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FUNDAMENTAL GROUPS AND SPECIALIZATION IN RIGID GEOMETRY 

ALEX YOUCIS 

1. INTRODUCTION 

In most areas adjacent to arithmetic geometry the role of'covering space'has historically been 
assumed by the notion of a finite etale covering. This is for good reason, as if one is concerned with 
well-behaved (e.g. geometrically unibranch) schemes, then (disjoint unions of) finite etale coverings 
account for essentially all notions of'covering space'one is likely to define (see Example 4.4). 

That said, there are two notable examples of profitable theories of infinite degree covering spaces 
arising from arithmetic geometry: 

• de Jong's theory of covering spaces for rigid spaces over non-archimedean fields, 
• Bhatt-Scholze's theory of geometric coverings for locally topologically Noetherian schemes. 

In this expository note I discuss recent work of myself and my coauthors showing that these two 
ostensibly disparate notions are intimiately connected via the idea of specialization and how this 
points to a more all-encompassing theory of'covering spaces'in rigid geometry. 

Acknowledgements. The author thanks Piotr Achinger and Marcin Lara for several helpful dis-
cussions. The author also thanks the organizers of the Algebraic Number Theory and Related 
Topics 2021 conference at RIMS for allowing him to speak on this topic at their conference. Fi-
nally, the author was working under the auspices of the JSPS fellowship during the writing of this 
article. 
Notation and Conventions. This article is written in an informal manner. I encourage the 
reader to consult [1], [3], and [2] for precise statements, references, definitions, and conventions. 

2. PRELIMINARY IDEAS 

We briefly recall some background material needed for the rest of the article. 

2.1. Rigid spaces. As de Jong's theory of covering spaces concerns rigid geometry, we now briefly 
recall the various incarnations of'rigid spaces'and the relationships between them. 

Fix (K, I ・ I) to be a non-archirnedean field (so K is complete and non-discrete)，口 anelement 
of K with O < lwl < 1, ('.) the valuation ring of K, m the valuation ideal of('.), and k the residue 
field of ('.). In this article, a rigid K -space means an adic space locally of finite type over Spa(K). 
Denote by RigK (resp. Rig悶， resp.Rig炉） thecategory of rigid K-spaces (resp. quasi-separated 
rigid K-spaces, resp. quasi-compact and quasi-separated rigid K-spaces). 

The universal separated quotient. The underlying topological space of a rigid K-space X is 
valuative in the sense of [12, Chapter 0, Definition 2.3.1]. This means that while the topology of 
X is locally spectral, and thus is scheme-theoretic in nature, the generizations of any point of X 
form a totally ordered set. In particular, unlike the case of schemes locally of finite type over a 
field, rigid K-spaces admit non-trivial continuous maps to separated (i.e. T1) topological spaces. 

Definition 2.1 ([12, Chapter 0, §2.3.(c)]). The universal separated quotient of X, denoted [X], is 
the quotient topological space X/ ~ where x ~ y if x and y are related by generization/specialization. 
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The quotient map X→[X] is denoted by sepx, As the name suggests, the space [X] is separated 

and the map sepx is initial amongst maps from X to separated spaces. The association of [X] to 
Xis functorial. The fibers of the map sepx are Riemann-Zariski-esque spaces. 

If X is a so-called taut rigid K-space (see [16, Definition 5.1.2]), then [X] is in fact a locally 
compact Hausdorff space and [X] agrees with the underlying topological space of the Berkovich 
space xBerk associated to X (cf. [17, §8.3]).1 

The map sepx allows us to endow X with a coarser topology. Call an open subset of X over-

convergent if it is of the form sepx1(U) for an open subset Uこ[X].One might also call these, in 
light of the above mentioned relation to Berkovich spaces, Berkovich open subsets. If X = Spa(A) 

then a basis for the toplogy of X are the open subsets of the form {x EX: 1/(x)I ~ 1} for f EA. 
In contrast, a basis for the overconvergent topology on X are those open subsets of the form 

{xEX:l/(x)l<l}0= LJ {xEX:1/(x)l~c}. 
O<e<l 

Example 2.2. Assume that K is algebraically closed and let BK= Spa(K〈T〉)bethe closed unit 
disk over K. The structure of [B幻isexplained in great detail in [5, Chapter 1 ]. Recall (see [20, 

Example 2.20]) that the points x of BK are classified into five types, and sepx1(sepx(x)) is {x} 

unless xis a point of Type 2, in which case sepx1(sepx(x)) may be identified with Pi except when 
x is the Gauss point T/Gauss of恥 inwhich case it may be identified with Aい
Generic fibers of formal schemes. Denote the category of formal schemes locally formally of 
finite type (resp. locally of finite type, resp. of finite type, resp. finite type and flat) over(')by 

FSch悶(resp.FSch恥， resp.FSch畠， resp.FSchefKm). 

Let A be a topologically finite type(')K-algebra, so AK = A［考］ isthen topologically of finite 

type over K. The subring A戻~ AK of powerbounded elements coincides with the integral closure 
of (the image of) A in AK, There exists a unique functor 

(-)71: FSchぬ→ Rig悶qs

such that Spf(A)71 = Spa(AK) for every topologically finite type(')K-algebra A, and which respects 
open immersions and open covers. This functor naturally extends to a functor 

(-)71: FSch尻→ Rig悶，
and for疋 locallyof finite type over(')K, the rigid K-space疋71is called the rigid generic fiber 

of疋． Furthermore,(-)71 sends the class W of admissible blowups (see [12, Chapter II, §1.1]) to 
isomorphisms and induces equivalences of categories 

FSchefKm[w―1] ~ FSch図 [W―1],~ Rig悶qs.
incl (-）" 

Here (-) [w-1] denotes the localization with respect to W. By a formal model of a rigid K-space 

X we shall mean a formal scheme疋suchthat疋11c::: X. The notion of the generic fiber of a formal 

scheme can be extended to FSch閉bya gluing construction (cf. [12, Chapter II, §9.6.(a)]). 
If X belongs to Rig悶qs,then the construction of the rigid generic fiber allows one to identify 

the locally _toP_ologically ringed space (X,(')1) as_~ （X,(')釘 where_X runs over admissible formal 
models of X. In particular, for any model X of X one has a map of topological spaces 

spx: IXI→|王|＝ |謀|

This tautness assumption is quite mild, and holds true for any quasi-paracompact and quasi-separated rigid K-
sp邸 es(e.g. affinoids, analytifications of separated locally of finite type K-schemes, etc.) as well as any quasi-separated 
rigid K-space of equidimension 1 (see [1, Proposition 3.4.71). 

