sum formulations). The multi-objective

formulation offers two sets of identification results, i.e.,

the best compromise and second-best compromise sets,

while each of the remaining two formulations provides

only one set of identification results. To enable a rig-
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Table 4: Comparison of the identification results obtained from MOBO and from solving single-objective inverse

problems using BO for different groups of experimental datasets of the specimen.

Group σy,0 [MPa] Q∞ [MPa] b C1 [MPa] γ1 f1 [MPa] f2 [MPa] f3 [MPa]

1 (1) 250.373 58.208 5.058 7987.986 69.641 33.271 30.298 45.902
2 (1) 250.004 46.273 5.005 7982.653 65.429 30.861 34.236 43.168
3 (1) 250.346 39.932 5.013 7999.983 67.686 30.447 37.028 42.319

1 (2) 251.806 54.956 5.003 7855.806 68.741 32.669 31.147 45.669
2 (2) 250.005 40.323 5.025 7999.934 65.076 30.599 36.794 42.257
3 (2) 250.093 35.395 5.186 7969.030 65.229 30.895 39.244 41.680

SIG 1 250.004 42.105 5.001 7999.997 69.188 30.372 36.370 42.499
SIG 2 250.010 70.283 5.015 7999.769 70.308 37.898 28.840 48.692
SIG 3 250.008 11.939 5.000 8000.000 72.634 38.635 54.834 39.986

SUM 1 250.011 56.630 5.005 7999.996 69.096 32.627 30.732 45.261
SUM 2 250.056 57.661 5.000 8000.000 67.594 33.092 30.397 45.497
SUM 3 250.002 34.289 5.003 8000.000 67.985 30.827 40.150 41.389

orous comparison, we propose in the following a data-

specific index ξ for each set of identification results.

Let P ≥ 2 and J ≥ 2 denote the number of pa-

rameter sets in each set of identification results and

the number of tests in consideration, respectively, and

fj,p with j = {1, . . . , J} and p = {1, . . . , P} indicate

the jth error corresponding to the pth parameter set.

Each set of identification results in Table 4, therefore,

reads J = 3 and P = 3, while the best compromise

set, for example, reads f1,1 = 33.271, f1,2 = 30.861,

f1,3 = 30.447 MPa, and so on. For the jth test of each

set of identification results, we define

ψj = fmax
j − fmin

j , j = 1, . . . , J (19)

where

fmin
j =min{fj,1, . . . , fj,P };
fmax
j =max{fj,1, . . . , fj,P }

(20)

Here fmin
j , due to the data-specific bias, is a minimized

value of fj (i.e., a boldface value in Table 4). That

means, fmin
j is found by minimizing the error func-

tion formulated from the experimental results of test

j. Meanwhile, fmax
j , in most cases, corresponds to a

parameter set that is found by minimizing the error

function formulated from the experimental results of

other tests rather than test j. For example, the set

of identification results of SIG 1, SIG 2, and SIG 3

has fmin
1 = 30.372, fmin

2 = 28.840, fmin
3 = 39.986,

fmax
1 = 38.635, fmax

2 = 54.834, and fmax
3 = 48.692

MPa. fmin
j and fmax

j , therefore, represent the quality of

the solution to the inverse problem and its prediction

performance, respectively. Thus, the larger the differ-

ence of fmax
j and fmin

j (i.e., ψj), the higher the data-

specific bias level observed on the jth test. Without loss

of generality, we further assume that the errors of the

tests in consideration have the same unit. Normaliza-

tion can be used when different units are of interest.

The following data-specific index ξ is defined for each

set of identification results based on a total of J tests

of consideration:

ξ =
1

J

J∑
j=1

ψj (21)

Thus, the set of identification results with the smallest

value of ξ has the lowest level of dataset-specific bias.

Table 5 provides the ξ index value for each set of

identification results listed in Table 4, where ψ1, ψ2,

and ψ3 are evaluated using tests SS1, SS2, and SS3, re-

spectively. The ξ values associated with the two sets of

identification results from the multi-objective formula-

tion are better than those corresponding to the single-

objective and weighted-sum formulations. The single-

objective formulation shows the largest value of bias

level. These results confirm that the best and second-

best compromise solutions obtained from the multi-

objective formulation of the inverse problem of the spec-

imen can reduce the dataset-specific bias.

