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ABSTRACT 

This paper provides a new framework for the detection and quantification of change 

in the corporate credit quality of established companies. These companies are impor

tant players in the economy, and analysis of their creditworthiness is of great inter

est to investors. Our approach is based on the observation that the deterioration of 

credit quality in established companies is a long-term process, because these firms 

use their resources as well as strong customer and supplier relationships to respond to 

market and technological changes. Based solely on the realized path of the stochas

tic process that represents creditworthiness, we propose an economically plausible 

endogenous mechanism that governs the shift in the long-term mean of the process. 

Specifically, we construct a model that detects a change in the mean-reversion level 

of an Ornstein-Uhlenbeck process representing the company's leverage. Our model 

captures this change based on a number of realized upcrossings of a certain level 

(estimated from data) by the process itself, without introducing an additional source 

of uncertainty. Our approach is computationally simple and provides an efficient 
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tool for monitoring changes in quantities related to credit quality, such as default 
probability. 

Keywords: credit quality; credit risk; detection; Ornstein-Uhlenbeck; mean reversion; 1ong•term 
mean. 

1 INTRODUCTION 

In this paper we focus on the credit quality deterioration of established companies 
and present a new, explicit and computationally simple approach for the detection 
and quantification of change in credit quality. Well-known examples of such com
panies are constituents of the Dow Jones Industrial Average index. Such firms are 
important players in the economy, and analysis of their credit quality is of great inter
est to investors. Our approach is based on the observation that credit quality deteri
oration of established companies is a long-term process. This is because such firms 
use their resources as well as strong customer and supplier relationships to respond 
to market and technological changes. Established companies will fail when they use 
up all their resources and cannot meet market and technological demands anymore. 
This is the main reasoning behind our model. A possible cause for such failure is the 
inability to respond to disruptive technological innovations. In contrast to sustaining 
innovations (improvements of established products), disruptive innovations under
perform incumbent products but they offer novel features and may eventually take 
away the customers of well-established businesses (Christensen 1997). 

In our approach we analyze creditworthiness based on a firm's leverage ratio, 
defined as the ratio of financial debt to capital. We call the process representing the 
dynamics of the logarithm of this ratio the "leverage process", and we model it using 
an Ornstein-Uhlenbeck (OU) diffusion. In this way the leverage process is mean
reverting, and it possesses a restoring force directed toward some constant long-term 
mean level et. By introducing a switching mechanism in this mean level, we analyze 
the long-term process of a company's response to market and technological changes. 
Unlike the position of the process, which changes every day, the long-term mean is 
a stable parameter, and for this reason we focus on this parameter when discussing 
credit quality. In our model the shift in the long-term mean represents a change in 
credit quality and this change occurs endogenously. In contrast to models where a 
switch in the parameters occurs based on an unobservable process (such as Markov
switching models), we do not introduce an additional source of uncertainty. Specif
ically, the switch in our model is triggered when the leverage process upcrosses et 
from below a certain number of times. The long-term mean level et and the threshold 
for the upcrossing number that triggers a switch in the parameter are both unknown 
and are to be estimated from the time series of the leverage ratio. 
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FIGURE 1 Estimation result for the Eastman Kodak Company (Kodak) based on the daily 
data (January 3, 2000-March 6, 2007) of the leverage process. 
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The horizontal axis shows the trading days from January 3, 2000 to March 6, 2007, the vertical axis shows the 
values of the leverage process. The fluctuating blue line plots the daily data points. Other lines are explained in the 
text. 

Using Figure I we emphasize three estimates that are obtained from our model: 

long-term mean levels (dashed lines) before and after the switch and the detected 

switching point in the data (vertical line). In addition, using the data after the switch 

we can check the mean-reversion speed of the data toward the pre-switch mean leve l 

and verify the significance of the switch . We next illustrate the reasoning behind our 

endogenous switching mechanism. 

An increase in leverage raises the probability of insolvency. Therefore, the 

upcrossing of some sufficiently high-level a can be interpreted as the entrance into a 

relatively higher credit risk area. This means that the ex isting operation sty le of the 

company is not efficient anymore. The company will then adopt different strategies 

to improve its busi ness conditions. For example, the company may try to use existing 

resources more productively to improve business operations or it may start exploring 

new opportunities in new markets by reallocating its resources. The increase in the 

number of upcrossings of the level a indicates that there is increasingly less room 

for improvement and the probability of comeback decreases. This is the reason why 
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we use the number of upcrossings as the triggering threshold for a change in the 
dynamics of the leverage process. 

Using the endogenous switching mechanism described above, our model enables 
us to detect and quantify the change in credit quality. This quantification is achieved 
by comparing the long-term mean levels before and after the switch. Our model 
is computationally simple, and we demonstrate its effectiveness by analyzing both 
defaulted and surviving companies that have a long business history. 

