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Abstract: 
In the present study, we exploit the use of second-order virtual element method (VEM) for 

contact analysis in 2-dimension within the context of linear elasticity and small deformation. By 
virtue of mesh flexibility in the VEM, the non-matching meshes at the contact interface are 
transformed into matching meshes, and therefore the node-to-node contact discretization can be 
constructed. The frictional contact is considered as stick condition, and no tangential movement 
is allowed due to the assumption of small deformation condition. The normal and frictional 
contact constraints are imposed using the Lagrange multiplier method and the penalty method, 
respectively, and the candidate contact interface is determined by a series of adaptive trial and 
error tests as well as prior experience. Several numerical examples are investigated to illustrate 
the effectiveness of the proposed method in contact analysis, and the results show that the 
proposed method is able to handle problem with complex non-matching meshes at contact 
interface. Properties of shear wall consisting of units with fitting joints are also investigated as a 
practical application. 
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1. Introduction 

Contact analysis is one of the important topics in computational mechanics, since in practical 
engineering the contact phenomena are inevitable for evaluating the mechanical properties of 
structures as assemblage of deformable or rigid substructures connected through contact surfaces. 
Therefore, enormous works have been carried out by researchers on the development of contact 
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analysis; see the review article [1] and textbook [2] for an overview of existing researches. Many 
methods have been proposed for solving academic problems and for industrial applications, such 
as interlocking assemblies of multiple rigid components [3], topology optimization of 
multicomponent structures with contact [4, 5] and power transfers between gears [6]. 

Generally, the contact analysis is considered as a constrained optimization problem, where 
the total potential energy of the whole mechanical system is to be minimized under the contact 
constraints. The problem can be solved by many different numerical methods such as the well-
established Lagrange multiplier method and penalty method [2, 7]. One of the challenges in the 
numerical methods for contact analysis is the discretization of contact interface to handle non-
matching meshes, in which some or all coordinates of nodes of the two substructures at the 
contact interface are not the same. For this case, the conventional node-to-node discretization 
scheme cannot be applied [8]. To circumvent this difficulty, the node-to-segment (or node-to-
surface for 3-dimention) scheme was proposed by Hughes et al. [9] utilizing the collocation 
approach such that nodes on the slave side must not penetrate their opposing master side 
segments. However, this scheme is inherently biased and does not pass the contact patch test [10, 
11]. On the other hand, the segment-to-segment (or surface-to-surface for 3-dimensional 
structure) scheme [10] projects the segment on one side of the contact interface onto an adjacent 
segment of the opposing side, and the contact virtual work is integrated along the contact 
interface using numerical quadrature with interpolated contact pressure. In this way the contact 
constraints are continuously interpolated along the contact interface even for the case of the non-
matching meshes. A commonly used discretization scheme of this type is the mortar method [12] 
which integrates the contact virtual work on a virtual mortar domain. However, the additional 
discretization of non-matching meshes enhances complexity of the contact problem [2]. 

By contrast, due to the simplicity of the node-to-node discretization scheme [2], novel 
methods have been proposed in the past 20 years for converting the non-matching meshes to 
matching ones. The main idea behind these methods is to allow arbitrary insertion of nodes on 
the contact interface such that the node-to-node discretization scheme can be used to formulate 
contact constraints. Bitencourt et al. [13] proposed a coupling finite element (CFE) method for 
non-matching meshes; however, for each CFE only one extra node can be added at the element 
edge coinciding with the contact interface. Based on the scaled boundary finite element method 
(SB-FEM), which allows arbitrary discretization on element edge, Xing et al. [14][15] converted 
the non-matching meshes at the contact interface to matched node-to-node by inserting new 
nodes on the edge of corresponding elements. However, since the SB-FEM relies on defining a 
scaled center for each element and need to satisfy the scaling requirements, the element shape 
cannot be highly irregular [16].  

To construct a more flexible node-to-node scheme with fewer requirements on the element 
shape, Wriggers et al. [17] proposed a method to model node-to-node contact constraints by 
making use of the arbitrary node property of virtual element method (VEM), which is a 
numerical discretization technique in Galerkin framework originally inspired by the mimic finite 
difference (MFD) method [18]. Since it is recently introduced by Beirão da Veiga [19], VEM has 
been extensively developed and is now applied to a wide range of engineering problems, 
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including linear elasticity problem with small and finite deformations [20–23], contact problem 
[17], fracture problem [16, 24] and structural topology optimization [25]. The main idea of VEM 
is that the space of local shape functions of each element is defined implicitly and projected to a 
polynomial space with prescribed order to approximate the element strain energy. In this way 
VEM avoids the explicit construction of local shape function and its integral over the element 
domain; and thus VEM is able to handle arbitrary polygonal mesh.  

Inspired by the work by Wriggers et al. [17], the present study explores a second-order VEM 
formulation for 2-dimensional contact problem of linear elastic bodies with small deformation. 
The shape of the virtual element can be any kind of polygon, even irregular and/or concave, 
providing an alternative to dealing with complex contact interface. The normal contact constraint 
is imposed using Lagrange multiplier method, while the frictional contact (or tangential contact) 
constraint is assumed to be stick condition and is imposed using the penalty method. The node-
to-node contact pair is constructed for each node at the contact interface, and a series of trial and 
error test as well as prior experience is utilized to detect the contact/separation at each node pair 
along the contact boundary.  

One of the purposes of this paper is to investigate the properties of a shear wall attached to a 
building frame resisting the story shear force. Although details are not explained here, the 
construction cost is significantly reduced if the wall is attached to the beams and columns by 
contact rather than by welding or anchoring. Fukushima et al. [26] and Kimura et al. [27] 
proposed methods for optimizing the shape and topology of the blocks of the shear walls to be 
connected by contact. However, they have straight contact lines; therefore, the load transmission 
property is not efficient. To enhance the stiffness of the wall by contact between the units, fitting 
joints, also called matching or engaging joints, can be effectively used as commonly utilized for 
timber structures [28]. Therefore, in the numerical examples, we investigate the load carrying 
properties of a shear wall consisting of irregular-shaped units connected by contact at fitting 
joints. It is shown that the contact behavior can be successfully simulated using the second-order 
VEM. 

The rest of the paper is organized as follows. Section 2 gives a brief introduction of second-
order VEM including the basic concept and general formulation, whereas the detailed 
calculations of related matrices are presented in Appendix. Section 3 summaries the contact 
kinematics and formulates the node-to-node contact schemes for non-matching meshes by 
inserting nodes. Four numerical examples are investigated in Section 4 to illustrate the capability 
and performance of the proposed method, and finally some conclusions are drawn in Section 5. 