Table 5: Dataset-specific indexes for different sets of

identification results evaluated using the experimental

results from tests SS1, SS2, and SS3 of the specimen

[MPa].

Set of results ψ1 ψ2 ψ3 ξ

Multi-objective (1) 2.823 6.730 3.583 4.379
Multi-objective (2) 2.070 8.096 3.990 4.719
Single-objective 8.263 25.994 8.706 14.321
Weighted-sum 2.265 9.418 4.109 5.264

Fig. 8 compares the measured and simulated σ − ϵ

curves from each loading history using the best com-

promise solution of each group listed in Table 4 for the

simulation, where the arrow at the lower right corner of

the figure indicates the experimental dataset used for
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Fig. 8: Comparison of test data and model predictions for cyclic tests of the specimen with the best compromise

solutions of parameters identified from different groups of experimental datasets. (a), (b), (c) Parameters from

group 1; (d), (e), (f) Parameters from group 2; (g), (h), (i) Parameters from group 3.

Table 6: Dataset-specific indexes for different sets of

identification results evaluated using the experimental

results from tests SN1, SNR2, and SSR1 of the speci-

men [MPa].

Set of results ψ4 ψ5 ψ6 ξ

Multi-objective (1) 8.359 7.567 1.087 5.671
Multi-objective (2) 9.318 8.441 1.440 6.400
Single-objective 19.911 28.040 2.050 16.667
Weighted-sum 11.319 10.202 0.914 7.478

identification. Although the yield plateau observed in

test SS2 cannot be captured because of the nature of

the nonlinear combined isotropic/kinematic hardening

model, the identified parameters can reproduce the σ−ϵ

curves for the loading histories not used for identifica-

tion with good accuracy. To strengthen this conclusion,

we further use each set of parameters in Table 4 to

predict the σ− ϵ curves from other three loading histo-

ries SN1, SNR2, and SSR1 that have not been seen in

the identification, but were used by Yamada and Jiao

(2016) in other cyclic tests. The ξ index in Eq. (21) is

also evaluated for each set of identification results us-

ing the error function values of tests SN1, SNR2, and

SSR1, namely, f4, f5, and f6, respectively. In this case,

ξ represents the dispersion of predictions by the asso-

ciated parameter sets because SN1, SNR2, and SSR1

are not used for identification, and fmin
j and fmax

j in

Eq. (21) both indicate the prediction performance of

the associated parameter sets. Fig. 9 shows the ability
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Fig. 9: Comparison of test data and model predictions for other cyclic tests of the specimen, which are not used for

identification, with the best compromise solutions of parameters identified from different groups of experimental

datasets. (a), (b), (c) Parameters from group 1; (d), (e), (f) Parameters from group 2; (g), (h), (i) Parameters

from group 3.

(a) (b) (c)
 

  
Fig. 10: Average sensitivity results over different groups of experimental datasets from cyclic tests of the specimen.

(a) Parameters from group 1; (b) Parameters from group 2; (c) Parameters from group 3.
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of the best-compromise solutions to predict the σ − ϵ

curves from SN1, SNR2, and SSR1. Table 6 provides

the ξ index values evaluated for each set of identifica-

tion results listed in Table 4 using f4, f5, and f6. It

is confirmed that ξ values for the two sets of identifi-

cation results from the multi-objective formulation are

smaller than those corresponding to the single-objective

and weighted-sum formulations, indicating the reliabil-

ity of predictions by the solutions to the multi-objective

inverse problem for the specimen.

To further rank the importance of the identified ma-

terial parameters, we assess the sensitivity of the error

functions to the variation of each parameter, indicated

by the ratio ∆x/x, in the neighborhood of its best com-

promise value (in the parameter space) as shown in

Fig. 10 while keeping other parameters constant. The

sensitivity of each error function is represented by enorm
that is defined as the ratio of the error function of in-

terest to that associated with the best compromise so-

lution. Thus, the sensitivity result at a particular value

of ∆x/x, as shown in Fig. 10, is the average of three

enorm values corresponding to the three error functions

f1, f2, and f3. As observed, the error functions are most

and least sensitive to the variations of σy,0 and b, re-

spectively.