1.1 Literature review 

To the best of our knowledge this study is the first to analyze the change in credit 
quality with an endogenous switching mechanism for the long-term mean of the 
leverage process. We point out that our model is different from the mean-reverting 
model proposed in Collin-Dufresne and Goldstein (2001). Their study assumes that 
firms adjust debt levels in response to changes in the firm value, therefore adjusting 
the leverage ratio toward a target level. The focus of our study, in contrast, is to detect 
deteriorated credit quality, and it is natural to think that firms in financial distress will 
not be able to adjust debt as desired. We use the mean-reverting process to detect the 
shift in the long-term mean, and we do not impose the assumption of firms having 
target leverage ratios. For studies regarding the stability of the capital structure we 
refer the reader to Hovakimian et al (200 I), DeAngelo and Roll (2015) and Bon tempi 

et al (2020). 
Regime-switching models are standard tools for detecting changes in the dynam

ics of financial time series. The switch in the model parameters can be modeled 
by using an unobservable process, as in Markov-switching models, or by using an 
observable process, as in threshold models with an unknown constant threshold. We 
refer the reader to Franses and van Dijk (2000, Chapter 3) for an overview of these 
approaches. The former method is different from our approach because it does not 
provide an explicit mechanism for the switch based on the observable time series. 
Our model belongs to threshold models of the latter type, which are explained in 

detail in Tong (1983). Common examples of such models are threshold autoregres
sive (TAR), self-exciting TAR and threshold generalized autoregressive conditional 
heteroscedasticity models, which are discussed in Tong (20 I I) and Tsay (2010). To 
the best of our knowledge there are no threshold models that analyze the shift in the 
mean-reversion level of the leverage process. Examples of credit-risk-related studies 
using threshold models are Nunes and Rodrigues (20 I I), which uses a TAR model 
to study the sensitivity of credit risk to macroeconomic conditions, and Marcucci 
and Quagliariello (2009), which uses a threshold regression model to analyze the 
relationship between credit risk and business cycles. In contrast to our approach, the 

switch in the threshold models used in the literature is usually triggered according to 
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the position of the process at some predetermined point in time. By using the num-
ber of upcrossings as a trigger for the change in the mean-reversion level, our model 

accounts for the long-term trend of the leverage process and therefore incorporates 
more information in the switching mechanism. 

The rest of the paper is organized as follows. Section 2 presents the methodology. 
Specifically, Section 2.1 introduces the new model and Section 2.2 shows how to 

estimate the model parameters from data. In Section 2.3 we present a method for 

verifying the detected switch and in Section 2.4 we show a method for measuring 
the change in quantities related to credit quality. Section 3 explains the type of data 
used for parameter estimation and Section 4 discusses our estimation results. Finally, 
Section 5 states our conclusions. 

2 METHODOLOGY 

2.1 Model 

Let (.Q, Jl, IP) denote the usual probability space. All the stochastic processes in the 

following are defined on this space. We assume that B = {B,; 0 ,;, t < oo} is a 
standard Brownian motion with respect to the filtration :F = {J=,; 0,;, t < oo}. We 
let X = { X,; 0 ,;, t < oo} denote the leverage process describing the dynamics of 
the natural logarithm of the leverage ratio. We model X using an OU diffusion with 

endogenously switching mean-reversion level, which represents a long-term mean of 

the process. 
When considering an OU process in continuous time, we need to deal with rapid 

oscillations, as shown in Cox and Miller (2001, Example 5.4). Specifically, if an OU 
process Z hits some level z at some time t, then it will hit the level z infinitely often 

in the time interval (t, t + e) for any e > 0. The proof in this example deals with 
the case when the mean-reversion level is 0; however, it is easy to see that the result 
applies to a general case of Z with the mean-reversion level a e lR by considering 
the process a - Z. To define the number of upcrossings of some fixed level a e JR by 
the process X until time t e lR+ (denoted by V, (a)) in a way that is relevant from the 

perspective of credit risk analysis, we base our definition on a finite subset of [O. t]. 
This removes the problem of rapid oscillations and makes U, (a) an integer-valued 

random variable. We give the formal definition of U, (a) after the presentation of the 
model. Our model for the leverage process X is given by 

dX1 = K(/J, - X 1) dt + a dB,, tJ, = la 
k 

if U1(a) < N, 

if U1(a) 3 N, 
Xo=Xo. (2.1) 

It is possible to assume that the parameter K (the speed of mean reversion) also 

changes when there is a shift in a; however, to keep the model simple and to not 

www.risk.net/journals Journal of Risk 



56 R. Kevkhishvili 

increase the number of parameters, we do not include a switch in K, focusing instead 
on the switch in the mean-reversion level. 