2This discrepancy between Gauss points and other type 2 points is related to the fact that BK is not partially 
proper over Spa(K) (see [l, Example 3.4.31). 
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called the specialization map. If疋＝ Spf(A),then for a valuation v: AK→r U {0}, sp虹）
is the open prime ideal {x E A : v(x) < 1} in Spf(A). The specialization map is continuous, 

quasi-compact, closed, and (for X in FSch戸） surjective.

For an object疋 ofFSch⑬,and a closed subset Z <;;; IXI, we define the tube open subset of 
疋1Jassociated to Z, denoted T(XIZ), to be the open subset spi1(Z)0. Tube open subsets are 
overconvergent opens, have the property that a closed cover { Z;} gives an overconvergent open 

cover {T(XIZ;)} of疋'7'andthe natural map知→又， where王zis the completion of疋 alongZ, 
has generic fiber which is an open embedding with image T(XIZ). 

Example 2.3 (cf. [17, Proposition 1.9.6]). Suppose that X→Spec(('.)）is a separated and locally 
of finite type morphism of schemes. Denote by疋 thero—adic completion of X. Then there is a 
functorial open immersionぷ→X炉whichis an isomorphism if X→Spec(('.)）is proper. 

Example 2.4. Let疋＝ Spf(('.)〈T〉)bethe 匂—adic completion of Aもsothenぷ＝ BK.For a point 

aE('.) ＝恥(K)one has spx(a)＝石 Ek = Al(k), where百 isthe image of a in k. In particular 
spx collapses every point in m <;;; BK(K) to the closed point O E Al(k). In contrast, if t is the 

generic point of Al then SPxパt)= {TJGauss}-Finally, if Z = 0 E Al(k), then 

T(XIZ) =DK:= LJ {x E BK: IT(x)I (c} <;;; spi1(Z) = {x E BK: IT(x)I < 1} 
O<s<l 

where this containment is strict as (for example) the Type 5 point with x = 0 and r = 1, and?=< 
(in the notation of [20, Example 2.20]) is in the right-hand side, but not the left. Observe that here 

we can visibly see that the generic fiber of the completion迄＝ Spf(('.)［T])of疋 alongZ agrees 
with T(文|Z)=DK・

Example 2.5. Consider the aflinoid 

A1,口:＝ Spa(K〈T，デ〉） ＝ ｛xEBK:|rvl (ITI (l}. 

This has a model叫，"'givenby Spa(('.)〈T,号〉） whosespecial fiber is Spec(k[T, S]/(TS)), the (re-

duced) union of the axes in A紅 Onemay glue two copies of A1，匂 togetheralong the (rational 

open) unit circle 

C := Spa(K〈T,T―1〉)＝ ｛XE A1,ro: IT(x)I = 1} 

via the automorphism T >-+ r-1 of C. The result is 

A匂―1，匂＝ ｛XE Aian:|wl (lxl (|口|―1}

This has a model辺匂―l，匂 givenby gluing Spf(('.)〈T,号〉） toitself along Spf(('.)〈T,r-1)) via T >-t r-1. 
The special fiber of辺匂―l，匂 istwo copies of Spec(k[T, S]/(TS)) glued along the non-vanishing locus 

D(S) = Spec(k[T,T-1]) via the automorphism T >-+ r-1. In other words, the special fiber of 
叫曰，rolooks like Pl with copies of Al glued to each pole. It is then perhaps not surprising that 

if知 isthe admissible blowup of民alongthe two poles O and oo then 

糾—1'ro =疋1-{01, ooi}, Aw―1ャ＝ sp式（叫,-1,司こ P信an,

where 01 and 001 are the poles of the exceptional divisor of the blowup not intersecting the original 

copy of包． Continuingin this way, either by the blowup or gluing procedure, we obtain spaces 

辺匂―n，匂n=疋n-{On,OOn}, Aw―nぶ7n= {x E Aian:|win (lxl (|口|―n}= Sp式（辺匂―n，匂n)こPkan.

Iterating infinitely is seen, either by the blowup or gluing procedure, to yield (a model of) G悶，K・
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2.2. Tame infinite Galois categories. The technical underpinning for the notion of'fundamental 
group', in the generality that we will need it, is the notion of a tame infinite Galois category. In 
essence, this theory seeks to axiomatize the study of the category G-Set of discrete sets with 
a continuous action of a topological group. It is in analogy with the classical theory of Galois 
categories, where one studies finite sets with a continuous action of a profinite group. 

Definition 2.6 ([7, Definition 7.2.1]). Let e be a category and F: e→Set be a functor. We then 
call the pair (e, F) an infinite Galois category if the following properties hold: 

(IGCl) The category e is cocomplete and finitely complete. 
(IGC2) Each object X of e is a coproduct of categorically connected objects.3 
(IGC3) There exists a set S of connected objects of e which generates e under colimits. 
(IGC4) The functor F is faithful, conservative, cocontinuous, and finitely continuous. 

We say that (e, F) is tame if for every categorically connected object X of e the action of 1r1 (e, F) 
on F(X) is transitive. The fundamental group of (e,F), denoted 1r1(e,F) is the group Aut(F) 
endowed with the compact-open topology.4 

For a topological group G, we denote by G-Set the category of discrete sets with a continuous 
of G. The upshot of the theory of (tame) infinite Galois categories is the following. 

Proposition 2. 7 ([7, Example 7.2.2 and Theorem 7.2.5]). Let (e, F) be an infinite Galois categor1J 

and G a Noohi group5. Then, the following statements are true. 

(a) The group町 (e,F) with its compact-open topology is a Noohi group. 
(b) The pair (G-Set, Fe), where Fe: G-Set→Set is the forgetful functor, is a tame infinite 

Galois category with a canonical isomo'f"J)hism G'.:,:'. 1r1 (G-Set, Fi』
(c) The natural map Hom((e,F), (G-Set，応）） →Homcnts(G,1r1(e,F)) is a bijection. 
(d) If (e, F) is tame then F induces an equivalence F: e ~町(e,F)-Set.

3. THE CATEGORY OF DE JONG COVERING SPACES 

In this section we discuss the theory of covering spaces of rigid spaces developed by de Jong in 
[8] using more modern language. 