 

2. Virtual element method for elasticity problem 

In this section the basic concept and formulation of second-order VEM are briefly discussed, and 
the details of corresponding implementation are given in Appendix.  
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2.1 Problem statement 

Consider a standard linear elasticity boundary value problem on a continuous 2-dimensional 
domain 2Ω∈  with boundary denoted as Ω∂ , which can be decomposed into disjoint segments 

uΩ∂  and tΩ∂ subjected to Dirichlet and Neumann boundary conditions, respectively. For 
simplicity, we assume the homogeneous boundary condition for uΩ∂ , i.e., the displacement at 

uΩ∂  is fixed to 0, and a traction force t is applied on tΩ∂  whereas the body force within the 

domain Ω  is assumed to be zero. The variational formulation (weak form) of the standard 
boundary value problem is described as: find the displacement vector ( ) ( )1 1

0 0H HΩ Ω∈ ×u  such 
that  

( ) ( ) ( ) ( )1 1
0 0, ,  a f H HΩ Ω= ∀ ∈ ×u v v v   (1) 

where ,x yu u =  u  and ,x yv v =  v  are the vector-valued functions belonging to the admissible 

displacement space ( ) ( )1 1
0 0H HΩ Ω× , and ( )1

0H Ω is the Sobolev space consisting of functions 

whose values are zero on the boundary uΩ∂  and the first weak derivative is square-integrable on 
Ω ; a and f are the bilinear and linear forms, respectively, given as follows: 

( ) ( ) ( ), :a d
Ω

Ω= ∫u v σ u ε v   (2) 

( )
t

tf d
Ω

Ω
∂

= ⋅ ∂∫v v t   (3) 

Here in Eq. (2) the strain tensor is derived from the strain-displacement relation 

( ) ( )1
2

T= ∇ +∇ε u u u  in which ∇ is the gradient operator, and the stress tensor is derived from 

the linear elastic constitutive relation =σ ε  where   is the elasticity tensor.  εσ 

2.2 Second-order VEM formulation 

Suppose the domain Ω  is partitioned into disjoint non-overlapping polygonal mesh Th with 
maximum diameter h as defined in Da Veiga et al. [29], and denote the local space of any 
function of ( )1

0H Ω  for element hK T∈  as ( ) ( ) ( )1 1
0

KV K H HΩ Ω= ∩  where KΩ  is the domain 

of element K and ( )1 KH Ω  represents the Sobolev space whose first weak derivative is square-

integrable on KΩ . Then Eq. (1) can be rewritten as  

 ( ) ( ) ( ) ( ) ( ) ( ), , ,  
h h

K K
K K K K

K T K T
a a f f V K V K

∈ ∈

= = = ∀ ∈ ×∑ ∑u v u v v v v  (4) 

where K
u and K

v are the functions in ( ) ( )1 1
0 0H HΩ Ω×  restricted to the domain of element K, 

and the bilinear form Ka and linear form Kf  are defined in element K as 
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( ) ( ) ( ), :
K

K K
K K K K

a d
Ω

Ω= ∫u v σ u ε v   (5) 

( ) K
t

K K
tK K

f d
Ω

Ω
∂

= ⋅ ∂∫v v t   (6) 

In Eq. (6), K
tΩ∂  is the boundary of element K subjected to Neumann boundary condition. For 

simplicity we write ( ),Ka u v  and ( )Kf v  instead of ( ),K
K K

a u v and ( )K
K

f v , respectively, 

for the rest of the paper. Without loss of generality, one element K with n vertices and n edges is 
used to derive the construction of second-order VEM.  

In second-order VEM, the Galerkin scheme of Eqs. (5) and (6) are obtained by constructing a 
local virtual element space ( )hV V K⊆  of element K with second-order interpolation, and the 

vector-valued function vh in the space h hV V×  has the following properties [19]: 

• vh is continuous on the boundary of element K. 
• vh is a vector with second-order polynomial components on each edge of element K. 
• Δvh is constant in the interior of element K. 

where Δ is the Laplace operator. By denoting the area of element K as KΩ , the corresponding 

degrees of freedom (DOFs) can be classified into the following three types [29]: 

(i) The values of vh at the n vertices of element K. 

(ii) The values of vh at the midpoints of n edges of element K. 

(iii) The two moments of vh with respect to the constant vectors [ ]1 1,0 T=p  and 

[ ]2 0,1 T=p in element K, that is 

1 2
1 1; 

K K

K K
h hK K

d d
Ω Ω

⋅ Ω ⋅ Ω
Ω Ω∫ ∫v p v p   (7) 

Based on the DOFs of types (i)-(iii), the total number of DOFs of element K for the second-
order VEM is 4n+2 [30], and an arbitrary function vh describing the displacement field of 
element K can be approximated by   

( )
4 2

1
dof

n

h i h i
i

+

=

= ∑v v φ   (8) 

where ( )dofi hv  represents the ith DOF of vh as given in types (i)-(iii) above, and iφ  is the ith 
vector-valued basis function (or shape function, see Appendix) of the local virtual element space 

h hV V×  of element K with the following two properties [29]: 

• Property 1:  ( 1, 2, , 4 2)i i n= +φ   is a second-order polynomial on the element edge; 
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• Property 2:  ( 1, 2, , 4 2)i i n= +φ   satisfies the Kronecker-delta property, that is, for the 

jth DOF of element K we have ( )dof ,  , 1, 2, , 4 2j i ij i j nδ= = +φ  .  

In order to understand well the three types of DOFs defined in the second-order VEM, an 
illustrative example of a pentagon element K is given in Fig. 1. The five vertices and the edge 
midpoints are denoted as V1-V5 and M1-M5, respectively, and ( )hv   denotes the value of vh at 
the specified vertex or edge midpoint. Because vh is a vector-valued function in which the two 
components represent the displacements in x- and y-directions, respectively, in the domain of 
element K, DOFs of types (i) and (ii) correspond directly to the displacements at the vertices and 
edge midpoints in both directions, respectively, and DOFs of type (iii) can be considered as the 
integral averages of displacements in both directions over the element domain KΩ [22]. 

 

Fig. 1 DOFs of second-order VEM on pentagon element K 

 

In a similar manner as the classical Galerkin FEM, the entry of the local element stiffness 
matrix Kk  of element K is calculated using the above basis functions as 

( ) ( ) ( ) ( ), :    for , 1, 2, , 4 2
K

K K K
i j i jij

a d i j n
Ω

= = Ω = +∫k φ φ σ φ ε φ   (9) 

where the subscripts ij indicate the location of entry in Kk . According to the basic formulation of 
second-order VEM, ( )K

ij
k is obtained by introducing a projector 2 2: h hV V P P∇∏ × → × which 

maps the function vh in the space h hV V×  onto the second-order polynomial space 2 2P P×  
satisfying the following orthogonality condition: 

( ) 2 2, 0   for  and K
h h h h ha P P V Vα α

∇∏ − = ∀ ∈ × ∈ ×p v v p v  (10) 
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where , =1,2, ,12α αp   are the polynomial basis functions that span the second-order 
polynomial space 2 2P P×  (See Appendix). Then Eq. (9) is reformulated by using the projector 

∇∏ as 

( ) ( ) ( )( )
( ) ( ) ( ) ( )

consistency stability

,

, ,   for , 1, 2, , 4 2

K K
i i i j j jij

K K K K
i j i i j j c sij ij

a

a a i j n

∇ ∇ ∇ ∇

∇ ∇ ∇ ∇

= ∏ + −∏ ∏ + −∏ =

∏ ∏ + −∏ −∏ = + = +

k φ φ φ φ φ φ

φ φ φ φ φ φ k k 

 

 (11) 

where 
12

2 2
,

1
,  i iS P Pα α α

α

∇

=

∏ = ∈ ×∑φ p p  is the image of basis function iφ  projected on the second-

order polynomial space which is a linear combination of polynomial basis functions αp with 

coefficients ,iS α , and ( )K

ij
k  can be thus considered as the sum of consistency term ( )K

c ij
k  and 

stability term ( )K
s ij

k  as shown in Eq. (11).  