The parameters K > 0, a. a'. a > 0 and N > 0 are unknown constants and are to 
be estimated from data. With the exception that the mean-reversion level /J1 changes 
from a to a' after the number of upcrossings of a exceeds N, (2.1) represents the 

stochastic differential equation of the OU process. We note that, even though the 
number of upcrossings can only be an integer, we regard the parameter N as a real 

number, as this does not make any difference. 
The only source of uncertainty in (2.1) is the Brownian motion B, and, as will be 

shown below, the number of upcrossings U,(a) is 3"1 -measurable. The shift in the 
mean-reversion level takes place at a stopping time S" := inf{t ~ 0: U1 (a) ~ N}. 
The mechanism in (2.1) enables us to detect change in credit quality by observing 

the shift in the mean-reversion level of the leverage process. This is accomplished 
by analyzing only the path of the process (that is, without introducing an additional 
source of uncertainty). As described in Section I, detection of any change in credit 

quality of established companies requires an analysis of the long-term trend. This 

is because such companies are engaged in the long-term process of responding to 
market and technological changes. When the leverage process upcrosses some suffi
ciently high a, the probability of insolvency increases. As the number of upcrossings 

of the level a increases, it is natural to think that the possibility for improvement has 

decreased, and the probability of the leverage ratio returning to a lower level goes 
down. This will trigger a shift in the long-term mean as proposed in (2.1 ). 

Here we formally define the number of upcrossings U1(a) in the model (2.1). 

Our formulation is partly based on the definition of the number of upcrossings of a 

nonzero interval in Karatzas and Shreve (I 998, Section 1.3). To deal with the rapid 

oscillations discussed at the beginning of this section we consider finite sets. This 
removes the problem of the infinite number of upcrossings and allows us to define 

upcrossings in a way that is relevant from the perspective of credit risk analysis. First, 
we let F1 denote a finite subset of (0, 1] such that F, C F1 whenever s ,::: t. Then, we 

define random times r( for j = I, 2, ... recursively as follows: 

,,1(w) = min{u E F, : Xu(w) < a} 

j {min{u E F,: u > 4-1• X.(w) ~ a} if j(> 1) is even, 
'1 (w) = . j-1 

mm{u E F,: u > , 1 , X.(w) < a} if j(> 1) is odd. 

We adopt the convention that min 0 = +oo. The random times r( for even j rep
resent upcrossing times of the level a by the restricted sample path {Xu: u E F1 }. 

Using this observation, the number of upcrossings of the level a by { Xu: u E Fi} is 
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given by 

U ( ) = largest even integer j such that -c/ < +oo 
Fr Ct 2 . 

If there is no even integer j such that r( < +oo, we set U F, (a) = 0. Finally, we 
define 

(2.2) 

It is obvious that U1(a) is 3"1-measurable. As F1 includes only a finite number of 
elements, U1(a) < +oo. Moreover, U,(et),::: U1(et) whenever .1·,::: t. 

REMARK 2.1 As the finite set F, is arbitrary, the definition (2.2) is general and 
can easily be applied to real-world data by specifying the set F, appropriately. This 
is illustrated in the next section. 

2.2 Estimation procedure 

We use discrete time series data of the leverage ratio to estimate five unknown 

parameters in (2.1). Let the constant LI, > 0 denote the time interval between 
the consecutive data points. For each time s E IR+, let n, denote the largest inte
ger such that n,LI, ,::: s. To apply definition (2.2) to financial time series, we set 
Fs = {O. Ll1 , .••• n,LI,} for each times E IR+. 

Set T = {O, LI,, 2LI,, ... }. Consider the process {X,: t E T}, which is a discret
ized version of X. By setting T1 = {O.Ll1,2Ll1 , .... t} fort ET, we see that the 
number of upcrossings of et by {X,: t E T} until time t E T is given by Ur, (a) 
(defined in the same way as U Fr for finite F, ). We consider the discretized version 
of(2.I): 

X1+LI, - X, = K(/31 - X,)Llt + a(Bt+Llr - 8,),) 
/3, = alwr,(a)<Nl + a'l1ur,(a);.N}, t E T. 

Xo = xo. 

(2.3) 

The random variable X1+,i, conditioned on :F, follows a normal distribution, and 
its density function is given by 

J2rra2 Ll 1 

( 
(xi+Llr -x, -K(etl{Ur,(a)<N} + et'lwr,(a);.N) -x,)Ll,)2) 

x exp 2a2LI, ' 

where (x0 , x,i,, . .. , x,) are known values of the process based on the information 
accumulated up to time t. Note that the set {U1(a) < N} is measurable with respect 
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to :F, and is determined by the path of X until time t. We obtain the loglikelihood 

function J:. as the product of conditional densities. Given that (x0, x,1,, ... , Xn<1,) is 

the realization of (X0 , X,1 1 , ••• , Xn-1,), we have 

J:.(K,ot,ot',a,N I xo,x,11 •••• ,xn.1,) 

