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On the kernel of the surgery map 

Yuta Nozaki 

Graduate School of Advanced Science and Engineering, Hiroshima University 

Abstract 

A Jacobi diagram gives a clasper in the trivial homology cylinder, and then one obtains an­
other homology cylinder by surgery along the clasper. This procedure defines a homomorphism 
Sn: A~ ➔ YnIC9 ,1/Yn+1 between abelian groups. Sato, Suzuki, and the author [15, 16] constructed 
a homomorphism on YnIC9 ,1/Yn+ 1, and gave an application to the study of the surgery map Sn- The 
purpose of this article is to review the results in [16] and introduce related works on the surgery map. 

1 Introduction 

Let I;9 ,1 denote a connected oriented compact surface with one boundary component. 
For an oriented compact 3-manifold M and an orientation-preserving homeomorphism 
m: 8(I;9 ,1 x [-1,1])--+ 8M, we call (M,m) a cobordism. Here, (M,m) and (M',m') 
are identified if there exists a homeomorphism f: M --+ M' satisfying f o m = m'. In 
this article, we focus on cobordisms with a certain homological condition. A cobordism 
( M, m) is called a homology cylinder over I;9 ,1 if the restrictions m± of m to I;9 ,1 x { ±1} 
induce the same isomorphism (m±)•: H.(I;9 ,1 ; Z) --+ H.(M; Z). The set IC = IC9 ,1 

of homology cylinders over I;9 ,1 has a monoid structure defined by stacking M o M' = 
(M Um+=m'_ M', m_ Um~)- Our motivations for studying the monoid IC is as follows: 

(1) Let I= I 9 ,1 denote the Torelli subgroup of the mapping class group of the surface 
I;9,1 , and then IC is regarded as an extension of I to 3-dimensional topology. In 
fact, for M = I;9 ,1 x [-1, 1] and the map m defined by m+ = f EI and m_ = idEg,u 
the cobordism (M, m) is a homology cylinder. This construction gives a monoid 
homomorphism c: I--+ IC, which is known to be injective. 

(2) Also, IC is naturally defined in terms of clasper surgery (see Section 3.1). Indeed, the 
set of homology cylinders obtained from the trivial one c(idE9,,) by clasper surgery 
coincides with IC. 

(3) The monoid IC is closely related to the homology cobordism group TH = IH9 ,1 

of homology cylinders (see Section 3.3). In particular, IH0,1 is isomorphic to the 
homology cobordism group 8l of oriented integral homology 3-spheres, and thus 
IH9,1 is regarded as an extension of et 

The topics (1)-(3) are respectively related to 2-, 3- and 4-dimensional topology, and IC 
attracts considerable attention in low-dimensional topology. 
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In general, studying IC9 ,1 is hard since it is not commutative when g ;:::: 1. Following 
Goussarov [5] and Habiro [6], we define a certain equivalence relation ~yn among homology 
cylinders. We then consider a submonoid 

and a descending series IC = Y1IC :) ½IC :) • • • of submonoids. It is known that, for 
n;:::: 1, the quotient YnIC/Yn+l by ~Yn+i is a finitely generated abelian group. Since the 
group YnIC/Yn+l measures the gap between consecutive terms YnIC and Yn+lIC, the 
study of these groups can be the first step toward understanding the monoid IC. 

Let us introduce a Jacobi diagram, which enables us to describe YnIC/Yn+l combi­
natorially. A Jacobi diagram is a uni-trivalent graph such that each univalent vertex is 
colored by an element of the set { 1 +, ... , g+, l - , ... , g-} and each trivalent vertex has a 
cyclic order. Throughout this article, cyclic orders are assumed to be counter-clockwise 
and graphs are drawn by dashed lines. Also, we use the following notation: 

a2 a3 an-1 
: : : , O(a1,a2,.,,,an)= 

a1 - - _I_ - _I_ - - - - - - - .1 _ - - an 

Let A~ denote the Z-module generated by connected Jacobi diagrams with n trivalent 
vertices subject to the AS, IHX, and self-loop relations. The module A~ naturally decom­
poses into the direct sum ffiz>o A~ 1 with respect to the first Betti number. For instance, 
~ = A2,0 EB A2,1 EB A2,2 is generat~d by T(a1, a2, a3, a4)'s, O(b1, b2)'s, and the 0-graph. 