Motivation. To properly discuss de Jong's theory of covering spaces, as well as later examples of 
covering spaces, it is useful to first develop some notation. Fix a site (S, T) and a stack'.I)→S such 
that'D x has all coproducts for all objects X of S. For a fibered subcategory C of'D define 

• L心 tobe the T-stackification of C (i.e. (L忠）xconsists of those elements Y of応 for
which there exists a T-cover {U;→X} such that Yu, belongs to似 forall i), 

• UC (resp. UfinC) to be the subfibered category of'D such that (UC)x (resp. (UfinC)x) 
consists of all (resp. all finite) coproducts of elements of C x. 

One may observe that many categories of'covering spaces'occur by starting with a category of 
'nice morphisms'(usually'isomorphisms') C and iterating the above operations. 

Example 3.1. Let (S, T) = (Top, op) be the category topological spaces with the usual Grothendieck 
topology, and let'D be the arrow category of Top. If Isom denotes the fibered subcategory of'D con-
sisting of isomorphisms then the stack Covtop→Top consisting of covering spaces is Lop U Isom. 

3 An object Y is categorically connected if every monomorphism Y'→Y with Y'non-initial is an isomorphism. 
4More precisely, for each sin S, where Sis as in (IGC3), we endow Aut(s) with the compact-open topology. We 

then endow Aut(F) with the subspace topology inherited from the natural map Aut(F)→ITsES Aut(s). 
5 A Noohi group is a Hausdorff topological group which has a neighborhood basis of 1 given by ;,pen (not necessarily 

normal) subgroups, and which is R西kovcomplete 
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Example 3.2. Let (S, T) = (Sch, et) be the category Sch of schemes with the big etale topology, 
and let'Dbe the arrow category of Sch. Then the stack FEt→Sch of finite etale morphisms is 

precisely Let U fin Isom. 

Definition 3.3 (Berkovich, de Jong). Let X be a rigid K-space. Then, the category of de Jong 

covering spaces, denoted Cov哭， consistsof all morphisms Y→X of rigid K-spaces such that there 

exists an overconvergent open cover {U;} of X such that Yu, belongs to UFEtu, for all i. 

If oc denotes the Grothendieck topology consisting of overconvergent open covers we see that 

Cov0c = L。cUF臥＝ L。cUL.,tUfinIsom. 
Intuitively we may think of Cov閃asbeing the synthesis of the notions of topological covering 

space of X Berk and finite etale covering space of X Berk 

The original motivation of de Jong in his paper [8] to work with de Jong covering spaces is that 
examples of such covering spaces were abundant in nature 

Example 3.4. Let q be an element of K satisfying O < lql < 1. Then, qz acts on G盟，Kby 

translation, and this action is properly discontinuous for the overconvergent topology. Thus, one 

gets a quotient space G記悩／qzand the mapping G記悩→ G悶，K尼 is a topological Z-covering on 

the level of Berkovich spaces and so is a de Jong covering space. 

Example 3.5 (see [4, Chapter III, Example 1.2.6]). The logarithm map 

log: DK→ A信，

is a de Jong covering space. 

00 

X→log(l + x)＝区(-1)n-1竺
n 

n=l 

Example 3.6 (Yu, see [8, Proposition 7.2]). The Gross-Hopkins period mapping 

疇： Dcp→Pも:
is a de Jong covering space. 

The de Jong fundamental group. While the definition of a de Jong covering space is useful 

for capturing the natural examples mentioned above, the notion would not be a true instace of 

'covering space'if the category Cov党couldnot be studied by fundamental group theoretic means. 
The main theorem of [8] addresses this question. Indeed, if we use the notation 

氏： Etx→Set, (Y→X)→Homx（x,Y). 

then the main theorem op. cit. may be interpreted (in modern language) as follows.6 

Theorem 3.7 (de Jong). Let X be a connected rigid K-space andx a geometric point of X. Then 

the pair (UCov閃，凡） isa tame infinite Galois category. 

Before we sketch the proof of this result, let us first make some notational preparations. For 
simplicity we assume that X is tame and write虎：＝ xBerk_For an open subset%'of究 wewrite 

U for the overconvergent open subset sepxバ%').Finally, for two geometric points歪 and'fjand a 

subcategory e of Etx, denote by Isome(-P百，杓） theset of isomorphisms (-P百)|e→ (F百兄

6 As the theorem suggests, the notion of a de Jong covering space is not closed under disjoint unions and so cannot 
be a tame infinite Galois category. For an example of this type of phenomenon see [2, Remark 3.4]. Intuitively the 
issue is that unlike the case of complex manifolds, rigid K-spaces are not locally contractible for the etale topology 
(e.g. the closed unit disk h邸 non-trivial且niteetale covers). One can similarly create examples to show that the 
composition of two de Jong covering spaces needn't be a de Jong covering space. 



188

Idea of proof. The only difficult condition to verify is tameness. It suffices to show that for any 
two geometric points x and'fl that Isomcov党(F元， Fy)is non-empty (cf. [1, Proof of Proposition 

5.4.9]). To prove this we use the fact (see [6, Theorem 3.2.1 and Corollary 4.3.3]) that劣 isarc 
connected, i.e. any two points a and b are the endpoints of a subspace f!,こ究 homeomorphicto 
[O, l]. Let f!, be such an arc with endpoints x and y. For any'nice, linearly ordered'finite open cover 
'l1 =｛'P/1,...，駕｝ off!,(see [8, Proof of Theorem 2.9]) we have the category Covu of morphisms 

Y →X such that恥 isin UFEtu, for all i. As f!, is compact, 

Cov哭＝迦Covu, lsomcov哭(F百，Fy)＝胆lsomcovu(Fx，杓）．
u 

For each'll let Ku be the image of the composition map 

IsomTTFF.t,, (F,,，厄） x・ ・ ・ x IsomTTFF.t,, (Fi— UFEtu UFEtu%-1,F』→ Isomcovu(Fx, Fy)-

Here each瓦 isa geometric point anchored in %:; n %:;+1, and note this image Ku may be shown 

to be independent of such choices. Each set Isom0Fもtut(F匹 1,F百Jis a pseudo-torsor under the 

profinite group 7r門（U;,西） and,as FEtu, is a Galois category, is in fact a torsor (cf. [24, Tag 
OBN5]). This endows each Ku with the structure of a compact Hausdorff space. The transition 
maps Ku,→Ku are continuous, and thus皿恥isa projective limit of non-empty compact spaces 

and so non-empty. As胆Kuadmits a map to胆lsomcovu(Fi百，Fy)we're done. ロ

Denote by州 (X亙） theNoohi group 1r1(UCov岱凡） andcall it the de Jong fundamental group. 
As this group does not depend on the chosen base point we shall often omit it from the notation. 