• 
= L In f(x;,1 1 J -1'(;-1),1,) 

i=l 
n = - 2 In(2,rn 2 Ll 1) 

ja 

- 2 :Ll (I:(x;,11 -X(i-1)'1, -K(OI-X(i-1)<1,)Ll,)2 

U t i=l 
n 

+ ~ (x;,1 1 - X(i-1)'1, - K(ot' - X(i-1)'1,)Ll 1 )2). (2.4) 

i=Ja+1 

where fa denotes the realized value of /a given by 

(2.5) 

The unknown parameters in (2.1) can be estimated by numerically maximizing J:. 
in (2.4). Note that for any ot the set va = {Xj-1, = ot for some j = I, .... n} has a 

probability of 0. 
It is obvious that the function J:. is twice differentiable with respect to K, ot' and 

a.Note also that, foreachw r/. va, /a(w) = 1a+•(w) for sufficiently small EE JR 
when Xo ,f. ot. Take any sequence (otm)m;,.1 converging toot. For ot ¢. {x;,1,; 0 :,: 
i :,:; n }, limm-+oo Jam = fa and J:. is twice differentiable with respect toot at such 

points. For ot E {x;,1,: 0 :,: i :,: n }, limm-+oo Jam is not necessarily equal to fa; 
therefore, the possible set of points at which J:. is not differentiable with respect to 
a is the set {x;,1,; 0 :,: i :,: n }, which has a zero Lebesgue measure. Similarly, we 

check the differentiability of J:. with respect to N. We point out that the function J:. is 

constant between any two integer values of N (which is a positive real number) given 
the realization of the data, with all other parameters fixed. Therefore, the derivative 
of J:. with respect to N is 0 outside the set A = {I, ... , n }. The set of possible points 
at which J:. is not differentiable with respect to N is the set A, which has a Lebesgue 

measure of 0. 
We use the gradient-based MATLAB function fmincon for optimization. There

fore, the estimated value of ot satisfies ot <I. {x;,1,: 0 :,: i :,: n }. Although we cannot 

exclude the possibility that the true value of ot is equal to one of the realized data 
points, we believe that this is highly unlikely as we are dealing with continuously 

distributed random variables. The estimated value of N is not an integer, but this 
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does not make any difference because the function .C is left-continuous with respect 

to N at any integer N > 0 and is constant between any two integer values of N. 

2.3 Verification of the shift in the long-term mean level 

Using the estimated parameters we can compute the realized value of /a in (2.5), 

which will tell us when the shift in the long-term mean took place in the data. Then, 
we can split the data into two parts: before and after the switch. We use the data after 
the switching point and estimate the following model with the long-term mean fixed 
at the estimated value of a: 

dX; = ,c'(a - x;) dt + a'd81 • t ,:! 0. (2.6) 

We consider the discretized process x;+Li, - x; and estimate the unknown param
eters ,c' > 0 and a' > 0 with the maximum likelihood estimation. We focus on the 
mean-reversion speed ,c'. If the estimated value of ,c' is close to 0, we see that the 

data after the switch does not revert to the pre-switch level a. This provides strong 

evidence that the detected switch indeed occurred in the data. 

2.4 Occupation time and default probability 

The shift in the long-term mean of the leverage process affects both the time the 

process spends in a relatively higher credit risk region (occupation time) and the 
distribution of the hitting time of level 0. Level O corresponds to the case when the 
ratio of financial debt to capital equals I; therefore, we may interpret default as a 
hitting time of 0. Once we have estimated the model parameters, we will compare 
the change in the occupation time and the probability of hitting O using the mean

reversion levels before and after the switch. We set the parameters to estimated values 
and consider two processes: 

dY, = fee& - r, l di + adB,. dr: = k(a' - r:i dr + adB,, 

Yo=Y~=y. 
(2.7) 

The two processes in (2.7) have the same parameters except for the mean-reversion 
level: a is the level before the switch and a' is the level after the switch. As the initial 
value we use the final data point y of the leverage process used for the parameter 

estimation. We fix the time horizon as Tm (which we set to five years in our analysis) 
and calculate the following probabilities by simulation: 

www.risk.net/journals 
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(2.8) 
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In this way, we find the expected occupation time of the process above ft' until time 
Tm and the probability that the process hits O before time Tm. By comparing these 

quantities we can see the effect of the shift (in the long-term mean) on the company's 

credit quality. 

3 DATA 

The data used in this paper were obtained from Thomson Reuters Eikon. We use the 
daily time series of the leverage ratio to estimate the unknown parameters in (2.3). 
We define the leverage ratio as the ratio of the financial debt to the sum of financial 

debt and market capitalization. We estimate daily debt values using quarterly balance 

sheets. Specifically, we keep the debt level constant between the quarters, and we use 
the value of the previous quarter until the new quarter value is available. We use the 
standardized balance sheets provided by Eikon and compute the financial debt as the 

sum of notes payable, short-term debt, long-term debt and capital leases. 