I 

-----LJ-----

Figure 1: Clasper in ~2,1 x [-1, 1]. 

Let J EA~ be a Jacobi diagram. We obtain a graph clasper G of degree n in ~ 9 ,1 x 
[-1, 1] from J, which defines an equivalence class !in(J) E YnIC/Yn+l by surgery along 
G. See Figure 1 for the case J = T(l-, 1+,2-). Roughly speaking, this procedure gives 
a homomorphism Sn : A~ -+ YnIC / Yn+ 1, which is called the surgery map and known to 
be surjective for n ;:::: 2. Therefore, the key to understanding the group YnIC/Yn+l is 
to investigate the kernel Ker Sn. In fact, for n = l, 2, Massuyeau and Meilhan [11, 12] 
described Kernn and determined the group structures of YnIC/Yn+l· In [15], Sato, Suzuki, 
and the author determined YnIC/Yn+l when n = 3. Here note that it is shown in [1] that 
!in® idQ: A~® Q-+ (YnIC/Yn+l) ® Q is an isomorphism. This means that YnIC/Yn+l 
is completely described by A~ if we ignore torsion elements. Therefore, the essential 
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contribution of our paper [15] is investigations of the torsion subgroup tor A~ and of the 
restriction map SnltorA;;. 

Let us review a related topic by Conant, Schneiderman, and Teichner [4]. They were 
interested in the homology cobordism group I1i and determined the surjective map 

A~,O Sn,O YnIC / Yn+ 1 4 YnIH / Yn+ 1 

when n cj. 1 mod 4, where Sn,o is the restriction of Sn and q is the quotient map. We 
obtain information about Kersn,o via Ker(q osn,0 ). However, one has to solve at least 
two problems (Problems 3.2 and 3.4) for going in this direction. On the other hand, the 
study of Ker Sn,l is important as the next step after Ker Sn,O· 

Problem 1.1. Determine the module structure of the kernel Kernn,l C A~,1 . 

In [16], Sato, Suzuki, and the author made progress in Problem 1. 1. We explain 
our results in Section 2 and review previous researches about claspers and the group 
YnIC/Yn+l in Section 3. Finally, Section 4 is devoted to introducing a refinement of the 
surgery map and giving a sketch of the proof for the main theorem. Here, one of the keys 
to attacking Problem 1.1 is a homomorphism 

Zn+i: YnICg,if Yn+i ---+ ~+1 ®z Qfll., 

introduced in [15]. This homomorphism is defined via the LMO functor constructed by 
Cheptea, Habiro, and Massuyeau [1]. These have been greatly developed in quantum 
topology (see Ohtsuki [17]). 

2 Main results 

Let us consider Problem 1.1. First note that tor A~ 1 = {O} ([15, Proposition 5.2]) implies 
Ker Sn,l = {O} if n is even. In [16], they gave an upper bound of Ker Sn,l when n = 2m-1 
(m 2". 2). More precisely, let (8?~'~1) denote the submodule of A2m-l generated by 
symmetric 2-loop Jacobi diagrams 

( 
a;, b;, c; E { 1 ±, ... , g±}, ) 
a; = ap-i+l, b; = bq-i+l, C; = Cr-i+l, 

p, q, r 2". 1, p + q + r + 2 = 2m - 1 
(2.1) 

and let 1r: Y2m-1IC/Y2m---+ ("Y:im-1IC/Y2m)/s((8?~'~1)) be the quotient map. Then, they 
proved the next theorem. 

Theorem 2.1 ([16]). The kernel Ker( 7r o s 2m-1,1) is generated by elements 

and is free Z/2Z-module of rank ½((2gr - (2g)rm/2l). 
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Remark 2.2. The inclusion Ker s 2m-l,l C Ker(7r o s 2m-1,1) holds if m = 2, 3. On the 
other hand, the author recently found an element in Ker(7ro,s7,1) but not in Kers7,1. This 
observation implies that there is a non-trivial relation among graph claspers with different 
first Betti numbers. 