5.2 Parameters for a bi-material cantilever

We use MOBO to identify the parameters for a steel

cantilever tested under three different static cyclic load-

ing histories RH1, RH2, and RH3 as shown in Fig. 11.

The cantilever is a built-up wide-flange beam H-244 ×
175 × 7 × 11 in Japanese specification. The web and

flange have the same Young’s modulus, but different

plastic material parameters. Thus, the cantilever is a

structural component of two different materials. Dur-

ing the tests conducted by Yamada and Jiao (2016),

the left end of the cantilever was fixed, while forced

vertical displacement was applied at the right end. The

deflection angle θ of the cantilever was defined as the

ratio of the vertical tip displacement∆mm to the beam

length L = 800 mm, i.e., θ = ∆/L.

The test results for the three loading histories con-

sist of three experimental datasets of the bending mo-

ment M at the cantilever support and the associated

deflection angle θ. To investigate how the experimental

datasets used for identification affect the resulting pa-

rameters, the three experimental datasets are classified

into three different groups indexed as 1, 2, 3, which cor-

respond to RH1 & RH2, RH2 & RH3, and RH3 & RH1,

respectively. To examine the robustness of MOBO, each

group generates ten different training datasets at the

beginning of MOBO. Each of these training datasets

has 100 random samples of material parameters and

the corresponding error function values.

We model the cantilever using Abaqus (Dassault

Systèmes, 2017) for evaluation of the error function val-

ues associated with each parameter sample. A fine mesh

consisting of 4960 nodes and 3510 linear hexahedral el-

ements of type C3D8 is generated, as shown in Fig. 11,

for reducing the sensitivity of simulation results to the

FE mesh density. The maximum increment size for each

loading history is set as 0.01 s.

Table 7: Material parameter intervals for the cantilever.

Parameter Lower bound Upper bound

Web

E [GPa] 175.05 −
σy,0 [MPa] 300 340
Q∞ [MPa] 10 100
b 5 25
C1 [MPa] 2000 8000
γ1 10 100

Flange

E [GPa] 175.05 −
σy,0 [MPa] 270 290
Q∞ [MPa] 10 100
b 5 25
C1 [MPa] 2000 8000
γ1 10 100

Table 8: Optimized HVs associated with ten MOBO

attempts for different groups of experimental datasets

from cyclic tests of the cantilever [×102 (kNm)2].

Attempt Group 1 Group 2 Group 3

1 15.444 14.547 14.509
2 15.570 14.403 14.630
3 15.514 14.583 14.772
4 15.613 14.608 14.928
5 15.566 14.575 14.886
6 15.513 14.673 14.687
7 15.619 14.652 14.737
8 15.399 14.490 14.375
9 15.411 14.596 14.378
10 15.581 14.478 14.732

We carry out MOBO for the ten different train-

ing datasets of each group, which, therefore, provides

ten Pareto fronts of material parameters. The number

of MOBO iterations is limited at 50. Thus, the maxi-

mum number of simulations required for each MOBO

attempt is 300 (i.e., 200 for generation of the initial

training dataset and maximum 100 for MOBO itera-

tions). The reference point and the parameter β are

set as fR = [50, 50] kNm and 0.01, respectively. Prob-

lem (14) in each MOBO iteration is solved using GA,
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  Fig. 11: Bi-material cantilever, its FE mesh, and three loading histories for cyclic tests (Do and Ohsaki, 2022a;

Yamada and Jiao, 2016).
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Fig. 12: Histories of HVs for different groups of experimental datasets from cyclic tests of the cantilever. (a) From

group 1; (b) From group 2; (c) From group 3.

whose parameters are the same as those for the GA in

Section 5.1. Poisson’s ratio and Young’s modulus for the

web and flange are kept constant at 0.3 and E = 175.05

GPa (Yamada and Jiao, 2016), respectively. Therefore,

a total of ten material parameters are identified for

the cantilever (i.e., five for the web and five for the

flange). The interval associated with each parameter,

as provided in Table 7, is taken from Do and Ohsaki

(2022a). To enable a favorable comparison of the iden-

tified parameters, we also perform NSGA-II ten times

for finding Pareto fronts for each group. Each NSGA-II

is characterized by a population of 30 individuals and

five generations, thereby requiring a total of 300 simu-

lations, which is the same as the maximum number of

simulations required for MOBO.