We demonstrate the application of our model for three companies: the Eastman 
Kodak Company, Sears Holdings Corporation and Ford Motor Company (Kodak, 
Sears and Ford for short). The daily data (ie, the logarithms of the leverage ratios) 

are depicted in Figure 2. For each company we analyze around 12 years of data 

preceding bankruptcy (Kodak and Sears) or the climax of the distress period (Ford). 
We refer the reader to Spector et al (2012) regarding Kodak's bankruptcy. Kodak 

filed for bankruptcy protection on January 19, 2012, and we analyze the data from 
the period from January 3, 2000 to January 17, 2012 for this company. We refer 
the reader to Rizzo (20 I 8) regarding the bankruptcy of Sears, which was filed on 

October 15, 2018. For this company we analyze the data from the period from Octo
ber 2, 2006 to October 12, 2018. In the case of Ford we focus on the increase in the 

leverage ratio and analyze the data from December 31, 1997 to February IO, 2009, 
which is the period prior to data point 2790 in Figure 2. Regarding Ford's distress 
and recovery, we refer the reader to Dolan (20 I 0). 

4 ESTIMATION, RESULTS AND DISCUSSION 

For each company we conduct 12 estimations. First, we estimate the parameters 

using data points from I to I 800. Then, we move forward in time by 90 days and 
run the estimation using the data points from I to 1890. We continue in this manner 

until we have used the data points 1-2790. As we are analyzing daily data, we set 
L\ 1 = 1/360 and estimate the parameters in (2.3) and (2.6). We show the estimated 

values up to four decimal places. 
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FIGURE 2 The logarithm of the leverage ratios (daily data of Kodak, Sears and Ford). 
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The horizontal axis denotes the trading days in the following periods: (a) Kodak (January 3, 2000-January 17, 
2012); (b) Sears (Qctober 2, 2006-0ctober 12, 2018) ; (c) Ford (December 31 , 1997- December 31 , 2019). 

For brevity, we provide 12 estimation resu lts for each company in an onli ne 

appendix to this paper, 1 and we report every other estimation result here. That is, 
we report the estimation results by moving forward in time by 180 days. In each 

table we specify the data used in the estimation. In addition to the estimated param
eters we report the realized number of upcrossings of the estimated level&, denoted 

by U,, 11 , (&), based on the sample used for each estimation. We also indicate the 
point in time (the data point) at which the switch was detected. Finally, we set the 
time horizon T,11 to five years and di splay the calculated values of the quantities 

in (2.8). When conducting the simulation we simulate 10000 paths. As we mini
mize the negative loglikelihood using the f mincon function, the reported standard 

errors are the square root of the diagonal elements of the inverted Hessian matrix 
produced by fmin con. For each estimation we provide figures that display the data, 

1 Note that ranges in the online appendix are indicated by Japanese "wave dash" notation. 
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the switching point and the two long-term means. In addition, we display the average 
simulated path (with the first observation used as the starting point) of the leverage 
process in (2.3) using the estimated parameters. 

4.1 Kodak 

The estimation results for Kodak are given in Figure 3 and Table 1. We point out that 
in only one case when we used the data points 1-1890 (see the online appendix), 
the estimated value of K 1 is 0.27. In all other estimation results the parameter K 1 

is practically zero. This parameter measures the mean-reversion speed of the post
switch data toward the pre-switch mean-reversion level & (see Section 2.3). When K 1 

is close to 0 there is strong evidence that the switch indeed occurred in the data. 
The long-term mean level after the switch&' is -0.88 in the first estimation result, 

and it gradually changes as more data is used in the estimation. As the fourth reported 
result in Table I demonstrates, the shift in the long-term mean level results in a signif
icant difference in five-year default probabilities. This indicates an increased risk of 

insolvency. This difference is detected starting with the estimation based on 1-2250 
data points. As expected, the occupation time above the new level&' is significantly 
lower for the process with the pre-switch mean-reversion level & . As demonstrated 
in this example, by observing changes in the quantities related to credit risk it is 

possible to monitor the company's credit quality using our model. 

4.2 Sears 

The estimation results for Sears are displayed in Figure 4 and Table 2. We point out 
that in all the estimations (including the online appendix), the mean-reversion speed 

le' of the post-switch data toward the pre-switch mean-reversion level 6t is practically 
zero. Note that the estimate of the long-term mean after the switch &' gradually 
changes as we use more data in the estimation. In the second estimation result in 
Table 2 we already see that the shift in the long-term mean affects five-year default 
probability estimates. The difference in default probabilities is already detected in 
the estimation based on the data 1-1890 (see the online appendix). In the final result 
in Table 2 the difference in default probabilities is more than 50%. As in the case of 
Kodak, the process with the pre-switch mean-reversion level & spends significantly 
less time above the level &'. 