It is important to note that the de Jong fundamental group can be quite complex even in 
relatively simple situations. In particular, the following example shows that even for a space as 

1,an simple as P~'.'."'the de Jong fundamental group need not be pro-discrete (i.e. is not, in the category 
Cp 

of topological groups, an inverse limit of discrete groups).7 

Example 3.8 (de Jong, [8, Propsition 7.4]). The Gross-Hopkins period map 7l"GH gives rise to a 

continuous surjection州(Pと:n)→SL2(Q砂

4. THE CATEGORY OF GEOMETRIC COVERINGS OF SCHEMES 

In this section we talk about the category of geometric coverings of schemes discussed by Bhatt-
Scholze in [7]. 

Motivation. Given the situation with de Jong covering spaces, it's natural to ask what happens 
for schemes. For instance, why does the category LetULetUfinlsom not show up in the classical 
study of covering spaces of schemes? As it turns out, the reason is (at least partially) because one 
doesn't obtain anything new if the scheme is reasonablly well-behaved. 

Proposition 4.1. Let X be a topologically Noetherian geometrically unibranch scheme. Then, 

Lfpqc UFEtx = UFEtx. 

We delay proving this proposition until later, as it will fall out of more general machinery. Until 
then, we note that this proposition patently fails for even relatively benign varieties which are not 
geometrically unibranch. 

Example 4.2. Let k be a field and let 

X=V(y2z-x3＿丑z)<:;:: p~ 

7There is a minor error in [8] where it is claimed thatが (X)is always pro-discrete, see [7, Remark 7.4.11]. 
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be the projective nodal cubic curve. Note X is the result of pinching (see [11]) together O and oo 
on P},. Let db e a non-negative integer and set YJ = LJmEZ/dZ Xm where each心 isa copy of 

Pl and let Yd be the result of pinching together each oo in心 withO in Xm+l・ The tautological 

map YJ→P}, gives rise to a map Yd→X via the universal property of pinching. A way from the 
pinched points the map均→ X is a disjoint union of isomorphisms, and a pinched point y of Y 

maps to the pinched point x of X. As the induced map CJx,x→CJY,y is an isomorphism (see [15, 
Example V.6.3]), the maps均→ Xare etale. One checks that Yd is connected, Aut(Yd/ X) = Z/dZ, 
and Yd xx Yo竺 LJmEZ/dZYo as Yo-schemes. In particular, Yo belongs to Let UFEtx but not to 

UFEtx.8 

This example, and others like it, are handled by the following definition of Bhatt-Scholze. 

Definition 4.3 ([7, 7.3.1(3)]). Let X be a locally topologically Noetherian scheme. A morphism 
of schemes Y→X is a geometric covering if it is etale and partially proper.9 We denote by Cov x 
the category of geometric coverings of X. 

We now give some further examples of geometric coverings. 

Example 4.4 (See [7, Lemma 7.4.10] and its proof). Let X be a locally topologically Noetherian 

scheme. If Xis geometrically unibranch, then Covx = UFEtx. 

It is worth noting that geometric coverings is strictly larger than Let UFEtx in some cases. 

Example 4.5 ([2, Remark 3.9]). Let k be an algebraically closed field, and let X be the curve 
obtained by pinching two copies, call them x+ and x-, of Gm,k together at a closed point x. For 
n?  0, let Yt→炉 bethe connected cyclic covering of degree equal to the n-th prime number 
invertible in k. Let y+ = U心 0yn+ and y-= Un>O yn-, and let Y →X be the geometric covering 

of X with Ylx±~y±obtained by identifying the fibers of Y±at x as in the picture below. 

yl- y2- y3- y4-

, ＾ `,  ＾ ｀、 ^ ,` ＾ ｀ •••••••••••••••••• 
一｀呵ヽ~ マ 、、 V ‘ヽ―`/—ノ
yo+ Yt Y； 町 Y4＋

Then Y→X is a geometric covering but is not the disjoint union of finite etale coverings in any 
etale neighborhood of x. 

The pro-etale fundamental group. Again, for the category of geometric coverings to be useful, 
it is highly desirable that there is an associated theory of fundamental groups. To prove this it is 
useful to first recall the context that Bhatt and Scholze first considered geometric coverings in. 

Definition 4.6. The pro-6tale site of X, denoted Xpro6t'．has objects consisting of weakly 6tale 
morphisms Y→X (see [24, Tag 094N]) and whose covering families consist of fpqc covers. We 
denote by Loc(Xproet) the category of locally constant sheaves of sets on Xproet• 

Using the pro-et ale topology, Bhatt-Scholze are able to give an alternative description of Cov x. 

Proposition 4.7 (cf. [7, Lemma 7.3.9]). For a locally topologically Noetherian scheme X, 

Cov x = Lfpqc Isom竺 Loc(Xproet)-

Using this, one can show that Covx is a tame infinite Galois category. 

8rn fact, one can see that Yo→X belongs to L0,Ulsom. Such morphisms, called SGA3 covering spaces, were 
already considered in [9] where they are used to classify tori over non-normal bases. 

9 A morphism is called partially proper if it is quasi-separated, locally of finite type, and satisfies the valuative 
criterion for properness (see [24, Tag 03IX]). 
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Theorem 4.8 ([7, Lemma 7.4.1]). Let X be a connected locally topologically Noetherian scheme 
and x a geometric point of X. Then, the pair (Cov x, Fi司isa tame infinite Galois category. 

