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1 Introduction 

Recently, Jones [4] introduced a method of constructing links from elements of Thompson's 
group F. Moreover, he showed an analogue of unoriented Alexander's theorem. Namely, 
for every unoriented link L there exists an element g of F such that the link ,C(g) is 
equivalent to L, where .C(g) is the link obtained from g by Jones' construction. He 
also proved a slightly weaker version of the theorem for the oriented case, and Aiello [1] 
completely showed that. In particular, in this case we are able to obtain an element of 

-----+ 
oriented Thompson's group F which is a subgroup of F for any oriented link. 

-----+ 
The purposes of this manuscript are to give a natural sequence of elements of F 

realizing non-trivial links, and to explain that these links have some geometric properties 
such as alternating and fibered. Also, we compute their crossing numbers, genera, and 
braid indices, and we show that it is very easy to obtain minimal genus flat Seifert surfaces 
of these links from Jones' construction. This is joint work with Yuya Kodama (Tokyo 
Metropolitan University). 

2 Definitions and constructions 

2.1 R. Thompson's group F 

There are several equivalent definitions of Thompson's group F. In this manuscript, we 
introduce that using binary trees. 

Thompson's group F is defined by the following set: 

F ·= { all pairs of rooted, planar, binary trees (T+, T_) }/~ 
· with the same number of leaves ' 

where~ is the equivalence relation defined below. A pair (T+, T_) is called a tree diagram, 
and described as 

or 



26

The equivalence relation ~ is defined as follows: two tree diagrams are equivalent in F 
if and only if there is a finite sequence of additions and reductions of pairs of opposing 
carets 0, which deform one to the other (see Figure 1). The tree diagram representing 
g E F without pairs of opposing carets is called the reduced tree diagram of g. It is known 
that for any element of F, its reduced tree diagram is unique. 

Figure 1: Equivalent tree diagrams in F. 

For two tree diagrams (TH, T1_) and (T2+, T2_), their product (TH, T1_) · (T2+, T2_) 

is defined as follows: by additions or reductions of pairs of opposing carets, we are able to 
deform these tree diagrams to equivalent tree diagrams (T{+, T{_) and (T~+' TL), respec
tively, so that the binary trees T{_ and T~+ are the same. Then we define the product 
(TH, T1_) · (T2+, T2_) as the tree diagram (T{+, TL) (see Figure 2). It is well known that 
Thompson's group Fis finitely presented. 

Figure 2: The product of two tree diagrams. 

Theorem 2.1 ([5, Theorem 3.1], [2, Section 3]). Thompson's group F admits the following 
presentations: 

F~(xo,x1,x2,---lx,;1xjxi=XJ+1 (i<j)) 
~ / I [ -1 -1 ] [ -1 -2 2]) = \ Xo, X1 XoX1 , Xo X1Xo , XoX1 , Xo X1Xo , 

where [x, y] is the commutator of x and y, and x 0 , x1 and x2 correspond to the tree diagrams 
in Figure 3. 

2.2 Jones' construction 

In this subsection, we explain the procedure of Jones' construction with an example. We 
refer to [1, 4]. Let (T+, T_) be a reduced tree diagram with n + l leaves, and place its 
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Figure 3: The generators of F. 

leaves at ( ½, 0) , rn, 0) , ... , ( 2n;-1, 0) . Note that the tree T + is in the upper half-plane, 
and T_ in the lower half-plane. 
Step 1: Construct the planar graph r(T+, T_). 

The planar graph r(T+, T_), which is called the f-graph of (T+, T_), is defined as 
follows: the vertices of r(T+, T_) are put at (0, 0), (1, 0), ... , (n, 0). An edge of r(T+, T_) 
passes transversely just once an edge/ of T+ (i.e. an edge from top right to bottom left) 
or an edge"'- of T_ (i.e. an edge from top left to bottom right) and does not do the other 
edges of (T+, T_ ). Figure 4 is an example of this step. 

Figure 4: The graph r(T+,T-) obtained from (T+,T-). 

Step 2: Construct the medial graph M(f(T+, T_)). 
The medial graph is defined for any connected planar graph. Let G be a connected 

planar graph. Its medial graph M(G) is defined as follows: we put a vertex of M(G) on 
every edge of G, and join two vertices by an edge if the corresponding edges of G are 
adjacent on a face of G. Figure 5 is an example of this step. 

Figure 5: The medial graph M(f(T+, T_)) of f(T+, T_). 
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Step 3: Construct the link diagram £(T+, T_). 
In general, since the medial graph is 4-valent graph, we are able to obtain a link diagram 

£(T+, T_) from turning all vertices of M(f(T+, T_)) into crossings. For vertices in the 
upper half-plane, we use the crossing X and for the other vertices, we use X. Figure 6 
is an example of this step. 

Figure 6: The link diagram £(T+, T_) obtained from M(f(T+, T_)). 

---+ 
2.3 Jones' subgroup F 

---+ 
Jones defined the subgroup F of Thompson's group F to be 

---+ 
F := {(T+,T-) E FI r(T+,T-) is 2-colorable}. 