The key of the proof is a homomorphism Z2m,1: Y2m-1IC/½m---+ A2m,l Qsl Q_/Z intro­
duced in [15], which gives an upper bound of Ker(7r os2m-1,1). Also, we use a homomor­
phism bu: A~,l---+ A~+2,l+l defined by blowing up a trivalent vertex of a Jacobi diagram, 
and obtain the following result. 

Theorem 2.3 ([16]). Let n ?: 3. Then, bu: A~_2,1 ---+ A~,2 / (8~1 ) is an isomorphism. 

Here, (8~1) C A~ 2 denotes the submodule of A2m-l generated by 2-loop Jacobi dia­
grams as in (2.1) whi,ch is not necessarily symmetric. On the other hand, to give a lower 
bound, we introduce a refinements: zJ::,---+ YnIC/Yn+ 2 of the surgery map and deduce 
relations among claspers (see Section 4). 

As a consequence of these results, for n = 4, we can determine the group structure of 
YnIC/Yn+l and solve the Goussarov-Habiro conjecture about the Yn+l-equivalence and 
finite-type invariants of degree n ([16, Corollary 4.9]). This conjecture is known to be 
true for n = 1, 2, 3 ([12], [15]), and the case n ?: 5 is a challenging problem. Moreover, 
Sato, Suzuki and the author revealed the structures of interesting groups which were not 
being much studied. 

Theorem 2.4 ([16]). The abelian groups ½IC9,i/Ys and ½I1i9,i/Ys are torsion-free. 

It follows from Theorem 2.4 that, in the commutative diagram 

consisting of two short exact sequences, the four groups on the left and in the middle are 
free abelian. On the other hand, the two groups on the right have torsion elements ([15]). 
In particular, the two exact sequences do not split. 

3 Claspers and related groups 

We briefly review terminologies appearing in Sections 1 and 2. Also, we summarize facts 
about the group YnIC/Yn+l· 

3.1 Graph claspers and the Y-filtration 

Clasper surgery1 was independently initiated by Goussarov [5] and Habiro [6], which 
is indispensable for the study of the monoid IC. First, a graph clasper is an embedded 
surface in a 3-manifold such that a decomposition into disks, bands, and annuli is specified 

1 Recently, Watanabe [19, 20] introduced clasper surgery for 4-rnanifolds and gave significant applications. 
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as in Figure 2. In general, a clasper has "boxes" which are used for zip constructions (see 
[6], [17] for details). Let G be a graph clasper. We write Le for the framed link obtained 
from G by replacing each disk with the Borromean rings as in Figure 2. Let Mc denote 
the 3-manifold obtained by Dehn surgery along L0 . 

Figure 2: A graph clasper, its brief notation, and the corresponding framed link. 

The number of disks in G is called the degree of G. Two homology cylinders M, M' E 
IC are said to be Yn-equivalent 2 , M "'Yn M', if there exist graph claspers G1 , ... , Gr of 
degree n such that Mc,u---uGr = M'. Define YnIC ={ME IC IM "'Yn c(id)}. Then we 
have a descending series IC= Y1IC ::i Y;IC ::i · · · of submonoids, which is called the Y­
filtration on IC. We see the group YnIC/Yn+l in Section 1. More generally, the quotients 
YnIC/Yn+k (1 :::; k:::; n) are also finitely generated abelian groups and are related to each 
other via the exact sequence 

3.2 The structures of A~,l and YnIC/Yn+l for small n 

Let H = H1 (°2:,9 ,1 ; Z) and H(2J = H 0 Z/2Z. When n = 1, we have A1 ~ (A3 H) EB H~l" 
It follows from [11] that 

0-+ (T(a, b, a)+ T(b, a, b) I a-=/- b)-+ A~ ~ IC/Y;-+ Z/2Z-+ 0 

is exact and IC/½~ (A3 H) EB (A2 H(2J) EB H(2) EB Z/2Z. 
When n = 2, we have A2 = A2 0 EB A2 1 EB A2 2 and the direct summands are expressed 

as in Table 1. Concerning A2,0 , a~ exact' seque~ce 

4 2 

0 -+ j\ H ➔ S2 (/\ H) -+ ~.o -+ 0 

is given in [12, Section 3.1], where i is defined by 

i(a I\ b I\ c I\ d) = (a I\ b)(c I\ d) - (a I\ c)(b I\ d) + (a I\ d)(b I\ c) 

and its image vanishes in A2 0 by the IHX relation. In particular, A2 is torsion-free and 
the surgery map s2 : A2-+ Y~IC/Y:i is an isomorphism. 

