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1 Introduction 

The analogy between low dimensional topology and number theory has played an impor
tant role for 200 years. In modern days, the analogy between knots and prime numbers 
was initially pointed out by B. Mazur in [Maz64] and has been systematically developed 
by M. Kapranov, A. Reznikov, M. Morishita, M. Kim [Kap95, Rez97, Rez00, Mor02, 
Mor 12, Kim20], and others. Here is a basic part of their dictionary; 

Low dimensional topology Number theory 
oriented, connected, closed number field k 

3-manifold M (the ring of integers Spec Ok) 
knot K: 8 1 c...+ M prime ideal p : Spec lF p c...+ Spec Ok 
link L : LJ51 c...+ M family of primes 5 = {Pi, ··•,Ps} 

(branched/unbranched) cover h: N -t M (ramified/unramified) extension F / k 
fundamental group 1r1 (M) etale fundamental group 1rft(Spec Ok) 

1r1(M - L) 1rft(Spec Ok - 5) 
theory of branched coverings Hilbert ramification theory 

1-cycle group Z1(M) ideal group h 
I-boundary group B1(M) principal ideal group Pk 

8: C2(M) -t Z1(M); s ,-+ 8s () : kx -th; a,-+ (a) 
H1(M) = Z1(M)/B1(M) ideal class group Cl ( k) = h / Pk 

assumption: #H1(M) < oo (M:(QHS3) fact: #Cl(k) < oo 
Hurewicz isomorphism Artin reciprocity law 

1r1(M)ab ~ Gal(Mab/M) ~ H1(M) 1rft(SpecOk)ab ~ Gal(k~f,/k) ~ Cl(k) 
Alexander-Fox theory I wasawa theory 

Z-cover of 8° - K cyclotomic Zp-extension of (Q 
Mahler measure of lwasawa invariants of 

the Alexander polynomial the I wasawa polynomial 

Let p be a prime number. The author has been involved in p-adic refinements of the 
Alexander-Fox theory, say, lwasawa theory of Zp-covers, and its connection with the study 
of profinite rigidity ( cf. [Uekl 7, Uek16, Uek20, Uek18b, Uek21, Uek22, Uek18a], see also 
[HMM06, KM08, KM13, DR22]). 

In this survey article, we briefly overview three new progress in Iwasawa theory of 
knots and links due to the authors [TU22a, UY22, TU22b], and attach several questions. 
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2 Twisted I wasawa invariants of knots [TU22a] 

In the number theory side, Iwasawa theory of representations is studied by Greenberg 
[Gre89] and others. Here we study Iwasawa theory of knot group representations. 

Let K be a knot in 5 3 with 7rK = 1r1(53 - K) and let Xn --t X = 5 3 - K denote 
the 'lL/n'lL-cover for each n E 'lL>o- Let p be a prime number and let m E 'IL with pf m. 
Let p : 7rK --t GLN(Op) be a representation over a finite extension Op of the p-adic 
integers '!LP and let l:,.p(t) denote the twisted Alexander polynomial of p. Then, the p-adic 
Weierstrass preparation theorem assures that there exist unique \ µ, v E 'IL satisfying 
Nrl:,.p(T) ~ pµ(A+p(lower terms)) in 'lLp[[T]]. Then a standard argument oflwasawa theory 
and a generalization of Fox-Weber's formula (cf.[Tan18, Uek22]) yields the following. 

Theorem 2.1. Let (K,p, m, p) and A,µ, v E 'IL be as above. Then for any n » 0, 
IH1(Xmpn,P)torl = p>--n+µpn+v holds. 

We remark that µ = 0 is often a big theorem or a leading conjecture in number theory. 
In the knot theory side, the author pointed out that µ may be interpreted as Bowen's 
p-adic entropy of the Alexander module. 

In addition, A is an analogue of the genus of a Riemann surface in view of the analogy 
between the Riemann-Hurwitz formula and Kida's formula. Thus it may be a natural 
question to ask if A is related to the genus of a knot. 

The following is a translation of Friedl-Vidussi's deep results [FV11, FV13, FV15] into 
twisted Iwasawa invariants. 

Theorem 2.2. (1) For each (K,p,p), there exists some m such that Aj[Op : '!LP] = 
degl:,.P(t). Hence for each K, there exists some (p,p,m) such that A coincides with the 
genus of K. 

(2) For each (p, K, p), µ 's and A's determine whether l:,.P(t) is manic in Op[t] and 
whether K is fibered. 

Examples 2.3. (1) The A's of the lifts pt01 : 7rK --t SL2('1L[l+'f°3]) of the holonomy 
representation of the figure eight knot K = 41 ; pt01 has l:,.P+,1 (1 + T) = T2 + 6T + 6 and 
hence A2/2 = A3/2 = 2, Ap = 0 (p =/- 2, 3), while p;;-01 has l:,.p_,1 (1 + T) = T2 - 2T + 2 and 
hence A2/2 = 2, Ap = 0 (p =/- 2). Since each lift corresponds to a spin structure, we may 
say that Ap°s distinguish the spin structures of K = 41 . 