Thanks to the definition of projector ∇∏ and linearity of the strain tensor, the component-
wise consistency term ( )K

c ij
k  can be obtained explicitly as [30]  

( ) ( ) ( )

( ) ( ) ( )

( )

12 12

, ,
1 1

12 12 12 12

, , , ,
1 1 1 1

12 12

1 1

: :

: ,

   for , 1, 2, , 4 2

K K

K

K K K
c i j i jij

K K
i j i j

T
i j ij

d S S d

S S d S S a

i j n

α α β β
α β

α β α β α β α β
α β α β

α β αβ
α β

∇ ∇

Ω Ω
= =

Ω
= = = =

= =

  = ∏ ∏ Ω = Ω  
   

= Ω =

= = = +

∑ ∑∫ ∫

∑∑ ∑∑∫

∑∑

k σ φ ε φ σ p ε p

σ p ε p p p

Π Π G Π GΠ 

 (12) 

where Π is the matrix representation of projector ∇∏ , and matrix G is defined with entry 

( ), ,  , 1, 2, ,12Kaαβ α β α β= =G p p  (See Appendix A1 for detailed derivation).  

As for calculation of stability term ( )K
s ij

k , here we adopt the procedure provided by Gain et 

al. [20] which is derived with respect to the strain energy correction. First, define a (4n+2)×12 
matrix D with entry as 

( )dof   for 1, 2, , 4 2 and 1,2, ,12i i i nα α α= = + =D p    (13) 

Next, by decomposing the image of projection i
∇∏ φ  by the vector-valued functions in the local 

virtual element space h hV V× , we can have the following matrix representation of another 

projection : h h h hV V V V∇∏ × → ×  which maps the function in space h hV V×  onto itself: 
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( ) ( )
12 12

,
1 1

dof dof = =   for , 1, 2, , 4 2ij i j i j i j ij
S i j nβ β β β

β β

ϕ∇

= =

 
= ∏ = = + 

 
∑ ∑Π p D Π DΠ 

 (14) 

where Π  is the matrix representation of projection ∇∏ , and the detailed calculations of D and 
Π  are given in Appendix A2. Based on Eq. (14), the stability term ( )K

s ij
k  is calculated as 

( ) ( ) ( )*   for , 1, 2, , 4 2
TK

s i jij
i j nγτ= − − = +k I Π I Π   (15) 

where I is the (4n+2)×(4n+2) identity matrix; γ  is the user-defined parameter which can be 
chosen as 1 for elastic problem, and *τ  is calculated as [20] 

( )
( ) ( )( )4 5 12 4 5 12

trace
*

trace

K

T
τ

Ω
=

D D D D D D



 

 (16) 

where ( )trace ⋅  denotes the sum of the diagonal components and ( )4 5 12, , ,D D D  is a part of the 
matrix D from column 4 to 12. Hence, through Eqs. (12) to (16), one can calculate all the entries 
in local stiffness matrix Kk of element K, and the global stiffness matrix can be obtained by 
assembling all the local stiffness matrices in the same manner as the classical Galerkin FEM. 

In addition, based on Eqs. (6) and (8), the local VEM loading term for element K 
corresponding to the traction vectors acting on the boundary takes the form  

( ) ( )

( )

4 2

1

4 2

1

dof

dof

K K
t t

K
t

n
K K K

h h t i h i t
i

n
K

i h i t
i

f d d

d

Ω Ω

Ω

Ω Ω

Ω

+

∂ ∂
=

+

∂
=

 = ⋅ ∂ = ⋅ ∂ 
 

= ⋅ ∂

∑∫ ∫

∑ ∫

v v t v φ t

v φ t
 (17) 

and the entry of element loading vector is ,  for 1, 2, , 4 2
K
t

K
i td i n

∂
⋅ ∂ = +∫ φ t 

Ω
Ω . Note that Eq. (17) 

is computable using numerical integration because iφ  is a second-order polynomial on the 
element edge and satisfying the Kronecker-delta property as given above. Therefore, the 
computation procedure of Eq. (17) follows the classical Galerkin FEM [30]. Moreover, because 
the concentrated loads at nodes can be directly put into the element loading vector at the 
associated DOF at which the load is applied, it is omitted in Eq. (17) for simplicity.  

 

3. Contact formulation using VEM 

In this section, the formulation of node-to-node contact analysis for non-matching meshes is 
presented using second-order VEM with normal and frictional contact with stick condition. 
Deformation of the structure in contact is assumed to be small. 
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3.1 Node-to-Node contact kinematics 

Suppose two elastic bodies B1 and B2 come into contact with matching meshes along the contact 
interface as shown in Fig. 2, where one node pair i is taken as an example for illustrating the 
procedure. Denote the displacements of nodes 1

iP  and 2
iP  of node pair i as 1

iu  and 2
iu , 

respectively, and the outward normal vector at node 1
iP  as 1

in . The gap between nodes 1
iP  and 

2
iP  reads 

( )2 1 1
Ni i i i ig g= − ⋅ +u u n  (18) 

where ig  is the initial gap between nodes 1
iP and 2

iP .  

 

Fig. 2 Contact interface with matching meshes 

 

Based on the Lagrange multiplier method and the non-penetrating condition for normal 
contact, the variation of normal contact energy of node i to be added to the total potential energy 
corresponding to the deformation of B1 and B2 is written as [2] 

( )2 1 1
Ni Ni Ni i i i ig Aλ δ λ δ δ= − ⋅u u n  (19) 

and the variation of enforced non-penetrating condition for normal contact is written as  

( )( )2 1 1nNi Ni Ni i i i i ig g Aδλ δλ= − ⋅ +u u  (20) 

where Niλ  is the Lagrange multiplier for non-penetrating condition of node pair i; Ai is the 
contact area associated with node pair i as shown in Fig. 2. Note that the contact area is assumed 
to be a half of the sum of areas of the two adjacent contact segments. Combing Eqs. (19) and (20) 
with the variations of potential energies of B1 and B2, the matrix form of variation of total 
potential energy of the system related to a single contact node pair i can be given as [2] 
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( ) ( )

2 2 2 2

1 1 1 1

2 1 0
T T

Ni igλ

            =              

K C u f
K C u f

C C

 (21) 

where 1K  and 2K  are the global stiffness matrices of elastic bodies B1 and B2, respectively; 1f  
and 2f  are the external loads applied respectively at the elastic bodies B1 and B2, and 1u  and 2u  
are the corresponding displacement vectors to be obtained; 1C and 2C  are two vectors filled with 
zeros except for the two components corresponds to the two DOFs of nodes 1

iP  and 2
iP , 

respectively, i.e., 1C and 2C  can be written as follows [2]: 

1 1 1
, ,

2 1 1
, ,

0, , , , , ,0

0, , , , , ,0

i x i y

i x i y

n n

n n

 = − − 
 =  

C

C

  

  

 (22) 

where 1
,i xn and 1

,i yn  are the components in the outward normal vector 1 1 1
, ,,i i x i yn nn  =   . 