4.3 Ford 
The estimation results for Ford are displayed in Figure 5 and Table 3. As in the 
case of Sears, the mean-reversion speed le' is practically zero in all the estimations 
(including the online appendix). This provides strong evidence that the data after the 
switch does not revert to the pre-switch mean-reversion level&. In the first estimation 
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FIGURE 3 Estimation results for Kodak. 
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Pre-switch and post-switch mean-reversion levels (horizontal dashed lines), detected switching point (vertical line), 
the data used in the estimation (fluctuating orange line), and the average simulated path from the model (2.3) 
based on the estimated parameters (smooth blue line), with the horizontal axis denoting trading days. Data used: 
(a) 1-1800, (b) 1-1980, (c) 1-2160, (d) 1-2340, (e) 1-2520, (I) 1-2700. 

the long-term mean after the switch &' is - 0. 15, and thi s value is higher than the 

results of the other two co mpanies. Al so, in a ll the estimati ons the shift in the long

term mean level affects five-year default probabi lities significantl y. As in the case 
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TABLE 1 Estimation results for Kodak. (Table continues on next page.] 

1-1800 

I( 2.5031 (0.6249) 
a -1.4025 (0.1282) 

a' -0.8794 (0.1432) 
a 0.4267 (0.0682) 
R 7.5127 (0.0093) 
Realized u.,:1,(0) 9 
Switching point in "Data used" 1343 
ic' 2.83E-05 (0.0976) 
a' 0.5099 (0.0169) 

IE[jg l{Y,;,&'}dt] 0.1708 

IE[fg l{Y/;,&'}dt] 2.6617 

l"(inf{t: Y1 "'O} ,s 5) 0.0000 
l"(inf{t: r;"' 0) ,s 5) 0.0003 

Data used 

1-1980 

2.5920 (0.3201) 
-1.4046 (0.1058) 
-0.8730 (0.1788) 

0.4157 (0.0096) 
8.0000 (8.23E-07) 

9 
1343 
0.0724 (0.0328) 
0.4577 (0.0924) 
0.0805 

2.5434 

0.0000 
0.0002 

1-2160 

2.4504 (0.1517) 
-1.3945 (0.1146) 
-0.8389 (0.0776) 

0.4072 (0.0440) 
10.2044 (2.0465) 
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TABLE 1 Continued. 

Data used 

1-2340 1-2520 1-2700 

ii: 1.4180 (0.1065) 1.8934 (0.4090) 1.3373 (0.0397) 
a -1.3875 (0.3043) -1.2011 (3.39E-08) -1.2050 (6.97E-08) 

&' -0.5978 (0.1073) -0.4803 (0.0931) -0.2999 (0.0729) 
fr 0.4115 (0.0399) 0.4069 (0.0269) 0.4061 (0.0118) 
ii 10.1361 (1.0004) 12.0291 (1.0006) 9.0192 (1.1120) 
Realized U0 ,i,(a) 12 13 10 
Switching point in "Data used" 1338 1733 1728 
ii:' 6.13E-06 (0.0255) 0.0002 (0.0503) 3.47E-05 (0.0048) 
fr' 0.4327 (0.0674) 

m:[Jg try, ;,,,,1ct, l 0.2307 

IE[ft lty;;,a'Jdl] 2.7779 
ll'(inf{I: Yr ,lo 0} ,;, 5) 0.0006 

0.4388 (0.0386) 0.4286 (0.0246) 

0.0372 0.0102 
2.4814 2.2811 

0.0000 0.0010 

CJ 

!. 
c5 

ll'(inf{t: r: ;;,, 0} ,;, 5) 0.2766 0.3662 0.8445 n 
[ 

The estimated parameters are given by (2.3) and (2.6); the last four quantities are based on {2.6); the realized number of upcrossings of a (denoted by U,,,1 1 (ti)) and the detected ~ 
switching point are based on the data used for the estimation; the standard errors are displayed in parentheses. 3· 
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FIGURE 4 Estimation results for Sears. 
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Pre-switch and post-switch mean-reversion levels (horizontal dashed lines), detected switching point (vertical line) , 
the data used in the estimation (fluctuating orange line), and the average simulated path from the model (2.3) 
based on the estimated parameters (smooth blue line), with the horizontal axis denoting trading days. Data used: 
(a) 1- 1800, (b) 1-1980, (c) 1-2160, (d) 1-2340, (e) 1-2520, (f) 1-2700. 

of the other two companies, the process with the mean-reversion level &' spends 

significantly more time above the level&' compared wi th the process with the mean

reversion level &. 
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1-1800 

k 3.4411 (0.6949) 

& -1.4279 (3.09E-08) 

&' -0.7036 (0.0862) 

a 0.4094 (0.0474) 

ff 3.5251 (1.0298) 

Realized u.,:1., (&) 4 

Switching point in "Data used" 254 

k' 
&' 

IElft l{Y,~&'}dt] 