Fig. 12 shows the histories of HV from the ten MOBO

attempts of each group. Although the MOBO attempts

starting at different initial training datasets cannot ar-

rive at a unique value of HV after 50 iterations, they

considerably improve the solution quality. Since the HVs

from most of the MOBO attempts tend to improve in

the very last iterations, we may expect that the solu-

tions from each group can be improved if the number of

MOBO iterations is increased. The optimized HVs cor-
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(d) (e) (f)

 

  Fig. 13: Evolution of approximate Pareto-optimal solutions during the first three MOBO attempts for different

groups of experimental datasets from cyclic tests of the cantilever. (a), (b), (c) From group 1; (d), (e), (f) From

group 2; (g), (h), (i) From group 3.

responding to the ten MOBO attempts of each group

are listed in Table 8. Fig. 13 shows the evolution of

approximate Pareto-optimal solutions during the first

three MOBO attempts of each group. As is clear, the

solutions in the last iteration of MOBO are much better

than those in the very first iteration. Fig. 14 compares

the Pareto fronts from ten MOBO attempts and ten

NSGA-II attempts of each group. The shapes of the

Pareto fronts by the ten MOBO attempts of the first

group are similar (see Fig. 14(a)) , but those of the

other two groups are not (see Figs. 14(c) and (d)). The

solutions by the MOBO attempts in each group outper-

form those by the NSGA-II attempts even though the

number of costly simulations required for MOBO does

not exceed that required for NSGA-II.

Table 9 lists the best (1) and second-best (2) com-

promise solutions on the Pareto front having the highest

HV among the ten Pareto fronts found from each group.

The error function values corresponding to RH1, RH2,

and RH3, denoted as f1, f2, and f3, respectively, are

also provided. Values of σy,0, Q∞, and b for the flange

among those from different groups are similar, while

those of C1 and γ1 are group-dependent. A change in

the dataset (i.e., group) itself can lead to a major differ-

ence in the identified parameters for the web although

these parameters are possible to produce the simulated
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(a) (b) (c)
 

  
Fig. 14: Comparison of solutions by ten MOBO attempts and by ten NSGA-II attempts for different groups of

experimental datasets from cyclic tests of the cantilever. (a) From group 1; (b) From group 2; (c) From group 3.

responses consistent with the corresponding experimen-

tal measures. This is due to bending dominates in the

tests, and the shear in web is not a major factor.

Fig. 15 compares the predicted and measuredM−θ
curve from each loading history with use of the best

compromise parameters identified from each group for

prediction. As observed, the parameters well reproduce

the M − θ curves corresponding to the loading history

that is not used for identification. Although there exists

the bias toward the loading history used for identifica-

tion, its effect on the prediction performance of iden-

tified parameters is not significant as the correspond-

ing minimized error function value is slightly smaller

than that predicted from the parameters identified from

the other loading histories (see along each column of

Fig. 15). It would be more interesting if the identified

parameters can be used to predict the uniaxial cyclic
behavior of the flange and the cyclic bending behav-

ior of the web. However, the associated material cyclic

tests are not available.