Moreover, the variation of frictional contact of node pair i with stick condition contributing 
to the total potential energy of the system is formulated using penalty method as [2]  

( )( ) ( )( )2 1 1 2 1 1t t
T T

T Ti Ti i T i i i i i i ig g A Aε δ ε δ δ ⋅ = − −  
u u u u  (23) 

where ( )2 1 1t
T

Ti i i ig = −u u  is the relative displacement of node pair i in tangential direction and 1ti  

is the normalized tangential vector as shown in Fig. 2. By introducing the vector 
1 1 1 TT T
i i i − T = t t , Eq. (23) can be reformulated in a matrix form as  

( )
2 2

2 1 1 1 2 1
1 1T T

T i i
T Ti Ti i T i i i i i i i Ti

i i

g g A Aε δ ε δ δ δ δ
   

   ⋅ = =      
   

u u
u u u u K

u u
 (24) 

where ( )1 1T T
T

Ti T i i iAε=K  is the 4×4 local tangent stiffness matrix. By extending TiK  to the 

global tangent stiffness matrix TK in which the components associated with the DOFs of 1
iP  and 

2
iP  are the components of TiK  and the others are 0, Eq. (21) is further modified to consider the 

frictional contact with stick condition as follows: 

0
T

T
Ni igλ

  +  
=     

    

u fK K C
C

 (25) 

where 
2

1

 
=  
 

K
K

K
, 2 1 T

 =  C C C , 2 1 TT T =  u u u and 2 1 TT T =  f f f .  
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3.2 Node insertion with non-matching meshes 

The VEM discretization scheme allows hanging nodes in the mesh and thus makes it possible to 
arbitrarily insert new nodes to the existing elements [17]. In this way, the node-to-node contact 
pair can be easily constructed for non-matching meshes at the contact interface, and the contact 
analysis can be proceeded at the node level as discussed above. 

Since in VEM the integral operations for computing the entries in Eqs. (12) and (15) are all 
implemented on the element boundary (see Appendix for more details), inserting a new node to 
an element only adds one more loop for extending the element stiffness matrix with the 
additional DOFs of the new node. Therefore, the cost increased by inserting a new node to 
transform non-matching meshes into matching meshes at the contact interface is minimal [17]. 

To clearly illustrate the general node insertion procedure using VEM, the contact model 
illustrated in Sec. 3.2 is modified so that points 1

iP  and 2
iP  do not coincide at the contact 

interface, forming simple non-matching meshes as shown in Fig. 3(a). The elements e1 and e2 
before inserting a new node are both quadrilaterals with four edges. However, when 1

iP  and 2
iP  

are inserted to elements e2 and e1, respectively, as shown in Fig. 3(b), they both become 
pentagons with one hanging node, making the two consecutive edges at the contact boundary to 
form a straight line. However, the rest of the elements in B1 and B2 remains unchanged. 
Therefore, by using VEM, the adaption of non-matching meshes to matching meshes is very 
simple, and Eq. (25) can be used for contact analysis. 

 

  

   (a)       (b) 
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Fig. 3 Adaption process of non-matching contact nodes; (a) Initial non-matching meshes; (b) 
Matching meshes after inserting new nodes 

 

4. Numerical examples 

In this section four numerical examples including the patch test are investigated to 
demonstrate the effectiveness of the proposed method for 2-dimensional contact analysis of 
plates consisting of irregular elements. Plane stress condition is considered for all examples, and 
the contact analysis is implemented using MATLAB [31]. The contact pairs are determined as 
follows: firstly select the possible node pairs at the initial contact interface and assume they will 
be in contact after deformation, and then repeat the contact analysis until all the normal contact 
forces (i.e., the values of Lagrangian multipliers in Eq. 25) are positive. After that if there are 
still penetrations among the elastic bodies, select the corresponding node pairs and assume they 
will also be in contact after deformation, and again repeat the contact analysis until all the 
normal contact forces are positive. 

 

4.1 Example 1 

The first example is a patch test with irregular elements using the second-order VEM to 
check the correct transfer of contact pressure [17, 32]. The model of two 6×2 (mm) blocks is 
shown in Fig. 4 (a) in which contact interface is marked by red line. For both blocks, Young’s 
modulus is 7000 MPa and Poisson’s ratio is 0.3. A uniform downward distributed load of 100 
N/mm is applied at the top surface of upper block, and the support conditions are given in Fig. 4 
(a) for both blocks to model axial compression.  

        

        (a)              (b) 

Fig. 4 Model of Example 1; (a) Geometry models of two elastic blocks, (b) Second-order VEM 
discretization 
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Fig. 5 Results of Example 1; (a) Deformed shape, (b) Stress contour of 22σ   

The two blocks are discretized with different non-convex meshes as shown in Fig. 4(b) in 
which the lower and upper blocks have six and four L-shape elements, respectively, leading to an 
initial non-matching contact interface. By using the node insertion algorithm as described in Sec. 
3.2, the nodes located at the element edge of the other block are inserted to each other and 
therefore there are 17 node-to-node contact pairs in total along the contact interface. The results 
of deformed shape and stress are shown in Figs. 5(a) and (b), respectively, where the 
deformation is scaled by the factor 10 for clear observation of deformation. As we can see from 
Fig. 5, the second-order VEM passes the patch test where a constant vertical stress contour of 

22 100σ =  MPa and deformation of axial compression are obtained, whereas the classical node-
to-segment or segment-to-segment discretization may not be able to transfer the contact pressure 
accurately if the meshes are non-matching at the contact interface [11, 17]. Moreover, as pointed 
out by Papadopoulos and Taylor [10] and Xing et al. [14], the deviation of stress and 
displacement of classical node-to-segment or segment-to-segment discretization depends on the 
non-uniformness of the meshes at the contact interface, and the use of second-order element will 
produce a larger deviation compared to linear element.  