Idea of proof. By Proposition 4.7 it suffices to show that Loc(Xproet) with the stalk functor is a 
tame infinite Galois category. As in the proof of Theorem 3. 7 it suffices to show that for any two 

geometric points百 andg that the set IsomLoc(Xproet)(F百， F引isnon-empty. As X is topologically 
N oetherian one may connect the underlying points of x and万byfinitely many specialization and 
generization relations. Thus, one may assume without loss of generality that the underlying point 
of百 generizesthat of y. So there exists (cf. [24, Tag 02JQ]) a valuation R with separably closed 
fraction field and a morphism Spec(R)→X such that歪andy lift to Spec(R). As we have a map 

Isom Loc(Spec(R)prnetl (Fi百， F引→ lsomLoc(Xprnetl(.Fi百， F引

it suffices to show that lsomLoc(Spec(R)prnet)(.Fi百， Fy)is non-empty. But, by Example 4.4 and [24, 

Tag 09Z9] this is trivial to do. ロ

We call the Noohi group町 (Covx,P司thepro-etale fundamental group of the pair (X亙） and

denote it守゚6t(X，団）． Asthis group is independent of the choice of歪weshall often supress it from 
the notation. 

One may notice the similarities between the proof of Theorem 4.8 and that of Theorem 3. 7, with 
the role of I in the latter being replaced by Spec(R) in the former. We return to this point later 
on. We also note that by combining Proposition 4.7 and Example 4.4 we immediately obtain a 
proof of Proposition 4.1. 

We end this section by giving some examples of the pro-etale fundamental group. 

Example 4.9. Let X be the projective nodal cubic curve from Example 4.2. then, the map Yo→ X 

is a Galois geometric covering and realizes 7r 
proet 
r'u"'(X) as the discrete group Z. 

Example 4.10 (Deligne, [7, Example 7.4.9]). Let X be a curve of genus at least 1 over an alge-
braically closed field k. Let Y be the result of pinching two distinct points of X together. Then, 

there exists a representation叩oet(Y)→GL2(Qp)with non-(pro-discrete) image. 

proet 
Example 4.11. Let X and Y be as in Example 4.5. The Noohi group町 (X)is not pro-
discrete. Indeed, if it were then by [7, Lemma 7.4.6] (and its proof) one would have that Y→ X 
is in Let Isom, but this is false. 

5. THE SPECIALIZATION MORPHISM 

In this section we discuss the result of [3] showing the existence of a specialization map between 
the de Jong fundamental group and the pro-etale fundamental group. 

Motivation. The idea of specialization (for fundamental groups) finds its conceptual roots (as do 
many things in arithmetic geometry) in complex geometry. Let△denote the open unit disk in C. 

Theorem 5.1 ([19, Proposition C.11]). Let X→ △ be a fiat proper morphism of complex analytic 
spaces with X connected. Then, there exists an open subdisk O E△’こ△ suchthat the inclusion 
X。YX△,isa homotopy equivalence. 

For simplicity let us assume that△’＝ △． From this we deduce the existence of specialization 
homomorphisms 

sp: "屈(X△•） →平(Xo), sp:平（Xt)→平(Xo)

where△* ＝△―{ 0} and t is any point of△.Indeed, this second map is obtained as the composition 

of the morphism吋op(Xt)→7r四(X△)withthe inverse of the isomorphism 叶叫Xo)~ 吋op(X△)，
and similarly for the first. 
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p roposition 5.2. If X is normal, then the specialization homomorphim sp: 1r 
top top 
1 (X△*)→町 (Xo)

is surjective. 

Proof. As these groups are discrete it suffices to show that if Y →X is a connected covering 
space, then Y;△*is connected (cf. [18, Proposition 2.37.(2)]). Observe that Y may be given the 
unique structure of a complex analytic space so that Y→X is holomorphic. As Y→Xis a local 
biholomorphism, the fact that X is normal implies that Y is normal. So, Y is locally irreducible 
(see [13, Chapter 6, §4.2]) and as Y is connected it is thus irreducible. Therefore, as Y→ △ is 
surjective, we know that Yo is a proper closed analytic subset of Y and so thin by [13, Chapter 9, 
§1.2, Theore叫 Thus,Y,△*is connected by [13, Chapter 7, §4.2, Criterion of Connectedness]．ロ

Therefore, we see that if X→ △ is proper and flat, and X is normal, one has a sort of semi-
continuity result which says that the fundamental group shrinks under specialization from a'general 
point of△'（repsented by△*） to a specific point. 

Example 5.3. Let 

X = V(y2z＋企＋砂z-t召）こ Pふ
where x, y, z are the parameters of P2 and t the parameter of△,and so X is normal. In this case 
X。isthe nodal cubic curve and the generic fiberふ isan elliptic curve. One can intuitively imagine 
that Xt is diffeomorphic to 81 x 81 but where the second copy of 81 has radius t which shrinks to 
0. One may then intuitively see the specialization map 

z2 竺平（ふ）エデ(Xo)~z

as the surjective map collapsing this second copy of 81 to 0. 

Grothendieck specialization. In [14] one finds an algebraic analogue of specialization in complex 
geometry. For our purposes we restrict to a special case more directly related to that of the complex 
situation. Namely, let us fix a non-archimedean field K. Here Spec(('.)) acts as a'contractible object 
of dimension 1'much like the disk△・ 

FixX→ Spec(('.)) to be a flat proper map of schemes and write i:ふ→ X to be the inclusion. 

Theorem 5.4 (Grothendieck). The pullback morphism i*: FEtx→FEtxk is an equivalence. 

Proof. Let 疋 bethe 匂—adic completion of X. Observe that the inclusionふ→ Xfactorizes asふ→
疋→ X.Now,ふ→又 isa universal homeomorphism of formal schemes, so by the topological 
invariance of the etale site (see [2, Proposition 3.5]) it induces an equivalence of categories E丘→

Etxk and F取疋→ FEtxk- On the other hand, as X → Spec(('.)）is proper we know by formal 

GAGA (see [12, Chapter I, Theorem 10.1.2]) that the completion functor FEtx→FEtx is an 
equivalence. We are done as our functor is the composition of these equivalences. ロ

I emphasize the role of properness in the above proof. At first look it appears as though it is the 

algebraizability of the unique lift匂→叉 ofa finite etale map Yk→ふ forwhich formal GAGA, 
and thus properness of X→Spec(('.)）， is being used. That said, algebraizability of this unique lift 
happens in much more general situations than the case when X→Spec(('.)) is proper. 

