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An investigation into the asymptotics of the meromorphic 
3D-index. 

Andrew Kricker 

Nanyang Technological University, Singapore 

1 Introduction 

This article will describe some of the investigations that led to the work "On the asymp
totics of the meromorphic 3D-index", which is joint work with Craig Hodgson and Rafael 
Siejakowski [l]. 

There are two types of "3D-index" in this story: the q-series 3D-index, and the mero
morphic 3D-index. Our focus was on the meromorphic 3D-index, and in particular its 
asymptotic properties. 

The original version of the 3D-index is the q-series 3D-index introduced by Dimofte, 
Gaiotto, and Gukov [3, 4]. They discovered this construction in the theoretical physics 
context of supersymmetric gauge field theories. The mathematical definition was clarified 
and studied first by Garoufalidis [5]. The construction is defined on ( a suitable) ideal 
triangulation 'T of a connected oriented 3-manifold M with boundary k torus components, 
and yields a function which associates a Laurent series in the formal parameter q112 to 
each class in H 1 of the boundary. 

This construction converges precisely for triangulations which are I-efficient [7]. So 
even though it is invariant under 2-3 Pachner moves in the case the invariant is defined on 
both sides of the move, it does not follow that it is a topological invariant. [7] nevertheless 
found a way to use the known properties to get a genuine topological invariant in the case 
the manifold is complete hyperbolic, using special facts true in this case. It is worth 
noting that the theoretical physics theory this invariant arises from predicts that it is in 
fact a genuine topological invariant. 

[6] interpreted the invariant as a certain sum over normal surfaces with specified bound
ary. 

The second version of 3D-index is the meromorphic 3D-index. This was introduced 
in 2019 by Garoufalidis and Kashaev [8]. Their construction associates a complex mero
morphic function of 2k variables to a triangulation with k torus boundary components. 

From here on we'll specialize the discussion to the case k = l. The choice of the 2 
variables eµ and e>. of the meromorphic function in this case correspond to a choice of 
simple closed curvesµ and>. representing a basis of H1 . We'll discuss some details of this 
later in this article. 
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The meromorphic 3D-index improves on the q-series 3D-index in that Garoufalidis and 
Kashaev define it on every triangulation, and argue the resulting meromorphic function is 
invariant under all Pachner moves [8]. Because they show the meromorphic 3D-index is in 
fact a topological invariant, we can write it as a function of M, not just the triangulation 
T 

IM,q( eµ, e>.). 

Garoufalidis and Kashaev show that the two versions of 3D-index are related for trian
gulations which admit a strict angle structure [8]. A strict angle structure is an assignment 
of strictly positive reals to each quad type of the triangulation (a quad type is a pair of 
opposite edges in a tetrahedron) such that the 3 assignments to each tetrahedra add up to 
1r, and such that the assignments around each edge of the triangulation add up to 21r. We 
denote a strict angle structure a: Q(T) ➔ ~>D· For example a triangulation admitting a 
positively oriented solution of Thurston's gluing equations admits a strict angle structure. 
For triangulations admitting a strict angle structure there is a proof in [8] that 

IM,q(eµ, e>.) = L e:e1fr(a[>.] - b[µ]) (q2). 

a,bEZ 

Thus we can think of the q-series 3D-index as a kind of "Fourier transform" of the mero
morphic 3D-index. 

This formula establishes that the q-series 3D-index is in fact a topological invariant of 
3-manifolds admitting an ideal triangulation carrying a strict angle structure. Any choice 
of triangulation carrying a strict angle structure should yield the same q-series 3D-index. 

2 What is the meaning of the variables eµ and e>- of the mero-
morphic function IM,q(eµ, e>,)? 

The meromorphic 3D-index was defined in [8] by means of a "state-integral". The states 
being integrated over are an assignment of a complex number of modulus 1 to each edge 
of the triangulation. This GK state-integral expression depends on the ideal triangulation 
T and also a strict angle structure a on it. The space of strict angle structures on T is a 
convex subset of ~n+l where n is the number of tetrahedra in the triangulation. 

But it turns out that the GK state-integral only depends on the space of strict angle 
structures through two linear functions on the space: the peripheral angle holonomies [8]. 
Let's briefly define these quantities. 