---+ 
This group F is called Jones' subgroup or oriented Thompson's group. Now, 2-
colorableness can be defined for any graph. A graph G is 2-colorable if there exists 
a map f: V(G)(:={allverticesinG})----+ {+,-} such that whenever two vertices 
v1,v2 E V(G) are joined by an edge, f(v 1 ) -/- f(v2 ) holds. A map f is called a color
ing or labeling. By convention, we assume that the vertex (0, 0) of r(T+, T_) has the color 
+. Figure 7 is an example of a 2-colorabel f-graph. 

Figure 7: A 2-colorable graph. 

---+ 
For any (T+, T_) E F, the link £,(T+, T_) is naturally oriented as follows: we apply the 

checkerboard coloring to the diagram £,(T+, T_), that is, we paint regions of £,(T+, T_) 
with black or white so that adjacent regions are different colors. By convention, the color 
of the unbounded region is white. Then we obtain the checkerboard surface S(T+, T_) 
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in ~ 3 from black regions and its boundary is £(T+, T_). Since the graph r(T+, T_) is 
2-colorable, the surface S(T+, T_) is orientable, and so is its boundary £(T+, T_). We 
assume that the regions with color + are positively oriented (see Figure 8). 

Figure 8: The checkerboard surface S(T+, T_) obtained from a element (T+, T_) of Fis orientable. Then 
its boundary link .C(T+,T-) is also oriented. 

-----, 
Theorem 2.2 ([3, Lemma 4.5, 4.6 and 4.7]). Jones' subgroup F satisfies the following: 

-----, 
• F is generated by X := { xixi+l I i 2: O} and X' := { x~+1xi+lx~2 I i 2: 0, n 2'. 1}, 

-----, 
• F is generated by x 0 x 1 , x1x2 and x 2x 3 , and 

-----, 
• F ~ \Yo, Yi, Y2, • • • I Yi 1YJYi = YJ+2 ( i < j)), 

where Yi := xixi+1 for any i 2'. 0 (see Figure 9). 

Yo Y1 
----> 

Figure 9: The generators of F. 

3 Examples and Main result 

3.1 Examples 

Y2 

-----, 
By direct calculation, we see that all links obtained from elements of F with ::::; 5 leaves 
are trivial. Thus, we have to consider elements with 2: 6 leaves to obtain non-trivial links. 
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( 1) Hopf link 
-----, 

The element y5y11 E F has 6 leaves. By Jones' construction, we obtain the Hopf link 
(see Figure 10). 

.............,. CID 
Figure 10: y5y11 creates the Hopf link. 

( 2) Figure-eight knot 
We obtain a r-graph realizing a non-trivial link above. Thus, we consider adding 

vertices and edges to outside of this graph while preserving 2-colorable to construct other 
non-trivial links. In Figure 11, we add one vertex and two edges to the r-graph r(y5y11). 

Then this graph represents y5y12 E F and yields the figure-eight knot. 

Figure 11: y5y12 creates the figure-eight knot. 

(3) Whitehead link 
We also consider adding one vertex and two edges to r(y5y12 ) as in Figure 12. Then 

we obtain y~y12 E F and this yields the Whitehead link. 

Continuing adding vertices and edges as above, we obtain a sequence of 2-colorable -----, 
r-graphs (i.e. elements of F). In general, the following holds: 
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Figure 12: yJy12 creates the Whitehead link. 

Lemma 3.1. For any n 2". 1, 

n 

n 

Their r -graphs are of the forms 

n 

and 

n 

Table 1 lists names and properties of links obtained from the sequence (for k = 
0, 1, ... , 5), where for a link L, let µ(L) be its number of components, c(L) its cross
ing number, g(L) its genus, and b(L) its braid index. 
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k II 9k 

0 Y5Y1 1 L2a1 2 2 YES YES 

1 Y5Y1 2 41 1 4 YES YES 

2 3 -2 
YoY1 L5a1 2 5 YES YES 

3 YJY1 3 L5a4 3 6 YES YES 

4 Y6Y1 3 L1a1 2 7 YES YES 

5 Y6Y1 4 81s 1 8 YES YES 

Table 1: Examples for k = 0, 1, ... , 5 

3.2 Main result 
---+ 

Theorem 3.2. Let {gkh>o be the subset of F given by 

(k = 2m) 

(k = 2m + 1)' 

and Lk the link obtained from gk by Jones' construction. Then 

(k = 6m + 1, 6m + 5) 

(k = 2m) 

(k = 6m + 3) 

• c(L0 ) = 2, and c(Lk) = k + 3 for any k 2". 1, 

• for any k 2". 0, Lk is alternating and fibered, 

• b(Lo) = 2, and b(Lk) = 3 for any k 2". 1, 

(k = 2m) 

( k = 6m + 1, 6m + 3) , and 

(k = 6m + 5) 

0 2 

1 3 

1 3 

1 3 

2 3 

3 3 

• we can easily obtain a minimal genus fiat Seifert surface of Lk from S(gk)-

Finally, we explain a way to obtain a minimal genus flat Seifert surface. We consider 
the case k = 2. Reducing some crossings in the link diagram Lk, its checkerboard surface, 
denoted by S0 (gk), is also orientable (see Figure 13). Namely, this surface is also a Seifert 
surface of Lk. In fact the surface S 0 (gk) is flat and has minimal genus. 
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Figure 13: Reducing some crossings and the orientable checkerboard surface So(gk) (k = 2). 
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