For instance, if X = Spec(A) is the spectrum of a finite type flat ('.)-algebra, then any finite 
etale cover Yk→ふ canbe lifted to an algebraic map Y → X. Indeed, c!:oose a_presentation 

Yk = Spec(A叶x1,...,Xm]/(/1,..., fm)). Then, if匂＝ Spf(A〈x1,...'%〉（fi,...,/m)),one has 
that匂 isthe completion of Y = Spec(A[x1,...,xm]/(g1,...,gm)) where g; in A[x1,...,xm] are 
such that g; = f; mod匂 N for N ~ 0 (cf. [10, Theorもme7]). But, as X→Spec(('.)）is not proper 
the map Y→X need not be etale. Intuitively the issue is contained in the observation made in 
Example 2.3, that if X→Spec(('.)）is not proper, thenふ isoften strictly larger than XrJ. 
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Example 5.5. Let X = Aも＝ Spec(('.)［Tl)and consider the finite etale Artin-Schreier cover 
Yk = Spec(k[S, T]/(S -TP -T -l)). The unique finite etale lift of Yk to a finite etale morphism 
匂→笈 isgiven by匂＝ Spf(('.)〈S,T〉/(S-TP -T -l)). This is the completion of the finite 
X-scheme Spec(('.)［S, T]/(S -TP -T -l)), but Y→X fails to be etale. Essentially the reason 
is that Y11→ふ isnot etale at any point of X17 corresponding to a pth-root of -p―1. This point 

belongs to X17 but not to均

Returning to the case of proper('.)-schemes, from Theorem 5.4 one is able to create a functor 

sp•: FEtx →FEtx 

sending a finite etale morphism坑→ふ tothe finite etale morphism Y11→X17 where Y→Xis the 
unique finite etale deformation of Yk→ふ toX. From Proposition 2.7 this gives us a continuous 
specialization homomorphism 

sp:咋（ふ） →咋(X砂

As in the complex setting, one gets a semi-continuity statement for the etale fundamental group if 
one assumes that X is normal. 

Proposition 5.6 (cf. [24, Tag OBQM]). Let X →Spec(('.)）be a fiat proper morphism with X 
normal. Then, the specialization homomorphism sp：呼（ふ） →畔（ふ） issurjective. 

The proof of this result is similar to the proof of Proposition 5.2, but largely simpler in this 
algebraic situation. The only added difficulty, and the main part of the proof, is to show that the 
normality of X is inherited by finite etale covers of X. 

Example 5.7. Let K = Cp, and let X be the curve 

X = V(y2z -x3 -x2z -p砂） ~p各

Let us then note thatふ isthe projective nodal cubic curve from Example 4.2 and X11 is an elliptic 
curve over K with split multiplicative reduction. From Example 4.9 we know that the covers 

均→ふ ford ~ l are cofinal in the category of finite etale covers of Xk, and so奇（ふ）竺 z.
On the other hand we know that州(XK)= Z2. As Xis regular, we get from the above theory a 

surjective specialization homomorphism畔（麻） →呼（ふ）． Wemay describe this more concretely 
using Tate's uniformization theorem (e.g. see [23, Chapter V, §3]). Namely, choosing q in K with 
0 < lql < 1 such that X'Jt is isomorphic to G記，K虎 wehave that sp*（い→麻 isthe morphism 

whose analytification coincides with the natural quotient map G盟，K/qdZ→G盟，K/qz.

Specialization for the de Jong fundamental group. As in Example 5.7, even very well-
behaved (e.g. smooth) proper schemes XK over K can have models X over ('.) whose special fiber 
ふ isnot geometrically unibranch. Thus, it is a natural question to ask whether or not one has a 
specialization morphism for the pro-etale fundamental group which would allow one to import the 
richer family of geometric coverings of Xk to interesting covering spaces of XK. 

Question 5.8. Let X→Spec(('.)）be a fiat proper morphism. Does there exist a continuous spe-

cialization morphism sp : 7r『ro6t(X幻→叩oet（ふ） makingthe diagram 

proetr V ¥ Sp 
町 (X幻 ． • ト叩°et（ふ）

l l 
畔(XK)~'ll"州(Xい

commute? 
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The answer to this question is a resounding no, even for purely group theoretic reasons. 

Example 5.9. Let X →Spec(('.)）be as in Example 5.7. On the one hand, from Example 4.4 

we know thatず゚ 6t(X幻＝呼（麻） ＝Z2. On the other hand, from Example 4.9 we know that 

叩oet（ふ） ＝Zand呼（ふ） ＝Z. Thus, we'd be be looking for an arrow making the following 
diagram commute 

z2.., z. 

ll l 
z2 ------)t z 

But, this is clearly impossible as one of the compositions is surjective and the other cannot be. 

Inspecting the proof of Theorem 5.4, Etxk is still equivalent to Et.:r and so any geometric covering 
汎 →ふ mustdeform uniquely to an etale morphism匂→ X.The issue is that one can no longer 
apply formal GAGA to obtain algebraization as the covering匂→疋 isinfinite degree. In fact, this 
precisely underlies the issue highlighted in Example 5.9. 

Example 5.10. Let X →Spec(('.)) be as in Example 5.7, and let Yo→ふ tobe the Z-cover from 
Example 4.2. Then, one may uniquely deform this geometric covering to an etale morphism匂→笈
In fact,糾→疋11is precisely the non-algebraizable Tate uniformization map G記，K → X后゜

Following the hint provided by Example 5.10 we may instead turn our focus away from finding 
a specialization functor Covxk CovxK, which cannot exist, to considering the functor Covxk→ 
Etx;'/n obtained by sending Yk→Xk to the rigid generic fiber of its unique etale formal deformation 

匂→ X.But, as Etx~n is not a tame infinite Galois category this cannot be used as a target to 
get a specialization homomorphism of fundamental groups. Thus, we need to place the image of 

this functor in a smaller tame infinite Galois subcategory of Etx;'.!'• The surprising fact is that one 
K 

may take the category Cov託・
More generally, let us fix X to be an admissible quasi-paracompact formal scheme over('.) （e.g. 

the ro-adic completion of a flat finite type a-scheme). Then we have the following. 

Theorem 5.11 ([2, Corollary 3.8]). Let匂→疋 bean etale map. Then, the following are equivalent: 

(a)叫→迅・is a geometric covering, 
(b)叫→疋11is a de Jong covering space. 