Next, in the case n = 3, we have A3 = A3,0 EB A3,1 . In Table 1, A3,0 ~ D~ = 

Ker(H 0 L~ [-,-] L~), where L~ denotes the degree n part of the free quasi-Lie algebra3 

2Similarly, tree claspers define the Cn+l -equivalence among links. 
3 The L~ is isomorphic, over <QI, to the degree n part of the free Lie algebra Ln. Also, D~ ®<Qi is isomorphic to ~9 ,,(n) 

appearing in Morita, Saka.sai, and Suzuki [14, 13] 
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n"-_l 0 1 2 3 

1 (/\ H) EB H~) 0 0 0 

2 S 2 (('/ H)/ I\ 4 H S 2 (H) z 0 
3 D' A\'o 0 0 3 

4 D' (H®4)'Ds A2,1 z 4 

Table 1: The structures of the modules A;,1• 

generated by H. Here, by Levine [9, Corollary 2.3], one has tor A3 0 ~ (H ®L2) ®Z/2Z ~ 

H[2) E9 /\2 Hc2) and its free part is computed by Witt's formula' [10, Theorem 5.11] as 

follows: rank2 A3,0 = ~(4g5 - 5g3 + g). Furthermore, ½IC/½ is given in the next 
theorem. 

Theorem 3.1 ([15]). 0--+ (/\3 H E9 /\2 H) ®Z/2'/I, -4 A3 ~½IC/½--+ 0 is exact, where 
j is the homomorphism defined by 

j(a I\ b I\ c) = T(a, b, c, b, a)+ T(b, c, a, c, b) + T(c, a, b, a, c) = ~ 1,0 (T(a, b, c)), (3.1) 

j(a I\ b) = O(a, b, a)+ O(b, a, b). (3.2) 

Finally, the case n = 4 is also listed in Table 1, where A4 1 is expressed as the coin­
variant quotient with respect to the action of the dihedral group '.D8 of order 8 ([15, 
Proposition 5.1]). In particular, A4 is torsion-free and .s4 : A4 --+ Y4IC/Y5 is an isomor­
phism. On the other hand, to go further, we need to attack the following problem. 

Problem 3.2. Does ~n,o(T(a1, a2, ... , an+2)) E Ker 52n+1,o hold? 

Here, roughly speaking, the map ~n,l: A~,l --+ A2n+l,2l is defined to be the sum of the 
"doubles" with respect to univalent vertices of a Jacobi diagram (see [15, Definition 3.4] 
or [4, Definition 40] for the precise definition). The case n = l in Theorem 3.1 is nothing 
but (3.1) and the case n = 2 is also true4, but the cases n ~ 3 remain open. Here, our 
invariant vanishes for these elements. 

Theorem 3.3 ([15]). Let l ~ 0. Then, 

(1) Ker(z2n+2 0 ,5: tor A2n+l,2l --+ A2n+2 ® Q_/Z) :::) Im ~n,l, 

(2) Ker(z2n+2 0 5: tor A2n+l,O --+ A2n+2 ® Q_/Z) = Im ~n,O· 

In the proof, Sato, Suzuki, and the author used deep results on the homology cobor­
dism group and higher-order Sato-Levine invariants due to Conant, Schneiderman, and 
Teichner [2, 3, 4]. 