Let a be a strict angle structure on T and let ry be an oriented simple closed curve on 
the triangulation of the boundary torus induced from the ideal triangulation T. Assume 
ry is in normal position with repsect to that triangulation. The angle holonomy of ry with 
respect to a is the signed sum of the angles associated by a to vertices of triangles cut-off 
by 1- If ry goes around a vertex in counter-clockwise fashion the angle contributes with 
a plus sign. If it goes around the vertex in clockwise fashion then it contributes with a 
minus sign. It turns out this quantity only depends on the choice of simple closed curve 
up to isotopy. 

Letµ and.>. denote two such simple closed curves whose corresponding homology classes 
give a basis for the first homology of the boundary. Garoufalidis and Kashaev show that 
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their state-integral factors through the corresponding peripheral angle holonomies Aµ and 
A>.. The variables eµ and e>. are determined from these by the expressions 

Eµ = (-qt1Jrr, E,>. = (-qt>J2,r_ 

Thus the meromorphic function IM,q(eµ, e>.) is defined by the commutative diagram: 

GK state integral 
{Strict angle structures on T} ---------------+ (C 

Peripheral angle 
holonomies (Aµ, A>.) l 

Strictly speaking: the peripheral angle holonomies are real quantities. The GK state 
integral defines the germ of an analytic function on a real hyperplane in (C2 , and the 
meromorphic function is defined by analytic continuation from that [8]. 

3 Our study: The case of 1-cusped hyperbolic manifolds. 

Our investigation [1] considered the case when the ideal triangulation is equipped with a 
positively oriented solution z: Q(T) -+ (C to Thurston's gluing and completeness equa
tions. This solution equips M with a unique complete hyperbolic structure. 

In this case the principal argument of the solution z gives a strict angle structure on 
T with vanishing peripheral angle holonomy: Aµ = A>. = 0. 

The GK state integral evaluated with respect to this special angle structure computes 
the value of the meromorphic function at the canonical point (1, 1). 

Our focus was the asymptotic behaviour of this value as the quantum parameter q 
approached 1-. So we set q = e-" and studied 

/Me-1/K(l, 1), as K,-+ oo. 

4 Numerical experiments and our resulting hypotheses. 

Our collaboration began by independently preparing several different computer programs 
to investigate the behaviour of this value IM,e-1/K(l, 1) in the direction 11,-+ oo. Results 
of the different computational approaches we tried were verified against each other. 

As we performed experiments we developed hypotheses about what form the leading 
asymptotics took. The picture we developed through this process was that the leading 
asymptotics of IM,e-1/K(l, 1) should consist of a sum over certain boundary-parabolic 
representations p: 1r1(M) -+ PSL(2, q, where the terms of the sum depended in a explicit 
way on topological and geometric information assoociated to the representations. 
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Figure 1: The case of the manifold M = S3 \41 , which is the complement of the figure-of-8 knot. The red 
dots show our numerical computation of IMc'i•(l, 1) for 1,, = 3,3.1,3.2, ... ,39.9,40. The curve shown 

fit to these points is 2~ ~cos (2.0301,, +:if). 

4.1 The case M = S3\41 • 

The first manifold we studied was M = S3 \41 , the figure-of-8 knot complement, which 
has a classic 2 ideal tetrahedra triangulation. The results of the computation are shown 
in Figure l. We found that the data points are tightly fit by the following function: 

2vf27r ( 7r) -¢127 ,/K, cos 2.030 K, + 4 . 

This led to our first experimental discovery: the frequency of the cos factor is approx
imately the hyperbolic volume of M: 

VolIHI (M) :::::: 2.030. 

4.2 The case M = S3\52 • 

The next manifold we studied was the complement of the knot 52 , which has a 3 ideal 
tetrahedron triangulation. The results of this experiment are shown in Figure 2. 

In this example as well, the volume appeared as the frequency of a trigonometric 
contribution. Indeed the computations are well fit by the following expression, where 
VolIHI(S3\52) denotes the hyperbolic volume of the space: 

0.534,-,, + 1.769,/K,cos ( ,-,,VolIHI(S3\52) + ~). 
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Figure 2: The case of the manifold M = S 3 \52 . The curve shown fit to the computations is 0.534,,; + 
l.769facos (i,;VolIHI(S3 \52 ) + %)-

But this expression contains a surprise, compared to the case of 41 . There also appeared 
to be a linear term! Namely, 0.5341'£. 

We eventually understood, as we discuss below, that this example has a linear term 
precisely because S 3\52 admits a real boundary-parabolic representation p: 1r1 (S3\52)--+ 
PSL(2,~) c PSL(2,C). On the other hand, S 3\41 does not, so there is no linear term 
in that case. 