In particular, there exists a continuous specialization homomorphism of Noohi groups 

sp:印（知→ず゜6t（ふ）．

making the diagram 

紐（和二呼゜et国）

l l 
呼（知:咋（ふ）

commute. Note that if疋isthe w-adic completion of a proper morphism X→Spec(('.)）then the 
finite etale covers of疋11=X突agreewith those of X by rigid analytic GAGA (e.g. see [6, Corollary 

10 As this is plausible from Example 2.5, which shows that G翌，Khas a formal model with special fiber Yo, this 
claim is not exactly clear. One way to confirm its veracity is to use Example 5.12 to show that飢→疋"is a 
topological Z-cover, all of which are isomorphic to the Tate uniformization morphism. 
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3.4.13]) and so畔（和＝畔(XK)thus yielding a commutative diagram of Noohi groups 

ヂ(X'JF)二三戸（ふ）

l 』
呼（ふ）~呼(Xk)

thus fully addresing the situation suggested by Question 5.8. 

Outline of the proof of Theorem 5.11. The reason Theorem 5.11 should be surprising is that 
while Example 4.5 shows that a geometric covering叫→エ neednot split into a disjoint union of 
finite etale covers even etale locally on疋k,we see that !?)11→X11 must split into a disjoint union of 
finite etale covers not just etale locally on叉11,not just admissibe locally on疋11,but overconvergent 

open locally on疋n・

The reason that this result is not entirely implausible is that the topology on笈11is much more 
flexible than that of疋， allowingone to replace疋byan admissible blowup. This motivates the 
proof which, in some sense, shows that one can split a geometric covering匂k→和 intoa disjoint 
union of finite etale covers in a particularly simple way using admissible blowups of疋．

We now outline the major steps to the proof of Theorem 5.11. We focus on the most difficult 
part, showing that if訊→珀 isa geometric covering, then訊→ X11is a de Jong covering space 
when疋isquasi-compact. 

Outline of proof of Theorem 5.11. 

Step 1: Assume that for each irreducible component Z of疋kthat匂XxZ is in UFEtz. Now, 

匂X.xZ=（匂 X.x疋z X̂  Xz Z E UFEtz. 

As the morphism Z→Xz is a universal homeomorphism, we know by the topological equivalence 

of the etale site that匂xx王zis in UFEt$ry・ Thus we see that判 isa disjoint union of finite 
l'z 

etale coverings over each（迄）11=T(疋|Z).As the tubes T(笈|Z)as Z varies over the irreducible 
components of和 forman overconvergent open cover of X11, we are done. 

Step 2: Suppose that there is an admissible blowup疋＇→疋 suchthat for each irreducible ~ompo
nent Z'in耳 withimage Zin X, the map Z'→Z factorizes through the normalization Z→z. 

Set匂＇＝匂 X疋疋'andobserve that as 

匂'xx,Z'=（匂'x立） xzz'

we have that 匂'~'is in UFEtz, by Example 4.4. By Step 1 we know that叫→x;is a de Jong 

covering space. As笈＇→疋 isan admissible blowup,瑞→疋11is an isomorphism, so we're done. 

Step 3: It remains to show that there is an admissible blowup疋'~→疋 asin Step 2. To show this 

one first observes by Raynaud-Gruson that as the normalization Z;→Z; is proper and birational 

it may in fact be dominated by the special fiber of an admissible blowup疋＇→疋． Ofcourse, one 
must be careful as the admissible blowup X'→疋mayhave more irreducible components than those 
obtained as the strict transform of the Z;. Thus, one must iterate this procedure and perform a 
delicate analysis to show that it terminates in finite time. ロ

The above is illustrated quite well in the situation of Example 5.10. 

Example 5.12. Let X'→X be the admissible blowup of疋 atthe nodal point of王(k).Then, 
羽＝花 (inthe notation of Example 4.2) and in particular we see that叉＇→ Xhas the desired 
property from Step 2 of the above proof outline. Let us write the irreducible components of葛kas 



195

Zf and Zふbothof which are isomorphic to Pl, As咋(Pl)is trivial we see that Yo pulled back 
to each Zf is a disjoint union of isomorphisms. Thus, from the above proof outline we see that X 

has an admissible open cover疋＝ sp;:,1(ZDU sp;:,1（Zりoverwhich飢 becomesa disjoint union of 
isomorphisms. In particular,判 → X'lis a topological covering (compare with Footnote 10). 

6. GEOMETRIC COVERINGS OF RIGID SPACES AND FUTURE WORK 

Theorem 5.11 indicates an intimate connection between geometric coverings of schemes and de 

Jong coverings of rigid K-spaces. But, to say that a fibered subcategory e of the stack Et→RigK 
is the'correct'analogue of the stack of geometric coverings, one would like: 

• for all connected X, (ex, F,司isa tame infinite Galois category 

• L芯 ＝ e,
• if z→Y is in腐 andY→X is in e X then z→ Y→Xisinex, 
• for any X there exists a suitable'pro-etale like site'X7 such that ex= Loc(X7). 

The fibered category UCov゚cof de Jong covering spaces satisfies only this first property. Most 
seriously is the fact that being a de Jong covering space is not admissible open local on the target. 

Example 6.1 ([3, §2.1]). If K is of equal characteristic p > 0, then there exists an example of a 
morphism Y→X which is not a de Jong covering space, but which is so admissibly locally on X. 
In short, Xis the annulus Aw―',w from Example 2.5 covered by the two annuli 

u-= {x E Awー 1m: |wl:(lxl:(1} and u+={xEAw—1,w : 1,:;; lxl,:;;|ァ|―1}, 

intersecting along the unit circle 

u+ n u-= C = { X E Aw―1,w: lxl = 1}. 

The restriction of Y→X to U士 isa disjoint union of well-chosen Artin-Schreier coverings Yt 
(n E Z) which are split over C, and Un yn-and Un yn+ are identified suitably over C. 

Given the definition of geometric coverings, it's natural to guess that for ex one can take the 
category of etale and partially proper morphisms Y→X. Unfortunately such a definition is useless. 

Example 6.2. For any rigid K-space X the inclusion U→X of any overconvergent open subset 
is etale and partially proper. As a concrete example of this, the inclusion DK→恥 ofthe open 
unit disk into the closed unit disk is etale and partially proper. 

Ultimately the reason for such examples is that valuative rigid K-spaces have large universal 
separated quotients [X] in stark contrast to locally topologically Noetherian schemes. Specifically 
the notion of partially proper is only concerned with liftings specializations in the Riemann-Zariski-
esque spaces sepi1(sepx(x)), and completely ignores specializations that happen in [X]. Thus, it 
intuitively makes sense that to fix this one should add a sort of'valuative criterion for [X]'. 

