
54

A Variant of the XL Algorithm Using the Arithmetic 

over Polynomial Matrices * 

Hiraki Furne 

Graduate School of Information Science and Technology, 

The University of Tokyo 

Momonari Kudo 

Graduate School of Information Science and Technology, 

The University of Tokyo 

Abstract 

Solving a system of multivariate polynomials is a classical but very important problem in many areas 
of mathematics and its applications, and in particular quadratic systems over finite fields play a major role 
in the multivariate public key cryptography. The XL algorithm is known to be one of the main approaches 
for solving a multivariate system, as well as Groebner basis approaches, and so far many variants of XL 
have been proposed. In this talk, we present a new variant of XL, which we name "Polynomial XL", by 
using Macaulay matrices over polynomial rings. 

1 Introduction 

Solving a system of multivariate polynomials over a finite field is one of the most major problems in 

the field of computer science. Especially, the problem of solving a quadratic system (MQ problem) 

is very important, since it is used to construct various cryptographic systems (multivariate public key 

cryptosystems (MPKCs)). MPKCs are expected to be candidates for post-quantum cryptography because 

of the NP-completeness of the MQ  problem [6]. Throughout the rest of this paper, we deal with only the 

case where the number of variables n is smaller than or equal to the number of equations m, because, in 
the case n > m, after n -m variables are randomly specified, algorithms solving the MQ  problem with 

n ≪:: m can be applied. 
Among various methods for solving algebraic systems, Grobnor basis methods are main approaches 

solving the MQ  problem. Faugもre'sF4 [4] and F5 [5] are today two major algorithms for computing 

Grobnor bases, and they are proposed as efficient variants of Buchberger's algorithm [2]. On the other 

hand, another strategy to solve the MQ  problem is linearization. In 2000, Courtois et al. [3] proposed a 

linearization based algorithm, which is called the XL algorithm, as an extension of the Relinearization 

algorithm proposed by Kipnis and Shamir [7]. The idea of XL is very simple; linearizing a given system 

by regarding each monomial as one variable. To solve the problem by such an idea, the number of 

independent equations needs to be close to the total number of monomials. To realize this, we generate 
a system composed of polynomials obtained by multiplying every polynomial of a given system by every 

monomial with degree smaller than or eq叫 toa certain degree. For this system, we then generate 

its coefficient matrix (a Macaulay matrix). If the sufficient number of equations are prepared, then a 
univariate equation is obtained with Gaussian elimination on the Macaulay matrix. Finally, a solution is 

1)The title of this paper has been changed from the title of talk "Polynomial XL: A Variant of the XL Algorithm Using 
Macaulay Matrices over Polynomial Rings" at "Computer Algebra -Foundations and Applications". 
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found by solving the obtained univariate equation and repeating such processes to solve the remaining 
variables. 

Subsequently, we introduce the hybrid approach [1, 8] (first proposed as FXL), which mixes exhaustive 
search and an MQ solver such as F4, F5, or XL. For a positive integer k with k :a:::; n where n denotes 
the number of variables of a given system, the hybrid approach fixes the values of k variables and solves 
the remaining system in n -k variables by an MQ solver. These processes are iterated until a solution is 
found. Thc hybrid approach may bc cffcctivc in thc casc whcrc thc gain obtaincd by working on systcms 
with less variables may overcome the loss due to the exhaustive search on the fixed variables. In this 
paper, we call the hybrid approach with XL h-XL. 

In this paper, we propose a new variant of h-XL, which we call the polynomial XL (PXL). For the 
MQ system F of m equations in n variables (x1,..., Xn) over lF q, the proposed algorithm first sets the 
number k of guessed variables as in the hybrid approach. The main idea of PXL is to partly perform 
Gaussian elimination on a Macaulay matrix over a polynomial ring before fixing the values of k variables. 
By doing so, we can reduce the amount of manipulations for each guessed value compared with h-XL. 
Throughout this paper, let F = (/1,..., fm) E lF走1,..,,x叫mbe an MQ system of m polynomials in n 
variables x1,..., Xn over lFq, where q is a power of a prime. 