3.3 The homology cobordism group of homology cylinders 

Two homology cylinders (M1 , m 1), (M2, m2) E IC are said to be homology cobordant, 
M1 ~H M2, if there exists a smooth 4-manifold W such that 8W = M1 Umi=m2 (-M2) 
and the induced maps H*(Mj; Z) --+ H*(W; Z) (j = 1, 2) are isomorphisms. The quo­
tient I1l = IC/~ H is called the homology cobordism group of homology cylinders, and 

4The structure of the abelian group Y3:Z:C/Y6 is determined via the case n = 2. 
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the canonical projection q: IC _,, TH induces a homomorphism Gr q: YnIC / Yn+l _,, 
YnI1i / Yn+l · 

Here, it is natural to expect that the group YnI1i/Yn+l can be also described in terms 
of Jacobi diagrams. By Levine [8, Theorem 2], the composite map Gr q o Sn: A~ >I ---+ 
YnI1i/Yn+l is trivial, and thus, for n ;:::: 2, Gr q O Sn,O: A~,o ---+ YnI1i/Yn+l is ;urjec­
tive. Furthermore, it gives an isomorphism over (Ql ([8, Theorem 3]). When n = 1, 
Grq: IC/½ _,, I1i/½ is an isomorphism ([7, Proposition 7.5], [4, p. 326]), and hence 
Gr qos1,0 is neither surjective nor injective (see Section 3.2). On the other hand, Gr qos2m,o 
is an isomorphism ([2, Corollary 1.2]) and, for n = 2m + 1, the kernel is non-trivial: 

6.m,o(T(a1, a2, ... , am+2)) E Ker(Gr q O S2m+1,o: A~m+l,O---+ °Yim+1I1i/½m+2). 

Moreover, Ker(Grqos4m-i,o) = lm6.2m-l,O holds ([4, Corollary 51]), while this equality is 
still open for n = 4m + 1 ([4, Section 4.1]). For instance, when m = 1, we need to attack 
the following problem. 

Problem 3.4 ([18, Conjecture 2.25]). For a -=I- b, does T(a, b, a, b, a, b, a)+T(b, a, b, a, b, a, b) tJ. 
Ker(q o s 5 ) hold? 

This element can be regarded as "½6-2,o(T(a, b, a, b))", and its non-triviality is a subtle 
problem. On the other hand, the non-triviality in Y5IC/Yt, is detected by our homomor­
phism 26,1 : 

z6,1 o s 5 (T(a, b, a, b, a, b, a)+ T(b, a, b, a, b, a, b)) = O(a, b, a, a, b, a)+ O(b, a, b, b, a, b) -=I- 0. 

4 The refined surgery map and its applications 

We need complicated clasper calculus to prove Theorem 2.1. To do it systematically, it is 
better to develop clasper calculus not in YnIC/Yn+l but YnIC/Yn+ 2 • We here introduce 
a module zJ;:, and a homomorphism Sn which commutes the diagram 

See [16, Section 3] for the precise definitions. 

4.1 Refinements of the surgery map, AS relation, and STU relation 

Let Z.:J;/, denote the Z-module generated by connected Jacobi diagrams with n trivalent 
vertices. Here, each univalent vertex is colored by an element of {1 ±, ... , g±} with addi­
tional information, for example, 41, 4J. The map Sn is defined in much the same way as 
the ordinary surgery map Sn, while we take into account additional information of labels. 
The subscript of a label indicates the relative position of the corresponding annulus, and 
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the overline stands for inserting a positive half-twist "EB" to the corresponding band. For 
instance, 

One can check that a homomorphism Sn: ZJ;:, --+ YnIC /Yn+2 is well-defined, which is 
called the refined surgery map. Furthermore, the AS and STU relations in YnIC/Yn+I are 
lifted to YnIC/Yn+2 . The following corollary is a consequence of the refined AS and STU 
relations. 

Corollary 4.1 ([16]). Form~ 2, 

O(aI, ... , am-I, am, am-I, ... , aI) + O(am, ... , a2, aI, a2, ... , am) 
m-I 

holds, where 

+ L 0(ai-I, ... , aI, ... , ai-I; ai; ai+I, ... , am, ... , ai+I) E Ker E2m-I 

i=2 

,),,,. ... ---- .... y✓ 

/ b1 bq \ 
l I ••• I I 
\ .. _J. ____ .J._7, 

' ; />, .... ___ ,...,,."", 

4.2 Sketch of the proof of Theorem 2.1 

First, it follows from Corollary 4.1 that 

Next, to show that the images of the rest of the elements under 1r os2m-I are non-trivial, 
we use our homomorphism 22m,1: 

A2m-I,I ~ 1r(Y2m-IIC/½m) 22
m,l A2m,I 0 Q/Z 

l Z2m,2 

(A2m,2/ (8~;.)) 0 Q/Z : A2m-2,I 0 Q/Z. 