(2) For any SLrrepresentations of the twist knots J(2, 2k) (k E 'IL), we have µ = 0. 
We may expect that if k =/- 0, ±1, then there exists some p of J(2, 2k) withµ> 0. 

Question 2.4. Find a representation p of a non-fibered knot group withµ> 0. 

Friedl-Vidussi asserts that a knot K is non-fibered if and only if there exists a repre
sentation p: 7rK --t GLN(lFp) with t:,.75(t) = 0. It seems that if we find such p and take a 
generic lift, then we obtain such p with µ > 0. 

Question 2.5. Study what A's and µ's of (lifts of) the holonomy representations of 
hyperbolic knots know (cf.[DFJ12]). 
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3 Weber's class number problem for knots [UY22] 

Weber's class number problem for number fields has been of great importance with quite 
little solved for 200 years. It is conjectured that the class number of cyclotomic 'lL/pn'lL
extension of Q is always 1, but proved only for (p, n) = (2,:::; 6), (3,:::; 3), (5,:::; 2), (2: 7, 1). 
Note that the branch locus of Q( (pn) /Q is (p). In the knot theory side, we may choose 
the extension degree p and the branch locus K independently, so we may consider several 
analogues of Weber's class number problem. One answer is established by Livingston; 

Theorem 3.1 (Livingston [Liv02, Theorem 1.2]). Let K be a knot in S 3 . Then, the 
equality IH1(Xpn)torl = 1 holds for every prime number p and positive integer n if and 
only if every non-trivial factor of the Alexander polynomial !lK(t) is them-th cyclotomic 
polynomial with m being divisible by at least three distinct prime numbers. 

The fourth author Yoshizaki [Yos20] recently gave a new approach to Weber's problem 
with use of continued fraction expansion and pointed out that the sequence of the class 
numbers in the cyclotomic '1Lrextension of Q converges in the ring of 2-adic integers '1L2 • 

His result extends to any 'lLp-extension of any global field. In the knot theory side, we 
have the following. 

Theorem 3.2. Let K be a knot in S 3 and let Xn -t X = S 3 - K denote the 'lL/n'lL
cover for each n E 'lL>o• Then, the sizes IH1 (Xpn )tori of the torsion subgroups of H1 (Xpn) 
converges in 'lLP. 

This assertion extends to any 'lLp-cover over a compact 3-manifold X, namely, a com
patible system {Xpn -+ X}n of 'lL/pn'lL-covers. 

Another analogue of Weber's class number problem may be the following. 

Question 3.3. For each p and K, study the p-adic limit of (IH1(Xpn)torl)n- Find a 
condition of a prime number p and a knot K for which limn-+oo IH1 (Xpn) I = 1 holds. 

Now let ij be an algebraic closer of Q, let CCp denote the p-adic completion of an 
algebraic closure of (Qp, and fixed an embedding ij Y CCP. Then the p-adic limit in 
a 'lLp-cover of a knot is given by the roots of unity that are close to the roots of the 
Alexander polynomial /lK(t) in ij C CCP. Recall that for each n E 'lL>o, the n-th cyclic 
resultant of O =/= f(t) E 'lL[t] is defined by the determinant of the Sylvester matrix, or 
equivalently, by Res(tn -1, f(t)) = ITcn=l f((), where ( runs through n-th roots of unity. 
If f(t) = ao IT;(t-a;), then Res(tn- 1, f (t)) = ao IT(a?-1) holds. The following theorem 
is purely algebraic. 

Theorem 3.4. Let O =/= f (t) E 'lL[t]. Then, 
(1) the p-power-th cyclic resultants Res(tPn - 1, f(t)) converge in 'lLP. 
(2) Let f(t) = a0 IJ;(t - a;) in Q[t] with pf f(l). For each i, let(; E ij and~ denote 

the unique p-prime-th root of unity with la; - (;Ip< 1 and lao - ~IP< 1. Then 

lim Res(tPn -1,f(t)) = ~Il((; -1) 
n-+oo 

i 

holds in 'lLp. If Plf(l), then the limit equals to 0. 
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The assertion (1) is proved by using the Artin reciprocity law of global class field 
theory with modulus (cf.[Was97, Appendix §3, Theorem l(i)]). Since Fox-Weber's for
mula [Web79] and Livingston's theorem [Liv02, Corollary 3.2] asserts that IH1 (Xpn )tori= 
Res(tPn -1, llK(t)), our theorem together with Apostol's calculation [Apo70] of resultants 
of cyclotomic polynomials yields the following. 

Examples 3.5. Let (a, b) be a coprime pair of integers with pf b and write a = pma' 
with m, a' E Z, pf a'. If K is the torus knot Ta,b, then we have llK = (1- t)(l -tab)/(1-
ta)(l - tb) and limn--+oo IH1(Xpn)torl = bP=-i in Zp. 

Examples 3.6. If K = J(2, -2) is the figure-eight knot, then we have llK(t) = -t2+3t-1 
and 

1: 11 ~31 !2 I ~41 J27-2 , 
where J2 - 2 E Z7 is properly chosen. 