2 Preliminaries 

This subsection fixes the notations that are used in the rest this paper. In particular, we construct a 
Macaulay matrix over the polynomial ring lF走1,...，叫 withrespect to Xk+l,...心 for1 ::; k ::; n, 
where each entry belongs to lF qば1,...，蹂］． Sucha Macaulay matrix, together with our construction, 
plays a key role in the main algorithm in Subsection 3.1 below. 

In the following, an integer 1 ::; k ::; n is fixed, unless otherwise noted. Similarly to the hybrid 
approach [1, 8], our main algorithm divides x1,...，咋 intok variables x1,..., Xk and the remaining 
n -k variables, and then regards Ji,..., fm as elements of (lFq 炉，．．．，叫）［咋＋1,...,xnl• Let K := 
(lF孔X1,...,xk])[xk+l,...,x』andMon(K) denote the set of all monomials in Xk+1,..., Xn, say 

Mon(K) :=｛叶訂 ・・・X炉： （Ock+l,..., Oen) E zn-k}. 

For a positive integer a 2 0, we here define two subsets Ta and Tsa of Mon(K) as follows: 

Ta := {tEMon(K):deg(t)=a}, 

Tsa := 71。UT1U ・・・ UTa. 

Furthermore, for a positive integer b 2 2, we define two subsets h and Isb of K as follows: 

m 

h := LJ{t. f;: t E n-2}, 
i=l 

I9 := I2 uh u ・ ・ ・ uh-

We here construct a Macaulay matrix of I-,::D with respect to T-,::D for an integer D 2". 2. For this, we 
use a graded monomial order (e.g., graded lexicographic order), which is a monomial order first comparing 
the total degree of two monomials. Furthermore, as for the order of elements in I勺D,we also use an 
order which first compares the degree of two polynomials. We then define the Macaulay matrix of I豆D
with respect to T-,::D by an (II<::DI x IT<::Dl)-matrix over lF也1,...，叫 whose(i,j)-entry is the coefficient 
of the j-th element of T-,::D in the i-th element of I-,::D・

For simplicity of notation, we denote by PM  the Macaulay matrix constructed as above, and call it a 

Macaulay matnむofF at degree D over lF孔X1,..．,Xk]-For two integers d1 and d2 (2 :S d1 :SD, 0 :S d2 :S 
D), we also denote by PM[Id,,T.必]the submatrix of PM  whose rows (resp. columns) correspond to 
polynomials of Id, (resp. monomials ofTd2). Then, PM  is clearly divided by submatrices PM[Id1,T,勾
(2 :S d1 :S D,O :S d2 :SD). 

Thanks to our choice of a monomial order together with the quadraticity of F, the following lemma 
holds clearly: 
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Lemma 1 
For an MQ  system F and positive integers k s; n and D ::,. 2, let PM  be a Macaulay matrix of F at 

degree D over lFq[x1,..., xk]-Then, for 2 :S d s; D, every P M[Id, Td,] with d'¢: { d, d-1, d -2} is a zero 
matrix, and all elements ofPM[Id,Td] belong to lFq. 

3 Main Algorithm 

In this section, we propose a new variant of the XL algorithm.We describe the outline of our proposed 
algorithm "polynomial XL (PXL)" in Subsection 3.1 and the details of the most technical step in Sub-

section 3.2. 

3.1 Outline of our algorithm PXL 

This subsection describes the proposed algorithm polynomial XL (PXL). As in the h-XL, PXL first sets 
the first k variables x1,..., Xk as guessed variables, whereas the main difference between our PXL and 
h-XL is the following: While h-XL performs row reduction after substituting actual k values to x1,..., Xk, 
PXL partly performs Gaussian elimination before fixing k variables. These manipulations are possible 
due to our construction of Macaulay matrices over 1Fq[x1,..., x吋describedin Lemma 1. 