With RH1, RH2, and RH3, other six single-objective

inverse problems are formulated for the cantilever us-

ing the single-objective and weighted-sum formulations

to investigate the dataset-bias levels of different sets of

identification results from different formulations of the

inverse problem of the cantilever. Three problems as-

sociated with the single-objective formulation, namely,

SIG 1, SIG 2, SIG 3 are formulated from RH1, RH2, and

RH3, respectively. Those associated with the weighted-

sum formulation, namely, SUM 1, SUM 2, SUM 3 are

formulated from RH1 & RH2, RH2 & RH3, and RH3

& RH1, respectively. These problems have been suc-

cessfully solved using the standard BO and the solu-

tion to each problem is reported in Table 10 (Do and

Ohsaki, 2022a). From the results in Tables 9 and 10, ξ

index in Eq. (21) is evaluated for the parameter sets of

the best and second-best compromise solutions by the

multi-objective formulation and for those by the single-

objective and weighted-sum formulations. Results in

Table 11 indicate that ξ values for the best and second-

best compromise sets of identification results from the

multi-objective formulation are better than those from

the single-objective and weighted-sum formulations. The

single-objective formulation again shows the largest value

of the data-specific bias level.

Fig. 16 shows the sensitivity results for each best

compromise parameters identified from the three ex-

perimental dataset groups of the cantilever. The high-

sensitivity parameters include σy,0 of the flange and

web, and C1 of the flange, in which σy,0 of the flange

has the greatest influence on the sensitivity of the error

functions. Other parameters can be classified as low-

sensitivity parameters.

6 Conclusions

The dataset-specific bias may lead the elastoplastic pa-

rameters for the cyclic constitutive law identified from

a single loading history to inaccurate predictions of

structural responses under other loading histories. If

the cyclic behavior of the material (or structural com-

ponent) subjected to different loading histories is mea-

sured experimentally, a multi-objective inverse problem

to reduce the dataset-specific bias can be formulated

for identifying the material parameters. Such an inverse

problem is also desirable because it offers an approxi-

mate Pareto front of parameters that allows designers

to flexibly select the material parameters for their de-

signs while the parameter identification is performed

only once. This work has proposed an efficient proximal-

exploration MOBO approach to solving the aforemen-

tioned inverse problem. MOBO generates a small num-

ber of material parameter sets and sorts an approximate
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  Fig. 15: Comparison of test data and model predictions for cyclic tests of the cantilever with the best compromise

solutions of parameters identified from different groups of experimental datasets. (a), (b), (c) Parameters from

group 1; (d), (e), (f) Parameters from group 2; (g), (h), (i) Parameters from group 3.

(a) (c)(b)
 

Fig. 16: Average sensitivity results over different groups of experimental datasets from cyclic tests of the cantilever.

(a) Parameters from group 1; (b) Parameters from group 2; (c) Parameters from group 3.
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Table 9: Comparison of the best and second-best compromise solutions of identified material parameters and error

functions obtained from MOBO for different groups of experimental datasets of the cantilever.

Parameter
Group

1 (1) 2 (1) 3 (1) 1 (2) 2 (2) 3 (2)

Web

σy,0 [MPa] 305.738 325.737 338.125 311.831 326.628 334.007
Q∞ [MPa] 99.938 76.621 99.813 82.085 86.073 99.751
b 15.077 23.777 24.937 19.234 24.933 24.997
C1 [MPa] 6013.083 3405.444 5691.577 5477.573 5946.957 2665.344
γ1 66.381 99.536 99.964 35.927 99.909 99.940

Flange

σy,0 [MPa] 273.851 270.577 270.007 273.761 271.079 270.233
Q∞ [MPa] 12.268 10.315 14.499 10.191 10.517 10.025
b 6.426 8.090 5.001 6.521 5.783 5.220
C1 [MPa] 7502.126 6315.732 7316.046 7410.770 4904.880 7030.846
γ1 73.482 58.928 76.793 73.137 44.959 79.902

Error

f1 [kNm] 11.607 12.571 10.621 11.596 13.360 11.783
f2 [kNm] 11.489 10.937 11.846 11.517 10.672 11.458
f3 [kNm] 13.630 13.163 12.799 13.660 13.390 12.635

Table 10: Material parameters and error functions obtained from solving single-objective inverse problems using

the standard BO for different groups of experimental datasets of the cantilever (Do and Ohsaki, 2022a).