 

4.2 Example 2  

The second example is a contact problem of two hollow cylinders subjected to internal 
uniform pressure is studied. Due to the symmetry, only a quarter of the model is calculated as 
shown in Fig. 6(a) and the contact interface is marked by red line. According to Ref. [14], the 
radii of the hollow cylinders are Ri = 0.9 m, Rm = 1.0 m and Ro = 1.1 m. Young’s modulus is E = 
100 MPa and the Poisson’s ratio is v = 0.3 for both hollow cylinders. The boundary conditions 
are ux = 0 at x = 0, uy = 0 at y = 0 and p = 10 kN/m at the inner cylinder. The exact analytical 
solutions of the radial displacement ur, radial stress rrσ  and circumferential stress θθσ  at radius 

( )2 2
i or x y R r R= + ≤ ≤  are given as follows [14]: 
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Firstly, the effects of small edges on the accuracy and robustness of the proposed method are 
investigated. The two cylinders are discretized by quadrilateral element with the mesh ratio 3:4 
between the numbers of elements of inner and outer hollow cylinders, resulting in a non-
matching contact interface as shown by the red line in Fig. 7(a). Based on Ref. [33], a very small 
edge of length 41 10 ml −= ×  is generated on the contact interface at the angle of / 5θ π= with 
counterclockwise direction shown in Fig. 7(a), which is about 0.1% of the element edge [33]. For 
comparison purpose, a discretization model without the small edge is also studied as shown in 
Fig. 7(b), which has the same mesh ratio 3:4. Then, the accuracy is investigated by comparing 
the displacement result ,vemru  and the stress results ,vemrrσ  and ,vemθθσ obtained by the proposed 
method, respectively, to the analytical solutions obtained by Eqs. (26)-(28), and the errors in 
displacement and stress results are measured by the following equations [14][25]: 

( )
( )

( )
( )

( )
( )

2 2 2

,vem ,vem ,vem

2 2 2
;  ;  ;  

rr

r r rr rrK K KK K K
K K K

u

r rrK K K
K K K

u u
e e e

u
θθ

θθ θθ

σ σ

θθ

σ σ σ σ

σ σ

∈Ω ∈Ω ∈Ω

∈Ω ∈Ω ∈Ω

− − −
= = =
∑ ∑ ∑

∑ ∑ ∑
(29) 

where the subscript K denotes the result of element K. For simplicity, only the displacement and 
stress values at the vertices and the midpoints of edges of each element are used in Eq. (29).  

   
   (a)              (b) 

Fig. 6 Model of hollow cylinder under internal pressure: (a) Contact problem; (b) One-piece 
hollow cylinder 



15 
 

 l  = 1 10
-4 m

 l  = 1 10 -4 m

   

  (a)    (b)    (c) 

Fig. 7 Meshes of two contact hollow cylinders (a) Second-order VEM with small edge; (b) 
Second-order VEM without small edge; (c) Linear VEM 

The errors and number of DOFs are listed in Table 1, and the displacement and stress results of 
,vemru , ,vemrrσ  and ,vemθθσ  with and without small edge, as well as the analytical solutions ru , rrσ  

and θθσ , are displayed in Figs. 8-10, respectively. It can be observed from Figs. 8-10 that 
compared to the analytical solutions, both the results with and without small edge have the 
similar value and distribution among the two hollow cylinders, and the corresponding errors are 
also close to each other, while the error with small edge is slightly larger than those without 
small edge. The details of displacements of nodes on the contact surface are displayed in Fig. 11 
for further discussion. It can be seen that when the small edge exists at / 5θ π= , the nodal 
displacements become slightly oscillatory between 3 /16θ π=  and 5 /16θ π= , where the three 
nodal displacements of the small edge look like a vertical line at / 5θ π=  in Fig. 11. However, 
the general variation of the nodal displacements with small edge around the analytical solution is 
still close to those without small edge, indicating the proposed second-order VEM is accurate 
enough in small deformation contact problem with small edge on the contact interface. This 
property is also investigated and addressed in the linear elasticity problem with theoretical 
justification [33][34], where the accuracy and convergence rate are not noticeably deteriorated 
by the presence of small edges in 2D and small faces in 3D. 

 

Table 1 Comparison result of second-order and linear VEM 

Method Number of DOFs Error ue  Error 
rr

eσ  Error  e
θθσ  

Second-order VEM with small edge 540 0.0121 0.0509 0.0121 
Second-order VEM without small edge 532 0.0118 0.0496 0.0116 

Linear VEM without small edge 532 0.0146 0.2448 0.0304 

 

Moreover, the computational efficiency of the proposed method is also investigated by 
comparing the results obtained by the proposed method and linear VEM, and the corresponding 
linear VEM discretization is displayed in Fig. 7(c), which has the same mesh ratio 3:4 and 
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number of DOFs as Fig. 7(b). The errors and displacement and stress results obtained by linear 
VEM are listed in Table 1 and Fig. 12, respectively. It can be observed from Figs. 9, 10 and 12 
that because the results in Fig. 9 are similar to the analytical solutions in Fig. 10, respectively, 
the second-order VEM is able to capture the nonlinear radial displacement field using second-
order polynomial; On the other hand, the linear VEM can only approximate the nonlinear radial 
displacement field by the piece-wise linear polynomial, leading to a more oscillatory 
displacement field on the contact interface than that obtained by second-order VEM, and the 
checkboard phenomenon appears in both radial and circumferential stress fields due to the 
discontinuity of stress among elements. Therefore, although both linear and second-order VEM 
have the same number of DOFs, the second-order VEM is able to achieve higher accuracy than 
linear VEM with a coarse mesh on the model, which is very helpful for engineers and 
researchers to handle contact problems with complex geometry.   
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Fig. 8 Results obtained by second-order VEM with small edge (a) ,vemru ; (b) ,vemrrσ ; (c) ,vemθθσ  
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Fig. 9 Results obtained by second-order VEM without small edge (a) ,vemru ; (b) ,vemrrσ ; (c) 

,vemθθσ  
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Fig. 10 Analytical solution of displacement and stress (a) ru ; (b) rrσ ; (c) θθσ  
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Fig. 11 Displacement results obtained by second-order VEM on the contact interface 
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Fig. 12 Results obtained by linear VEM without small edge (a) ,vemru ; (b) ,vemrrσ ; (c) ,vemθθσ  



18 
 

Besides, the mesh refinement for the convergence study of the proposed method is implemented 
by decreasing the element size as shown in Fig. 13, where the contact interface is denoted by the 
red line. The convergence study in terms of linear elasticity problem is also investigated by 
merging the two hollow cylinders into one-piece hollow cylinder as shown in Fig. 6(b), and the 
corresponding mesh refinement is left here for simplicity. The convergence results of 
displacement and stress errors versus average element size are displayed in Fig. 14, and it can be 
observed that for both contact and linear elasticity problems the convergence rate of the 
displacement error is with the optimal order 2 as expected [22][35], and the convergence rates of 
both stress errors are around 1, indicating that both contact and linear elasticity modelings will 
converge to the exact solution.  

 

 

    (a)    (b)    

 

  (c)    (d)    (e) 

Fig. 13 Mesh refinement of two contact hollow cylinders with different average element size (a) 
hK = 0.1508; (b) hK = 0.0755; (c) hK = 0.0503; (d) hK = 0.0377; (e) hK = 0.0302; 
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Fig. 14 Error versus average element size  

 

4.3 Example 3 

The third example is a multi-body contact problem of a rectangular frame infilled with four 
blocks as shown in Fig. 15(a). The structure is fixed at the bottom left and right, and a horizontal 
load F = 1000 N is applied at the top left. The corresponding second-order VEM discretization is 
given in Fig. 15(b), where the rectangular frame is divided into 22 elements, and each block is 
simulated by only one element. Young’s modulus and Poisson’s ratio for the rectangular frame 
and the blocks are 3×104 MPa and 0.3, respectively. In addition, for comparison purpose the 
rectangular frame without the four infilled blocks is also investigated with the same loading and 
supporting conditions as well as the material parameters. 