The next example we studied that was important to the emerging picture was the comple
ment of the knot 72 , which can be triangulated with 4 ideal tetrahedra. The results of our 
numerical experiments are shown in Figure 3. This example revealed a more complicated 
picture than we expected from the first few computations. In this case the function we 
fit to the experimental data is a combination of several trigonometric summands as well 
as a linear term: 

Every example we studied to this point contained a trigonometric function with fre
quency given by the hyperbolic volume, but the example 7 2 presented us with a puzzle. 
What was this second frequency 2.214? 
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Figure 3: The case of the manifold M = S 3 \ 72. The curve shown fit to the computations is 0.157011; + 
0.8154facos (Volllll(S3 \72)11;+ !f) +0.8866facos (2.21411;+ !f). 

Considering these and other examples we computed, we were led to the following 
hypothesis. 

First Hypothesis. The leading asymptotics of the value IM,c'l~(l, 1) as t,,---+ oo are 
given by a sum of terms corresponding to boundary-parabolic PSL(2, C)-representations 
of the fundamental group of M. If the representation is not real, then the frequency of 
the corresponding contribution is given by the volume associated to that representation. 

Let us explain this hypothesis in terms of the example we just described, M = S 3\72 . 

The boundary-parabolic PSL(2, C)-representations of an ideally-triangulated 3-manifold 
can be computed, for example by using Ptolemy co-ordinates [10]. The results have been 
tabulated into an online database by Matthias Goerner [9]. If we inspect the entry in 
that database for the complement of the knot 72 , we learn that this manifold has exactly 
5 boundary parabolic PSL(2, q representations: 

1. The representation corresponding to the complete hyperbolic structure, Pgeom.. This 
representation has volume Vol(Pgeom.) = 3.3317. 

2. The complex conjugate of that representation: Pgeom .. This representation has volume 
Vol(Pgeom.) = -3.3317. 

3. An additional complex boundary-parabolic representation p1 with volume Vol(p1 ) = 
2.2140. 

4. The complex conjugate of that representation p1 with volume Vol(p1) = -2.2140. 



103

5. A real boundary-parabolic representation. By real is meant its image lies in the 
subgroup PSL(2, ~)-

The important observation is that the first frequency we see in the computed asymp
totics of the manifold M = S 3 \ 7 2 is, as expected, the hyperbolic volume of the manifold. 
But the second frequency we see, 2.214, is in fact the volume of the second complex 
boundary-paraboic PSL(2, CC)-representation. 

The picture we are led to is the following. The first representation on the list ( coming 
from the complete hyperbolic structure) should contribute a term of the general form 
C%ei(Vol(Pgeom.)+¾) for some real constant C. The complex conjugate of this representa
tion (the second representation on the list) should contribute the complex conjugate of 
this term. Then the sum of two terms accounts for the piece 

in Equation 1. 
Similarly, the other complex representation p1 ( the third representation on this list) 

should alo contribute such a term D%ei(Vol(pi)+¾) for some real constant D. And it's 
complex conjugate representation (the fourth representation on this list) should contribute 
the complex conjugate of that term. The sum of these two terms should account for the 
following term from Equation 1: 

0.8866%COS (2.214~+ ~D. 
Finally: the real boundary-parabolic representation (the fifth representation on the 

list) should contribute remaining the linear term: 

0.1570~. 

4.4 The case M =mOl 1. 

There was one final refinement we needed to make in this story to exactly pin down which 
boundary-parabolic PSL(2, CC) representations should be contributing to the asymptotics 
for our conjecture. This refinement can be detected by examining the example of the 
manifold mOll, which is not a knot complement. 

When we examine the database entry for this manifold [9] we learn that there are 7 
boundary-parabolic PSL(2, CC)-representations: 

Complex volume Type 
1. 2. 7818 - 0.4968i cc 
2. -2.7818 - 0.4968i cc Conjugate of 1. 
3. 0 + 0.6810i ~ 

4. 0 + 0.3127i ~ 
(2) 

5. 0.9427 + 0.4597i cc 
6. -0.9427 + 0.4597i cc Conjugate of 5. 
7. 0 + 0.7255i ~ 
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Figure 4: The case of the manifold M = mOll. The curve shown fit to the computations is l.1666t,; + 
0.9437facos (t,;VollH[(mOll) + ¾). 

The topological meaning of the division of this list into two groups is crucial and will be 
discussed shortly. 