Since the two modules on the right are 1-loop parts whose structures are well studied 
([15, Proposition 5.2]), it allows us to detect the non-triviality of the elements. Finally, 
we enumerate certain necklaces corresponding to Jacobi diagrams and compute the rank 
of the module Ker(1r os2m-I)-
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4.3 Applications to YnIC/Yn+k and YnI1l/Yn+k (Theorem 2.4) 

When 1 :::; k:::; n, not only YnIC/Yn+l but also YnIC/Yn+k is a finitely generated abelian 
group. Also, for 1 :::; k' < k, we have an exact sequence 

We first consider the easiest case ½IC/~- Since the above exact sequence splits when 
n = k = 2 and k' = 1 (see Section 3.2), we know the structure of the group ½IC/~- We 
next observe ½IC/Y5. In this case, the exact sequence does not split and the relation 
between Y4IC/Ys and Y3IC/Y4 is complicated and interesting. To see it, let focus on 
J = O(a, b, a) E tor A3,1 and a lift J = O(a1 , b, a2 ) E z:/2,1 of J. It follows from the 

exactness that there is x E A4 satisfying s4 (x) r-+ 2s3 (]) E ½IC/Y5 . It is difficult to 
compute x explicitly, though the refined relations enable us to do it. In fact, we have 

x = -20(a, a, a, b) - O(a, a, b, b) - 0(a;; b). 

By such a technique, one can show that ½IC/Ys is free abelian (Theorem 2.4). Here, its 
rank is computed as follows. By Table 1, we have rank A3 = i ( 4g5 - 5g3 + g) + (2;:) and 

1 1 (2g + 1) rank A~= 15 (32g6 + 20g3 - 2g2 - 5g) + 2(4g4 + 4g3 + 3g2 + g) + 2 + 1, 

and hence 

1 
rankz(½IC/Ys) = 30 (g + 1)(2g + 1) (32g4 - 24g3 + 50g2 - 23g + 30). 

Also, in a commutative diagram 

0 0 

l l 

0 0 

consisting of four exact sequences, since ~IC/Y5 and Y3IC/Y5 are free abelian, we con­
clude that tor(YsIC/¼) = tor(~IC/¼) = tor(½IC/Yt;). Therefore, any element of 
tor(½IC/~) i- {0} does not lift to tor(Y3IC/¼) i- {0}. In particular, the two columns 
do not split. 
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One can define abelian groups YnI1i/Yn+k for homology cobordism group I1i as well. 
However, the exactness in the middle of 

( 4.1) 

is not necessarily satisfied. When n = 2, there is a homomorphism 

fitting into the commutative diagram 

Since the top row is exact, so is the bottom row. Moreover, since the bottom row splits, 
the group Y2I1i/½, is determined. 

When n = 3, the sequence (4.1) is exact and ~I1i/Ys is determined as well (The­
orem 2.4). Note that the exact sequence does not split, and thus one needs to know 
the group ~IC/Yr, well. In general, it is a problem whether the inclusion Ker Sn,o c 
Ker(Gr q o Sn,o) is an equality (see Problems 3.2 and 3.4). 

5 Future perspectives 

Recall that the main theme of this article is Problem 1.1, and Theorem 2.1 is a partial 
answer for it. The next step is to give a complete answer for Problem 1.1 without the 
projection 1r. More generally, it is important to determine the structures of the groups 
YnIC/Yn+k (1 :::; k :::; n). We are concretely interested in when YnIC/Yn+k has torsion 
elements and whether there exist elements of order greater than 2. It might be possible to 
solve the Goussarov-Habiro conjecture via these investigations. Furthermore, the groups 
YnI1i/Yn+k are also important. Combining Sato, Suzuki, and the author [15, 16] with 
Conant, Schneiderman, and Teichner [2, 3, 4], we might obtain much fruitful results on 
YnI1i / Yn+k • 
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