IElft l{Y/~&'ldtJ 

Il'(inf{1: r, ?: OJ ,s 5) 
Il'(inf{t: r;?: 0} ,S 5) 

0.0218 (0.0088) 
0.4254 (0.0090) 

0.0490 

2.5966 

0.0000 
0.0006 

Data used 

1-1980 

2.3766 (0.3862) 
-1.4279 (2.45E-08) 
-0.6421 (0.0860) 

0.4002 (0.0538) 
3.4065 ( 1.0068) 

4 
254 

0.0001 (0.0036) 
0.4137 (0.0292) 

0.1135 

2.6882 

0.0000 
0.0333 

1-2160 

1.8355 (0.5838) 
-1.3946 (6.23E-08) 
-0.5993 (0.0990) 

0.3941 (0.0462) 
6. 7346 (1.0005) 
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TABLE 2 Continued. 

Data used 

1-2340 1-2520 1-2700 

f< 1.7908 (0.3091) 1.7508 (0.0828) 1.3430 (0.2832) 
a -1.6613 (2.09E-07) -1.6613 (6.39E-08) -1.6613 (8.48E-09) 

a' -0.5876 (0.0816) -0.5551 (0.0732) -0.4897 (0.0928) 
(J 0.3843 (0.0729) 0.3738 (0.0349) 0.3635 (0.0386) 
N 2.4363 (1.0083) 2.9359 (1.0249) 3.0000 (1.75E-07) 
Realized Unt1, (a) 3 3 3 
Switching point in "Data used" 143 143 143 
f<' 6.70E-07 (0.0149) 1.02E-05 (0.0131) 8.24E-06 (0.0284) 
fJ' 0.3907 (0.0041) 0.3793 (0.0075) 0.3680 (0.0102) 

IElft l(Y,;i.a'}dtJ 0.1476 0.1645 0.2095 

IElft l{Y;;i.a'}drJ 2.8259 2.8610 2.9412 

ll'(inf{r: r, ;, O} "' 5) 0.0000 0.0002 0.0046 
ll'(inf{r: r: ;, O} "' 5) 0.1606 0.2258 0.5173 

The estimated parameters are based on (2.3) and (2.6); the last four quantities are given by (2.8); the realized number of upcrossings of ci (denoted by U,,,1 1 (ti)) and the detected 
switching point are based on the data used for the estimation; the standard errors are displayed in parentheses. 

gi 

;xi 

i 
::T 
or 
[. 



FIGURE 5 Estimation resu lts for Ford. 

--0.05 

--0.10 

--0.15 

~.20 

--0.25 

--0.30 

--0.35 

--0.40 

--0.45 

(a) 

Detecting change in credit quality 69 

(b) 

--0.05 

--0.10 

--0.15 

--0.20 

--0.SOO 200 400 600 800 10001200140016001800 --0.SOO 200 400 600 800100012001400160018002000 

(,) 

--0.05 

--0.10 
,.,,,. 

--0.15 

--0.20 .. 
--0.25 

. .,,. .. , 
--0.30 

.. ,.If 
--0.35 r,1./ 
--0.40 

--0.45 
,'{ I 

--0.50 
I 

0 500 1000 1500 2000 

(e) 

--0.05 

--0.10 ' ., r·~.-
_ J 

--0.15 ,1 
,. 

--0.20 

.f,' --0.25 

--0.30 .; 

--0.35 ( , ,, 

--0.40 [· ll 

(d) 

--0 .05 

--0.10 
,. 

-0 .15 
-j ~ ... ;' 

--0.20 

,// --0.25 

--0.30 .. ,_,. 
--0.35 , j ,, 

-0.40 I, f' 'f 
--045 1· < 

2500 --0.SOO 500 

-0.05 

--0.10 

--0.15 

--0.20 
,f.' --0.25 

--0.30 , 
1• 

--0.35 I ,, 

~:: [1, / / 

1000 

(f) 

... .l.,~.-· 

1500 2000 2500 

._ ....... 

--0.40 • I 
--0.soo~~50-o--10_0_0_1_500 __ 2_000 __ 2_soo_~3000 --0.so o~-500--10_00 __ 1_500 __ 20_00 __ 2_50_0-~,ooo 

Pre-switch and post-switch mean-reversion levels (horizontal dashed lines), detected switching point (vertical line), 
the data used in the estimation (fluctuating orange line), and the average simulated path from the model (2.3) 
based on the estimated parameters (smooth blue line). with the horizontal axis denoting trading days. Data used: 
(a) 1- 1800, (b) 1- 1980, (c) 1-2160, (di 1- 2340, (e) 1- 2520, (I) 1- 2700. 

REMARK 4. 1 It is possible to extend the model to include more than one switch 

in the mean-reversion level. In our model the mean-reversion level after the first 

switch is a'. The mechani sm for the second switch can be based on the number of 
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TABLE 3 Estimation results for Ford. [Table continues on next page.] 