Here, we give the outline of PXL. The notations are same as those in Section 2. 

Algorithm 1 (Polynomial XL) 

Input: An MQ  system F = (11,..., f m) E lF紅1,...,%]叫 thenumber k of guessed variables, and a 
degree bound D. 

Output: A solution over 1Fq to f;(x1,..., Xn) = 0 for 1 ~ i ~ m. 

1. Multiply: Compute the set I:s;n of all the products t ・ f; with t E T:,;n-2. 

2. Linearize(l): Generate PM, which is the Macaulay matrix of Fat degree Dover lF土1,...，叫，
and partly perform Gaussian elimination on it. (The det出lswill be described in Subsection 3.2.) 

3. Fix: Fix the v;叫uesfor the k variables x1,..．心 inthe resulting matrix of step 2. 

4. Linearize(2): Compute the row echelon form of the resulting matrix of step 3. 

5. Solve: If step 4 yields a univariate polynomial in lF孔％］， computeits root. 

6. Repeat: Substituting a root into Xn, simplify the equations, and then repeat the process to find the 
values of the other variables. 

Note that the definition of the resulting matrix of step 2 is given in the following paragraph, and that 
the last four steps from Fix to Repeat are iterated until a solution is found. 

Let us here roughly describe the proposed algorithm. The Multiply step generates I:,;n of F by 
T:,;n-2, defined in Section 2, by regarding each polynomial邸 thatin (JF孔X1,...，叫）［Xk+I,...,X』.By
utilizing the property stated by Lemma 1, the Linearize(l) step described in Subsection 3.2 partly 

perform Gaussian elimination on PM. After the Linearize(l) step, the resulting Macaulay matrix is 

supposed to be the following form (i ~), by interchanging rows (and columns). Here I is an identity 
0 A 

matrix, and A is a matrix over lF孔x1,...,xk]-Then, the last four steps deal with only the submatrix 
A, and find a solution by the same way as h-XL. This submatrix A is called the resulting matrix of 
Li inearize(l). 
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3.2 Details of Linearize(l) step 

In this subsection, we describe the details of the Linearize(!) step in the proposed algorithm, and show 

that it works well as row operations on PM. We use the same notations as in Subsection 2. In the 

following, we also denote by PM[Ia,11刃thesame part even after PM  is transformed. 

The Linearize(l) step is mainly performed on each submatrices PM[Id,Td], PM[Id,T(d-i)l, and 
P M[Id, T(d-2)], starting from d = D down to 2. Each iteration d consists of the following three substeps: 

(d)-1. Perform Gaussian elimination on P M[Id, T,孔

(d)-2. Perform the same row operations as those of (d)-1 on PM[Id,T(d-1)] and PM[Jd,T(d-2)]-

(d)-3. Using the leading coefficients of the resulting P M[Id, Td], eliminate the corresponding columns of 

PM. Here, a leading coefficient is the leftmost nonzero entry in each row of the row echelon form of 

a matrix. 

Here, we show that the Linearize(!) step described above works well as row operations on PM. 

Note that for any 3 :'.S d'.SD, the (d)-3 step does not affect the submatrix PM[I:-:;(d-l),Td], since 

PM[I:-:;(d-1),11孔isalways a zero matrix by Lemma 1. This indicates that PM[Id,T:-:;D] does not change 

from the original structure at the beginning of the (d)-1 step. Therefore, from Lemma 1, the manipulations 

in the (d)-1 and (d)-2 steps can be performed correctly and seen as row operations on PM. Furthermore, 

the (d)-3 step can be also performed correctly, since the leading coefficients of the resulting PM[Id,T,』
belong to lFq. As a result, we have that all the manipulations are practicable and regarded as row 
operations on PM. 

After the Linearize(!) step, all manipulations are performed on the resulting matrix of Linearize(!) 

composed of rows and columns including no leading coefficient of the row echelon form PM  [Id, Td] with 

2 < d < D. 
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