Parameter
Group

SIG 1 SIG 2 SIG 3 SUM 1 SUM 2 SUM 3

Web

σy,0 [MPa] 339.957 300.049 339.924 336.672 330.990 339.880
Q∞ [MPa] 99.890 99.827 99.923 99.874 99.972 99.974
b 24.946 24.910 24.952 24.761 24.809 24.869
C1 [MPa] 7160.521 7968.280 3596.024 7766.642 7999.973 7682.000
γ1 99.622 10.178 99.967 99.999 69.775 99.577

Flange

σy,0 [MPa] 271.262 270.004 270.047 270.008 270.001 270.061
Q∞ [MPa] 10.065 10.135 10.000 10.140 10.107 10.001
b 5.008 5.120 5.047 5.534 5.092 5.041
C1 [MPa] 7999.840 5170.983 6636.794 6537.440 5140.712 7998.996
γ1 66.632 62.092 71.565 60.903 69.258 84.763

Error

f1 [kNm] 10.083 14.166 11.469 10.781 12.760 10.107
f2 [kNm] 12.836 10.422 11.377 11.491 10.794 12.380
f3 [kNm] 13.601 14.060 12.590 12.959 12.881 12.961

Table 11: Dataset-specific indexes for different sets of

identification results evaluated using the experimental

results from three tests of the cantilever [kNm].

Set of results ψ1 ψ2 ψ3 ξ

Multi-objective (1) 1.950 0.909 0.831 1.230
Multi-objective (2) 1.765 0.844 1.025 1.211
Single-objective 4.083 2.414 1.470 2.656
Weighted-sum 2.653 1.586 0.080 1.440

Pareto front from them. The approximate Pareto front

is sequentially improved by maximizing an acquisition

function formulated for selecting a new, promising vec-

tor of parameters in the next iteration of MOBO with-

out calling any simulation, thereby considerably reduc-

ing the computational cost.

Using a limited number of simulation calls, MOBO

has successfully identified a good approximate Pareto

front of elastoplastic parameters for the nonlinear com-

bined isotropic/kinematic hardening model for a steel

specimen and a cantilever tested under different static

cyclic loadings. The identification results show that the

best compromise solution of identified parameters well

captures the cyclic behavior of the steel under different

loading conditions. Nevertheless, other solutions on the

Pareto front may be used for structural response pre-

dictions according to the characteristic of design cyclic

loadings. The identification results for the cantilever

also suggest a possibility of identifying material param-

eters from cyclic tests of a structural component with

two different materials. This is notable because cyclic

material tests are difficult and usually not carried out

before structural tests. Moreover, since some param-
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eters of the two steel materials in the second identi-

fication example may be insensitive, a regularization

penalty can be applied to reduce the variations of low-

sensitivity parameters.

A data-specific index ξ has been proposed for as-

sessing the data-specific bias levels for different sets

of identification results obtained from different inverse

problem formulations. Based on ξ, we have shown in

two identification examples that the best and second-

best compromise solutions to the multi-objective in-

verse problem can reduce the dataset-specific bias, while

the solution to the single-objective formulation shows

an enormous bias level. The index ξ can also be used for

assessing the reliability of predictions by the available

parameters on a set of experimental results not used for

identification.

The proposed MOBO demonstrates its good per-

formance in solving a simple bi-objective minimization

problem. As also confirmed in the identification exam-

ples, MOBO outperforms NSGA-II in terms of solution

quality when expending the same number of simulation

calls. Thus, future works may apply or extend the al-

gorithm to solving multi-objective structural optimiza-

tion problems that have costly objective and/or con-

straint functions. Moreover, since the proposed MOBO

has only been tested against problems with two (i.e.,

test problem), five (i.e., specimen problem), and ten

(i.e., cantilever problem) dimensions while the BO ap-

proach is suitable for problems of less than 20 dimen-

sions (Frazier, 2018), it is desirable to extend the appli-

cation of MOBO to solving high-dimensional inverse

problems, for example, finding the parameters for a

structure. Another extension of MOBO to optimization

problems with qualitative or mixed-integer design vari-

ables, which are often encountered in structural design,

may also be an interesting topic of future research.