Definition 6.3 ([1, Definition 5.2.2]). A morphism of rigid K-spaces Y→X is called a geometric 
covering if it is etale, partially proper, and satisfies the following valuative criterion: for all smooth 
and separated rigid £-curves C, where Lis a non-archimedean extension of K, and all morphisms 
C →XL, any embedding i: [O, 1]→[C] and lift of [O, 1)→[Ye] along [Jc] can uniquely be extended 
to a lift of iいWedenote by Cov x the category of geometric coverings of X. 

The role of arcs in this definition is perhaps not too surprising considering their large role in 
the proof of Theorem 3.7. This analogy can be made even stronger by studying an alternative 
characterization of geometric coverings in terms of the ability to'uniquely lift geometric arcs'(see 
[1] for details). 

11For the reason to introduce the curves C see [l, Remark 5.4.10] 
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The main results of [1] can be combined to show that the fibered category Cov satisfies the first 

three desirable conditions listed above. It is then a question of considerable interest as to whether 

the final desirable condition has an affirmative answer for Cov x. 

Question 6.4. Does there exist a'pro-etale like topology'X7 on X such that Covx = Loe（ふ）？ 

One reasonable guess for such a topology is the pro-etale topology defined in [21]. But, let us 

define the fibered subcategory Covet of Etx as Let UF血x.Then, we have the following. 

Theorem 6.5 ([3, Theorem 4.4.1]). For any X there is a natural equivalence of categories between 

Loc(Xproet) and Cov伐

We suspect examples like Example 6.1 may be adapted to show that Cov閃isstrictly smaller 

than Covx in many cases, and thus Theorem 6.5 indicates that the pro-etale topology from [21] is 

not sufficient. In fact, I suspect a more likely option is that one may take for X7 a modification of 

the v-topology on the diamond X◇ as in [22]. 

REFERENCES 

[1] Piotr Achinger, Marcin Lara, and Alex Youcis. Geometric arcs and fundamental groups of rigid spaces. arXiv 
preprint arXiv:2105:05184, 2021. 

[2] Piotr Achinger, Marcin Lara, and Alex Youcis. Specialization for the pro-etale fundamental group. arXiv preprint 
arXiv:/2107.06761, 2021. 

[3] Piotr Achinger, Marcin Lara, and Alex Youcis. Variants of the de Jong fundamental group. arXiv preprint 
arXiv:2203.11750, 2022 

[4] Yves Andre. Period mappings and differential equations. From C to Cv, volume 12 of MSJ Memoirs. Mathe-
matical Society of Japan, Tokyo, 2003. Tohoku-Hokkaido lectures in arithmetic geometry, With appendices by 
F. Kato and N. Tsuzuki. 

[5] Matthew Baker and Robert Rumely. Potential theory and dynamics on the Berkovich projective line, volume 159 
of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2010. 

[ 6] Vladimir G. Berkovich. Spectral theory and analytic geometry over non-A rchimedean fields, volume 33 of Math-
ematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1990. 

[7] Bhargav Bhatt and Peter Scholze. The pro-etale topology for schemes. Asterisque, (369):99-201, 2015. 

[8] Aise Johan de Jong. Etale fundamental groups of non-Archimedean analytic spaces. Compos枕ioMath., 97(1-
2):89-118, 1995. Special issue in honour of Frans Oort. 

[9] Michel Demazure and Michael Artin. Schemas en groupes (SGA3). Springer Berlin, Heidelberg, New York, 1970. 

[10] Renee Elkik. Solutions d'equations a coefficients dans un anneau henselien. Ann. Sci.版oleNorm. Sup. (4), 
6:553-603 (1974), 1973. 

[11] Daniel Ferrand. Conducteur, descente et pincement. Bull. Soc. Math. France, 131(4):553-585, 2003. 
[12] Kazuhiro Fujiwara and Fumiharu Kato. Foundations of rigid geometry. I. EMS Monographs in Mathematics. 

European Mathematical Society (EMS), Ziir.ich, 2018. 

[13] Hans Grauert and Reinhold Remmert. Uber die Methode der diskret bewerteten Ringe in der nicht-
archimedischen Analysis. Invent. Math., 2:87-133, 1966. 

[14] Alexander Grothendieck, editor. Revetements etales et groupe fondamental. Lecture Notes in Mathematics, Vol. 
224. Springer-Verlag, Berlin-New York, 1971. Seminaire de Geometrie Algebrique du Bois Marie 1960-1961 (SGA 
1), Dirige par Alexandre Grothendieck. Augmente de deux exposes de M. Raynaud. 

[15] Robin Hartshorne. Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-
Heidelberg, 1977. 

[16] R. Huber. Continuous valuations. Math. Z., 212(3):455-477, 1993. 

[17] Roland Huber. Etale cohomology of rigid analytic varieties and adic spaces. Aspects of Mathematics, E30. Friedr. 
Vieweg & Sohn, Braunschweig, 1996. 

[18] Marcin Lara. Homotopy exact sequence for the pro-etale fundamental group I. arXiv preprint arXiv:1910.14015, 
2019. 

[19] Chris A. M. Peters and Joseph H. M. Steenbrink. M皿edHodge structures, volume 52 of Ergebnisse der Mathematik 
und ihrer Grenzgebiete. 3. Folge. A Series of Modem Surveys in Mathematics {Results in Mathematics and Related 
Areas. 3rd Series. A Series of Modem Surveys in Mathematics}. Springer-Verlag, Berlin, 2008 

[20] Peter Scholze. Perfectoid spaces. Publications mathematiques de l'IIIES, 116(1):245-313, 2012. 



197

[21] Peter Scholze. p-adic Hodge theory for rigid-analytic varieties. Forum Math. Pi, l:el, 77, 2013. 

[22] Peter Scholze and Jared Weinstein. Berkeley Lectures on P-adic Geometry:(AMS-207), volume 389. Princeton 

University Press, 2020. 

[23] Joseph H. Silverman. Advanced topics in the arithmetic of elliptic curves, volume 151 of Graduate Texts in 

Mathematics. Springer-Verlag, New York, 1994. 

[24] The Stacks Project Authors. Stacks Project. http:// stacks.math. columbia. edu, 2021. 

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES, THE UNIVERSITY OF TOKYO, 3-8-1 KOMABA, MEGURO-KU, 

TOKYO, 153-8914, JAPAN 
Email address: ayoucis如 s.u-tokyo. ac. jp 