       
                                                                                                    

   (a)             (b) 

Fig. 15 Model of Example 3; (a) Geometry models of rectangle frame and four infilled blocks, (b) 
Second-order VEM discretization 
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        (c)       (d) 

Fig. 16 Results of Example 3; (a) Stress contour of 11σ , (b) Stress contour of 22σ , (c) 
Displacement contour of 1U , (d) Displacement contour of 2U  
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Fig. 17 Results of Example 3 without infilled blocks, (a) Stress contour of 11σ , (b) Stress contour 
of 22σ , (c) Displacement contour of 1U , (d) Displacement contour of 2U  

 

The contours of stress and displacement of the structures with and without infilled blocks are 
displayed in Figs. 16 and 17, respectively, with deformed shapes in which the deformations of 
frame and blocks are scaled by the factor 100. Note that 1U  and 2U  denote the horizontal and 
vertical displacement components, respectively. Comparing Figs. 16 and 17, it is obvious that the 
stress level and displacement of the structure are significantly reduced when the blocks are 
infilled in the frame, indicating that the infilled blocks have a great influence on increasing the 
stiffness against the horizontal external load. The main reason for this is that without infilled 
blocks the structure resists the horizontal load mainly by bending deformations, while with 
infilled blocks the rectangular frame and blocks can work together against the horizontal load. 
Specifically, 11σ  in Fig. 16(a) is under compression at the top left and bottom right of the frame, 
meaning that the horizontal force is transmitted from the loading point in a diagonal direction to 
the support at the bottom right by the contact between frame and blocks and among blocks. By 
contrast, in Fig. 16(a), the beam has very high level of bending stress in the elements connected 
to the beam-column joints, and similar phenomenon of high bending stress can also be observed 
in Fig. 17(b). Since the infilled blocks increase the stiffness of the whole structure, deformations 
of the frame are restricted by the infilled blocks as shown in Figs. 16(c) and (d), and the largest 
displacement primarily exists around the loading point. On the other hand, the horizontal 
displacement U1 of the structure without infilled blocks has large value along the top beam due 
to the small bending stiffness of beams and columns as shown in Fig. 17(c). The vertical 
displacement U2 in Fig. 17(d) has large value at which large 11σ  exists as observed in Fig. 17(a). 
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Fig. 18 Results of Example 3 with Young’s modulus of infilled block 1×104 MPa; (a) Stress 
contour of 11σ , (b) Stress contour of 22σ , (c) Displacement contour of 1U , (d) Displacement 

contour of 2U  

-44.9515

-35.4537

-25.9559

-16.4580

-6.9602

2.5376

12.0354
1 1

(MPa)

-21.0258

-12.1138

-3.2018

5.7102

14.6223

23.5343

32.4463
2 2

(MPa)

 

        (a)       (b) 



23 
 

    -0.0290

0.0425

0.1141

0.1857

0.2573

0.3288

0.4004

U
1

(mm)

-0.0220

0.0263

0.0746

0.1229

0.1712

0.2194

0.2677

U
2

(mm)

     

        (c)       (d) 

Fig. 19 Results of Example 3 with Young’s modulus of infilled block 5×104 MPa; (a) Stress 
contour of 11σ , (b) Stress contour of 22σ , (c) Displacement contour of 1U , (d) Displacement 

contour of 2U  

 

Moreover, to further investigate the effect of stiffness of the infilled blocks on the structure, 
we change their Young’s modulus to 1×104 MPa and 5×104 MPa, respectively, without 
modifying other settings, and the corresponding contours of stress and displacement are shown in 
Figs. 18 and 19, respectively. As shown in Fig. 18, when Young’s modulus of infilled blocks is 
smaller than that of the frame, the infilled blocks are getting separated from the frame further 
compared to the deformation in Fig. 16, especially at the top-right corner of the structure. The 
maximum absolute displacements of U1 and U2 are both larger than those in Figs. 16(c) and (d), 
indicating that decreasing Young’s modulus of infilled blocks will lead to a decrease of overall 
stiffness of the structure. On the other hand, comparing Figs. 19(a) and (b) to Figs. 16(a) and (b), 
we can see that increasing the stiffness of the infilled blocks does not reduce the overall stress 
level of the structure; on the contrary, the stress level of 22σ  has increased to some extent in both 
tension and compression. The main reason for this result may be that because Young’s modulus 
of the blocks is larger than that of the frame, the blocks are stiffer than the frame, and upper 
blocks 2 and 4 are clamped and lifted by the frame due to its larger deformation, leaving the 
block 1 isolated from the contact interaction among the blocks. Therefore, the deformation of left 
side of the frame is less restricted and tends to have large overturning deformation as shown in 
Fig. 19(b), leading to a higher tension in 22σ  than that in Fig. 16(b). Consequently, the stress 
level of block 1 is lower than the other three blocks. The maximum absolute values of 
displacements U1 and U2 of the structure are also larger than those in Figs. 16(c) and (d), 
respectively, and the displacements at the contact interfaces between blocks 1 and 2 as well as 1 
and 3 become discontinuous. These results imply that block 1 is not involved in the contact 
interactions of the other three blocks, and thus contributes a little to the overall stiffness of the 
structure.  
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The horizontal displacements at the loading point are listed in Table 1 for all the three cases 
with different Young’s modulus of infilled blocks. Note that for all the three cases of Example 3 
the horizontal force-displacement relation is linear and the deformation is very small compared 
to the size of the structure. Therefore, the assumption of stick condition for frictional contact and 
the node-to-node contact scheme using second-order VEM are reasonable for the contact 
analysis in this example. It should also be noted that the displacement obviously decreases as 
Young’s modulus is increased. 

Table 2 Displacement at the loading point in horizontal direction of Examples 3 and 4 

Case Example 3 Example 4 
Young’s modulus of 
infilled block (MPa) 1×104 3×104 5×104 3×104 
Displacement (mm) 0.5556 0.3477 0.4004 0.3615 

 

4.4 Example 4 

The last example is to investigate a contact analysis of a rectangular frame with infilled 
blocks in which the geometries of the blocks are more complicated than those in Example 3. The 
blocks are connected by contact with convex and concave fitting joints. The geometry model and 
corresponding second-order VEM discretization are given in Fig. 20(a) and (b), respectively, 
where each of the twelve infilled blocks is simulated by one element. In the same manner as 
Example 3, a horizontal force F = 1000 N is applied at the top left of the structure, and Young’s 
modulus and Poisson’s ratio of the frame and infilled blocks are 3×104 MPa and 0.3, respectively.  