The results of our computation of this example are presented in Figure 4. 
The important thing to note about this example is what does not appear. There is 

a complex conjugate pair of complex boundary-parabolic representations on the list (the 
ones with volume ±0.9427) which apparently do not contribute a term to the asymptotic 
behaviour. Indeed, there does not seem to be a trigonometric component with frequency 
0.9427. 

The explanation for this is that there ia an extra piece of topological information 
that can be derived from a boundary-parabolic representation p: 1r1 (M) -t PSL(2,C). 
Each such representation determines a co homology class <1>0 (p) E H 2 ( M, 8 M; lF 2). The 
cohomology class <1>0 (p) is precisely the obstruction to lifting the boundary-parabolic rep
resentation p to a boundary-unipotent representation p: 1r1 (M) -t SL(2, q. 

The two boxes we see in the table 2 show the partition of the set of boundary-parabolic 
representations according to this obstruction class. 

This example m0ll suggests that the asymptotics should have one contribution from 
each representation with a certain specified obstruction class. 

Second, refined, version of the hypothesis. The leading asymptotics of the value 
IM,e-1/K(l, 1) as K -too are given by a sum of terms corresponding to boundary-parabolic 
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PSL(2, (['.)-representations of the fundamental group of M which have the same obstruc
tion class to lifting to a boundary-unipotent SL(2, C-representation as the representation 
coming from the complete hyperbolic structure. 

5 Our conjecture 

Motivated by, and developed alongside these numerical investigations, we performed an 
asymptotic analysis of the Garoufalidis-Kashaev state integral to develop a precise con
jecture for the asymptotic behaviour of the meromorphic state-integral of a hyperbolic 
1-cusped manifold at this point (1, 1). The key analytic tools we exploited were stationary
phase techniques. We also needed various other special analytic tools, especially to study 
the contributions from the real representations which required a separate analysis. These 
tools included some new asymptotic expansions of quantum dilogarithms. The full story 
is detailed in our article [1]. 

To finish the present article, we'll introduce our asymptotic expansion conjecture. 
The starting point for the conjecture, as we discovered in our numerical investigations 

described earlier, is that the leading asymptotics should consist of a sum of contributions 
associated to the conjugacy classes of boundary-parabolic PSL(2, q representations sat
isfying the cohomological condition that their associated obstruction class is the same 
obstruction class as the representation coming from the geometric structure. 

Next we have to detail what the corresponding contributions should be. There should 
be two types of contributions: the contributions associated to representations which are 
not real, and the contribution from those that are. 

To outline the conjecture we introduce various notation: 

• Let pgeom: 1r1 (M)--+ PSL(2,C) denote the boundary-parabolic representation (de
fined up to conjugation only) associated to the complete hyperbolic structure of finite 
volume. 

• A representation p: 1r1 (M)--+ PSL(2, q will be called a real representation if it can 
be conjugated to lie in the subgroup PSL(2, IR) C PSL(2, q. Otherwise it will be 
called a complex representation. 

• Xgeom will denote the set of conjugacy classes of irreducible, boundary-parabolic 
representations p: 1r1 (M)--+ PSL(2,C) with the same obstruction class as pgeom_ 

• Xleom c xgeom denotes the subset consisting of real representations. 

Our conjecture has the following general form: 

Cc([p], ,,;) + o(l), as,,;--+ oo. (3) 

Here CIR([p], ,,;) denotes a contribution associated to a conjugacy class of real representa
tion [p], which we postulate to be a linear function of the parameter ,,;: 

(4) 
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where M denotes the 3-complex extrending M which is obtained when the vertices of the 
ideal triangulation are retained, and LMB (p) is a new invariant of (boundary-parabolic) 
PSL(2, JR.)-representations of 1r1 (M). This invariant can be formulated explicitly in terms 
of a certain multivariate contour integrals of Mellin-Barnes type [1]. This invariant is 
presented in more detail in the problems section of this conference's proceedings. 

The contributions coming from complex representations are denoted Cc([p], t£). If pis 
such a representation and p is its complex conjugate representation, then we conjecture 
the two contributions will pair up in the following way: 

(5) 

where GP > 0, np E Z, and Vol(p) E JR denotes the volume of the representation p. (See 
[10] for a discussion of this concept of volume associated to such a representation.) 

Of particular interest is the prefix GP. In [1] we prove it is exactly a simple normaliza
tion of the 1-loop invariant introduced by Garoufalidis and Dimofte [2]. 
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