If K = J(2, 2m) (m E Z) is the twist knot with p I m, then by llK(t) = mt2 + (1 -
2m)t + m, we obtain that limn--+oo IH1(Xpn)torl = 1 in Zp. 

Question 3. 7. Study p-adic refinements of [Liv02, Theorem 1.1] and [Kim09] on slice 
and concordance. 

Question 3.8. Study the p--adic limits of other invariants in Zp-covers. 

Modified versions of Theorem 3.4 hold if we replace tPn - 1 by (tPn - 1)/gcd(tPn -
1, f(t)). Since we have variants of Fox-Weber's formula for Z-covers of links and for 
twisted homologies in Z-covers, Theorem 3.4 applies to several other similar situations. 

Theorem 3.4 on the p-adic limit of cyclic resultants is applicable to algebraic curves 
(function fields) as well. It may be interesting to compare covers of knots and extensions 
of function fields in various situations. 

Recently Ozaki [Oza22] generalized Yoshizaki's p--adic convergence theorem to a general 
extension with a finitely generated pro-p Galois group by developing an analytic method 
to reveal the relationship amongst several arithmetic invariants; the class numbers, the 
ratios of p-adic regulators, the square roots of discriminants, and the order of algebraic 
Krgroups of the ring of integers. Studing their analogues in the knot theory side would 
give a new cliff to extend the dictionary of arithmetic topology. 

4 Iwasawa invariants of the z/-covers of links [TU22b] 

Let p be a prime number and let d E Z>o• Cuoco-Monsky [CM81] gave variants of the 
Iwasawa class number formula for Z/-extensions of number fields and pointed out the 
existence of the term 0(1). An analogue of [CM81, Theorem I] is the following. 

Theorem 4.1. Let L = U;K; be a d-component link in a rational homology 3-sphere 
M such that [K;] = 0 in H 1(M) holds for all i, and let Xn -+ X = M - L denote 
the standard Z/nzd_cover. Suppose that the Alexander polynomial llL(t1 , ... , td) of L 
satisfies llL((, (, · · · , () =/= 0 for every p-power-th roots ( of unity. Then, there exist some 
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>., µ E Z::,0 such that for any n » 0, the size of p-torsion subgroup of H 1 (Xpn, Z) is given 
by 

IH1 (Xpn )(p) I = pP(d-l)n(µpn+.Xn+O(l)) l 

where 0(1) is the Bachmann-Landau notation. 
If Mis an integral homology 3-sphere, then the zPd-cover is Greenberg, namely, 0(1) is 

a constant. In addition, Jorn» 0, the exponentp(d-l)n(µpn+>.n+0(l)) is a polynomial 
with rational coefficients in n and pn having degree ~ l in n and total degree ~ d. 

The condition 6.£((, (, · · · , ()-=/- 0 may be replaced by a weaker one, namely, 6-L(t) has 
no special prime factor in the sense of Cuoco-Monsky [CM81]. This condition is related 
to the Betti numbers. By [Sak95, Theorem 7.5], we obtain the following. 

Theorem 4.2. 6.L(t1, ... , td) has no special prime factors if and only if the maximal 
degree D(L) of polynomials giving the first Betti numbers satisfies D(L) ~ d - 2. 

The assertion of Theorem 4.1 extends to any zi-cover (i.e., a compatible system of 
Z/pnZ-covers) of a compact 3-manifold X such that the p-torsion subgroups H 1(Xn)(p) 
form a surjective system. 

Sakuma [Sak79, Sak81], Mayberry-Murasugi [MM82], and Porti [Por04] gave variants 
of Fox-Weber's formula for links. By virtue of them, together with a multivariable ana
logue of p-adic Weierstrass preparation theorem [Mon81, CM81], we may calculate the 
invariantsµ,>. and sometimes 0(1) as well, from the Alexander polynomial. 

Examples 4.3. (1) If Lis the Solomon's link 4i, then we have IH1 (Xn)(2) I = 2(□-2n+□·n+2)·2n 
and IH1(Xn)(p)I = 1 if p-=/- 2. 

(2) If L is the twisted Whitehead link W 2k-l for k = mp1 E Z with p f m, then 
6-L(X, Y) = kXY and µ = l. 

(3) If L = 6i and p = 3, then >. = 2. If L = 6t then >. = l for any p. If L = 8~, then 
>. = 2 for any p. 

Thus, we have a link with 0(1) -=/- 0, a link with anyµ E Z::,0 , and a link with>.-=/- 0. 

Question 4.4. Find an example of zi-cover such that 0(1) -=/- constant (i.e., "non
Greenberg"). The existence of such zi-extension is conjectured by Cuoco-Monsky [CM81]. 

Question 4.5. Study zi' -covers of d-component links with d' < d. We may find some 
subtle phenomenon in this case, as pointed out in [MM82, Section 14]. 

Question 4.6. Study an analogue of [CM81, Theorem II], or something between [CM81, 
Theorem I] and [ CMS 1, Theorem II]. 

5 Further problems 

Question 5.1. Find any connection between Iwasawa invariants >., µ and surgeries via 
Dijkgraaf-Witten invariants (cf. [Che17]). 

Question 5.2. Find any feedback to number theory. 
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