    

(a)             (b) 

Fig. 20 Model of Example 4; (a) Geometry models of rectangle frame and 12 infilled blocks, (b) 
Second-order VEM discretization 
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Fig. 21 Results of Example 4; (a) Stress contour of 11σ , (b) Stress contour of 22σ , (c) 
Displacement contour of 1U , (d) Displacement contour of 2U  

The contours of stress and displacement are displayed in Figs. 21(a)-(d), and the 
corresponding deformations are scaled by the factor 100. Compared to the results in Figs. 16(a) 
and (b) of Example 3 with simpler infilled blocks, the maximum absolute values of stresses of 

11σ  in Fig. 21(a) slightly exceeds those in Fig. 16(a), while the values of 22σ  in tension and 
compression become close in Fig. 21(b). On the other hand, it can be seen that the distributions 
of displacement in Figs. 21(c) and (d) are similar to those in Figs. 16(c) and (d), and the 
maximum value of U2 in Fig. 21(d) is smaller than that in Fig. 16(d) while the maximum value of 
U1 in Fig. 21(c) is larger than that in Fig. 16(c), both of which occur at the loading point. The 
displacement at the loading point in horizontal direction is 0.3615 mm as shown in Table 1, 
which is a little larger than 0.3477 mm for Example 3 with the same Young’s modulus. The 
force-displacement relation is linear and the deformation is small also for Example 4. These 
results indicate that although the overall stiffness of the structure is not enhanced by the use of 
complicated infilled block compared to the simpler one, the lifting effect on the loading point is 
reduced with a smaller upward deformation. However, both types of infilled blocks in Examples 
3 and 4 are effective in reducing the stress level and the displacement of the frame structure with 
the increase the overall stiffness of the structure by contact interactions.  
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5. Conclusions 

In this study a second-order VEM based node-to-node scheme is proposed for 2-dimensional 
contact analysis. By virtue of VEM in handling arbitrary polygon element and hanging node on 
the element edge, the non-matching contact interface in the initial meshes can be transformed 
into matching one by the node insertion procedure. Then the node-to-node scheme can be 
constructed for normal and tangential contact analysis which are incorporated into the 
equilibrium equation by using Lagrange multiplier method and penalty method, respectively. 
Because we only consider small deformation of the structure, the tangential contact is assumed to 
be stick condition. Unlike the traditional node-to-segment or segment-to-segment contact which 
would result in larger stress deviation on non-matching contact interface if higher-order element 
is used, the proposed method can pass the patch test with second-order element with arbitrary 
polygon even concave, allowing a sparse discretization on the model without great loss of the 
accuracy. Calculation of the element stiffness matrix of second-order VEM uses only the values 
of second-order polynomials and shape functions on the element edge.  

Four numerical examples including the patch test are investigated to demonstrate the 
effectiveness of the proposed method. In the patch test the two rectangle elastic bodies in contact 
are discretized by the L-shaped element with different sizes, and the contact interface is non-
matching with starting meshes. The results show that analytical solution of constant stress filed 
can be obtained by the proposed method, showing that the proposed method is able to pass the 
patch test with non-convex polygon second-order element and non-matching contact interface. 
The second example is a contact problem of two hollow cylinders with known analytical solution, 
and the proposed method is investigated in three aspects: robustness with respect to small edges, 
computational efficiency and convergence study. It is shown that when the small edge exists on 
the contact interface, the displacement and stress errors are close to those obtained without small 
edge, while the nodal displacements become slightly oscillatory in the vicinity of the small edge. 
Moreover, due to the ability of capturing the nonlinear displacement field by second-order 
polynomial, the proposed second-order VEM is more accurate than the linear VEM with the 
same number of DOFs and a coarse mesh on the model, which is helpful in structural analysis 
with complex geometry model. Besides, a mesh refinement with decreasing average element size 
is used for the convergence study of the proposed method in contact problem, and the 
corresponding convergence study of linear elasticity problem is also implemented, where the two 
hollow cylinders are combined into one-piece hollow cylinder. The results show that for both 
contact and linear elasticity problems the order of convergence rate of displacement error is 2 as 
expected, and the order of convergence rate of stress is around 1, indicating that the proposed 
method will converge to the analytical solution in both contact and linear elasticity problems. 

The third and fourth examples investigate the multi-body contact problems of rectangle 
frame with different types of infilled blocks under a concentrated horizontal force. Based on the 
discretization property of arbitrary polygon of VEM, each infilled block can be simulated by 
only one element even it has a complicated geometry such as jigsaw-like block in Example 4. All 
the non-matching contact interfaces are transferred to matching ones by repeating the node 
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insertion procedure. It can be seen from the results that both simple and complicated infilled 
blocks can significantly increase the structural stiffness by contact interaction and thus reduce 
the displacement and stress level of the structure. Moreover, it is interesting to note that 
assigning a larger Young’s modulus to the infilled block does not always lead to a better result, 
because a too stiff infilled block results in a large stress levels of the structure. The main reason 
for this would be because the ability of deformation of the frame and infilled blocks are different, 
one or some blocks may not be in contact with other blocks and not involved in resisting against 
the external force, contributing little to the overall structural stiffness.  
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Appendix 

Suppose element K has n vertices denoted as [ ], ( 1, 2, , )i i ix y i n= =x  . The non-
dimensional values ξ  and η  are obtained by scaling x and y, respectively, by the diameter hK of 
element K as [29]  
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,  =K K

x x y y
h h

ξ η− −
=  (A1) 

where x  and y  are the coordinates of the centroid of element calculated as [ ]
1

1,
n

i
i

x y
n =

= ∑ x . The 

vector-valued basis functions of local virtual element space h hV V×  and second-order polynomial 

space 2 2P P×  are given as  
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respectively, where [ ] [ ]2 1 20 ,  0  ( 1, 2, , 2 1)i i i i i nϕ ϕ− = = = +φ φ   and p1-p12 represent the 12 

basis functions of 2 2P P×  as discussed in Sec. 2.2. The basis functions in (A2) and (A3) will be 
used in the following sections to derive the matrix implementation of second order VEM. 

A1 Calculation of matrix G and projector Π  

Based on the orthogonality condition Eq. (10), we first replace hv by , 1, 2, , 4 2i i n= +φ   and 
use the linearity of Ka  to obtain 

( ) ( ) 2 2, ,    for 1, 2, ,12,E E
i ia a P Pα α αα∇∏ = = ∀ ∈ ×p φ p φ p  (A4) 

By expressing 
12

2 2
,

1
,  i iS P Pβ β β

β

∇

=

∏ = ∈ ×∑φ p p , the matrix form of Eq. (A4) is given as 
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where ,1 ,2 ,12, , ,
T

i i i iS S S =  Π   is the ith column of the matrix representation Π of projector ∇∏  

and ( ) ( ) ( )1 2 12, , , , , ,K K K
i i i ia a a =  B p φ p φ p φ ; Matrix G is defined as the same as in Eq. (12) . 

Repeat Eq. (A4) for all the 4n+2 basis functions iφ  we can obtain  

[ ] [ ]1 2 4 1 4 2 1 2 4 1 4 2n n n n+ + + += ⇒ =G Π Π Π Π B B B B GΠ B   (A6) 
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where [ ]1 2 4 1 4 2n n+ +=Π Π Π Π Π  and [ ]1 2 4 1 4 2n n+ +=B B B B B .  