The multi-objective inverse problems in Section 5

are formulated based on only three sets of experimen-

tal results. Therefore, it is desirable to scale up the

application of the multi-objective formulation to the

case where a dozen of sets of experimental results are

available. Either of the following two strategies may be

applicable. First, the experimental sets can be split into

disjoint clusters based on the similarity or the correla-

tion between the test results. In this way, improving the

objective value of a set may not worsen the objective

values of other sets in the same cluster and therefore,

each cluster can be represented by a single objective

function, which is formulated from a representative set

or from individual objectives of the sets in that cluster

using the weighted-sum approach. Second, if it is not

clear to determine the similarity or correlation between

the experimental sets, the multi-objective inverse prob-

lem can also be formulated for every combination of

three sets, and the remaining sets are used for valida-

tion. Three sets for each combination are recommended

because they allow us to visualize how the solutions are

distributed in the objective function space. Then, the

ξ index values for the solutions to each problem can be

evaluated using the associated validation sets. As a re-

sult, different sets of ξ index values can be found based

on the validation sets for rational decision-making.
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Appendix: Gaussian process (GP)

Consider the training dataset D = {X, f} = {xk, fk}Nk=1,
where xk ∈ Rn are n-dimensional vectors of the material pa-
rameters and fk ∈ R the corresponding error function values.
We establish the relationship between x and f using the map-
ping f = f̂(x) : Rn → R, where f̂(x) is a Gaussian conditioned
on D.

A GP assumes that any finite subset of an infinite set
of the error function values has a joint Gaussian distribu-
tion (Rasmussen and Williams, 2006). Thus, for the set of
N parameter vectors {x1, . . . ,xN}, the corresponding error
function values {f1, . . . , fN} are distributed according tof1...
fN

 ∼ NN


m(x1)

...
m(xN )

 ,
k(x1,x1) · · · k(x1,xN )

...
. . .

...
k(xN ,x1) · · · k(xN ,xN )


 (A.1)

https://github.com/BachDo17/InverseMOBO
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whereNN denotes anN-variate Gaussian; andm(x) = E[f̂(x)]
and k(x,x′) the mean and covariance kernel functions, respec-
tively. The mean function in this study is set as m(x) = 0 be-
cause the covariance kernel function is flexible enough to han-
dle the role of m(x) (Rasmussen and Williams, 2006). The co-
variance kernel function is defined for any pair of the param-
eter vectors x and x′ to measure the similarity between two
corresponding error function values f = f̂(x) and f = f̂(x′),
such that

k(x,x′) = E
[(
f̂(x)−m(x)

)(
f̂(x′)−m(x′)

)]
(A.2)

Here we use Gaussian kernel as

k(x,x′) = exp

(
−
(x− x′)T (x− x′)

2l2

)
(A.3)

where l denotes the characteristic length-scale parameter that
is determined by using the maximum likelihood estimation of
D (Rasmussen and Williams, 2006).

Once l has been determined based on D, we wish to use
the information in Eq. (A.1) for predicting the error function
value f∗ at a new parameter vector x∗, i.e., f∗|f = f̂(x∗). As
the GP nature, the joint PDF of f∗ and f is also a Gaussian.
Let m(X) = [m(x1), . . . ,m(xN )]T , we have[
f∗

f

]
∼ NN+1

([
m(x∗)
m(X)

]
,

[
k(x∗,x∗) K(x∗,X)
K(x∗,X)T K(X,X)

])
(A.4)

where

K(x∗,X) =
[
k(x∗,x1), . . . , k(x

∗,xN )
]

(A.5)

K(X,X) =

k(x1,x1) · · · k(x1,xN )
...

. . .
...

k(xN ,x1) · · · k(xN ,xN )

 (A.6)

The conditional Gaussian variable f∗|f = f̂(x∗) can be
derived from Eq. (A.4) using the standard conditioning rule
(Rasmussen and Williams, 2006), such that

f∗|f ∼ N
(
µf∗(x

∗), τ2f∗(x
∗)
)

(A.7)

where

µf∗(x
∗) = m(x∗) +K(x∗,X)K(X,X)−1 (f−m(X)) (A.8)

τ2f∗(x
∗) = k(x∗,x∗)−K(x∗,X)K(X,X)−1K(x∗,X)T (A.9)
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