1-1800 

ii 2.6994 (0.7823) 

ii -0.4171 (2.01 E-06) 

ii' -0.1534 (0.0891) 

& 0.1407 (0.0630) 

N 11.0000 (2.52E-06) 

Realized UnLl, (ii) 11 

Switching point in "Data used" 337 

ii' 0.0001 (0.0023) 

&' 0.1009 (0.0023) 

IElft l{Y,;.a'}dt] 0.0629 

JElft l{Yf;>a'}drJ 2.6053 

ll'(inf{r: Y1 "° O}'" 5) 0.0000 

ll'(inf{r: r; "'O} "'5) 0.3423 

Data used 

1-1980 

2.3772 (0.6740) 
-0.4171 (1.00E-07) 

-0.1395 (0.0320) 
0.1347 (0.0134) 

10.7183 (1.0003) 
11 

337 
1.07E-05 (0.0086) 

0.0960 (0.0024) 

0.0938 

2.6725 

0.0004 
0.5182 

1-2160 

2.2705 (0.6759) 
-0.4171 (3.49E-05) 

-0.1322 (0.0270) 
0.1292 (0.0020) 

10.9997 (1.1340) 

11 
337 

1.74E-06 (0.0046) 
0.0917 (0.0012) 

0.1011 

2.6917 

0.0003 
0.5685 
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TABLE 3 Continued. 

Data used 

1-2340 1-2520 1-2700 

K 2.1897 (0.5967) 2.1107 (0.5799) 1.9973 (0.6783) 

" -0.4171 (1.43E-06) -0.4171 (9.57E-08) -0.4171 (6.29E-07) 

a' -0.1273 (0.0251) -0.1215 (0.0259) -0.1155 (0.0285) 
r, 0.1245 (0.0018) 0.1204 (0.0018) 0.1172 (0.0340) 
JV 11.0000 (1.1384) 10.9997 (2.8145) 11.0000 (5.22E-06) 
Realized u.,i,(&) 11 11 11 
Switching point in "Data used"' 337 337 337 
K' 1.73E-06 (0.0036) 8.17E-08 (0.0062) 6.54E-06 (0.0099) 
&' 0.0880 (0.0013) 0.0850 (0.0038) 0.0831 (0.0012) 

IElft l{Y,;.&'}dt] 0.0878 0.0987 0.1044 

IElft l{Yf;>a')dl] 2.6714 2.7268 2.7241 
ll'(inf{t: Yr ?; 0) ,,; 5) 0.0002 0.0007 0.0014 
ll'(inf{t: Yf ?; OJ ,s; 5) 0.5726 0.6190 0.6775 

The estimated parameters are based on (2.3) and (2.6); the last four quantities are given by (2.8); the realized number of upcrossings of a (denoted by U,,t1, (&)) and the detected 
switching point are based on the data used for the estimation; the standard errors are displayed in parentheses. 
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upcrossings of the level ot' after the first switching time. When this upcrossing num
ber exceeds a certain threshold, the second switch will occur and the mean-reversion 
level will change. This mechanism can be extended to more than two switches sim
ilarly. All parameters (including mean-reversion levels and thresholds for switches) 
should be estimated from the data. To determine an appropriate number of switches, 
we need to check the mean-reversion speed of the post-switch data toward the pre
switch mean-reversion level using the method in Section 2.3. For example, in the 
case of two switches we need to check the mean-reversion speed of the data after 
the second switching point toward the mean-reversion level resulting from the first 
switch. We also need to check the mean-reversion speed of the data between the first 
and second switching points toward the mean-reversion level before the first switch. 
If both of these mean-reversion speeds are close to 0, there is strong evidence that the 
switch indeed occurred twice in the data. Otherwise, we should consider decreasing 
the number of switches in the model. A similar method can be applied to the model 
with more than two switches. 

5 CONCLUSION 

In this paper we proposed a new model with an endogenous switching mechanism 
that governs the shift in the long-term mean of the leverage process. We constructed 
this model based on the observation that the credit quality deterioration of estab
lished companies is a long-term process. Such firms will fail when they use up all 
their resources and cannot meet market and technological demands anymore. The 
switching mechanism in the model depends only on the number of upcrossings of 
the leverage process itself. Our model is computationally simple and its parameters 
are interpretable from a credit risk perspective. As our empirical analysis demon
strates, the shift in the long-term mean affects quantities related to credit quality. We 
show that occupation time and default probability estimates change with the shift, 
and this triggers an alarm indicating that the company's credit quality has changed. 

We also demonstrated how to test the significance of the change by checking the 
mean-reversion speed of the post-switch data toward the pre-switch long-term mean. 
Our model is designed for established companies and may not be an appropriate 
tool for those firms that may experience a sudden decline in credit quality. For such 
companies we might need to consider processes that are not mean-reverting. 
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