Next we calculate the entries of matrix G and B in detail. According to the definition of 
bilinear form aK in Eq. (2) and divergence theorem, we have  

( ) ( ) ( )
( ) ( )( )

, :
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where n K∂Ω
is the unit outward normal vector to the element boundary K∂Ω , and ∇⋅ is the 

divergence operator. It can be seen from Eqs. (A7) and (A8) that to obtain matrices G and B we 
have to calculate the following four integrals: 

(I1) ( )n KK
dα β∂Ω∂Ω

⋅ Γ∫ ε p p  in Eq. (A7) 

Because αp  and βp  are explicitly known as in Eq. (A3) and n K∂Ω
is piece-wise constant 

vector along the boundary of polygon element K, integral (I1) can be easily calculated using 
Gauss-Lobatto quadrature rule on each edge of element K 
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where K
j∂Ω represent the jth ( 1, 2, ,j n=  ) edge of element K and n K

j∂Ω
 is the corresponding unit 

outward normal vector, and K
j∂Ω  is the length of K

j∂Ω ; rθ and wr (r=1,2,3) are the Gauss-

Lobatto points and the associated weights for calculating the integration over each edge K
j∂Ω . 

Recall that since the order of αp and βp  are up to 2, the three point Gauss-Lobatto quadrature 

rule is able to obtain the exact result of integral ( )n KK jj

dα β∂Ω∂Ω
⋅ Γ∫ ε p p [30]. 

(I2) ( )( )K

Kdβ αΩ
 ⋅ ∇ ⋅ Ω ∫ p ε p  in Eq. (A7) 

It can be observed from Eq. (A3) that when 6α ≤  the integral (I2) vanish due to the twice 
differential of αp . For 6α > , the result of ( )( )β α ⋅ ∇ ⋅ p ε p  is a polynomial with explicit 

form  
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where d is the highest order of ( )( )β α ⋅ ∇ ⋅ p ε p  which can be easily obtained from the orders 

of αp  and βp . Integration (I2) can be now calculated using divergence theorem as 
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with 
1

2

1 2
1 2

1
1

, 0 1 1
+
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md
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m m

p c
mαβ
ξ η

+

=

=
+∑ . In this way the integral (I2) over the element domain KΩ  is 

transformed into the integral on the element boundary K∂Ω , and Eq. (A11) can be calculated 
using Gaussian-Lobatto quadrature rule as in integral (I1) 

(I3) ( )n KK idα ∂Ω∂Ω
⋅ Γ∫ ε p φ  in Eq. (A8) 

Similar to Eq. (A9), integral (I3) can be calculated as follows 

( ) ( )

( )
1

3

1 1
, 1, 2, ,12; 1,2, , 4 2

2

K KK K jj

K
r r

n

i i
j

Kn
j

r i
j r

d d

w i n

α α

α α

∂Ω ∂Ω∂Ω ∂Ω
=

∂Ω
= =

⋅ Γ = ⋅ Γ

∂Ω
= ⋅ = = +

∑∫ ∫

∑ ∑ θ θ

ε p φ ε p φ

ε p φ

 

  

n n

n  

 (A12) 

As discussed in Sec. 2.2, because the basis function iφ  is a second order polynomial on the 
element edge and satisfies the Kronecker-delta property, and the Gaussian-Lobatto points at each 
element edge are exactly the points where DOF of type (i) and (ii) are defined, 

r
i θ

φ  is 

computable for all the basis functions and is 0 for the basis functions associated with DOF of 
type (iii). 

(I4) ( )( )K

K
i dαΩ
 ⋅ ∇ ⋅ Ω ∫ φ ε p  in Eq. (A8) 

Likewise, Integral (I4) is only non-zero for 6α > . Since the order of αp is no greater than 2, 

the term ( )( )α∇ ⋅ ε p  can be decomposed to the linear combination of vectors [ ]1 1,0 T=p  and 

[ ]2 0,1 T=p  due to the twice differential of αp , which can be written as 
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0 1
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where ,1dα  and ,2dα  are the two known constants obtained with different , 7,8, ,12α α =p  . 
Then the integral (I4) can be reformulated 
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i c i c

c
d d d i nα α α

Ω Ω
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 ⋅ ∇ ⋅ Ω = ⋅ Ω = = +  ∑∫ ∫φ ε p φ p    (A14) 

Since the basis function ,  1, 2, , 4 2i i n= +φ   satisfies the Kronecker-delta property and recall 
the definitions of DOF for type (i), (ii) and (iii) as given in Sec. 2.2, Eq. (A14) is only non-zero 
for the basis functions 4 1n+φ  and 4 2n+φ . Therefore, calculation of Eq. (A14) can be given as  

( )( ) , if 4
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0 else
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∫ φ ε p    (A15) 

However, as can be seen from Eqs. (A3), (A7) and (A8) that the first three rows of matrices G 
and B are always equal to 0 because 1 2 3, ,p p p  represent the rigid body motion and thus have no 
contribution to the strain energy [30]. Therefore, three additional equations should be added to 
replace the first three rows of matrices G and B to avoid rank deficiency. According to Ref. [30], 
the following Euclidean scalar product on the 2n DOF of type (i) is used for the replacement 

( ) ( ) ( ) ( )
2 2

1 1

1 1dof dof dof dof , 1, 2,3
n n

j i j j i j
j jn nα α α∇

= =
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More specifically, the left-hand side of Eq. (A16) can be written in a matrix form as  
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By denoting the right-hand side as ( ) ( )
2

,
1

1 dof dof ,  =1,2,3
n

j i j i
j

B
n α α α

=

=∑ φ p  , Eq. (A16) can be 

reformulated as follows to match the form of Eq. (A6)  
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Extend Eq. (A18) for all the basis functions , 1, 2, , 4 2i i n= +φ   we will have  

[ ]1 2 4 2 1 2 4 2n n+ + = ⇒ = G Π Π Π B B B GΠ B    

   (A19) 

Note that in Eqs. (A16)−(A19) only the 2n DOFs of type (i) are used. Replacing the first three 
rows of matrices G and B in Eq. (A6) by Eq. (A19) yields  
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where αG  and αB ( )4,5, ,12α =   represent the αth row of G and B, respectively. Based on Eq. 

(A20) the matrix representation Π  of projector ∇∏  can be calculated by 1  c c
−=Π G B  , and the 

component of consistency part in Eq. (12) can be finally obtained by 

. ( ) ( ) ( ) ( )( )1 1 , for , 1, 2, , 4 2
TK T

c c c c cij ij ij
i j n− −= = = +k Π GΠ G B G G B  

  (A21) 

A2 Calculation of matrix D and projector Π  

Based on Eq. (13), matrix D is written in a form of  

. 
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and the calculation of each component in Eq. (A22) is given as follows 

(1) If 4j n≤ , the value of ( )dof j βp  for 1, 2, ,12β =   is the value of βp  on the node 

(including vertexes and midpoint of each edge) with the associated jth DOF. 

(2) If 4j n> , the value of ( )dof j βp  for 1, 2, ,12β =   is calculated according to the 

definition of DOF of type (iii) as follows 

. ( ) ( )4 1 4 2

1 01 1dof = ;  dof =
0 1K K

K K
n nK K

d dβ β β β+ +Ω Ω

   
⋅ Ω ⋅ Ω   Ω Ω   

∫ ∫p p p p  (A23) 
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which can be obtained by transforming into the integral on the element edge as did in Eqs. (A10) 
and (A11) for integral (I2). After obtaining matrix D, the matrix representation Π of 
projection ∇∏  is calculated as =Π DΠ according to Eq. (14). 
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