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Abstract. Cyclic proof systems are extensions of the sequent-calculus style proof systems for logics 
with inductively defined predicates. In cyclic proof systems, inductive reasoning is realized as cyclic 
structures in proof trees. It has been already known that the cut-elimination property does not hold for 
the cyclic proof systems of some logics such as the first-order predicate logic and the separation logic. In 
this paper, we consider the cyclic proof systems with inductively defined propositions (that is, nullary 
predicates), and prove that the cut-elimination holds for the propositional logic, and it does not hold 
for the bunched logic. 

1 Introduction 

Cyclic proof systems [4] are extensions of the sequent-calculus style proof systems with inductively defined 
predicates and they allow cyclic structures in proof trees that represent the induction. The cyclic proof 

systems are proposed for many logics such as the first-order logic [4], the bunched logic [1], the separation 
logic [2], the linear logic [5], and the linear temporal logic [5]. The cyclic proof systems are considered to be 
suitable for (semi-)automatic inductive reasoning [3], since we do not have to fix the proposition to which 
the induction principle is applied a priori. 

However, it has been already known that the cut-elimination property does not hold for the cyclic proof 

systems of some logics such as the first-order predicate logic [7], the separation logic [6], and the bunched 
logic [8]. The cut-elimination property is expected in automatic reasoning since to find cut formulas requires 
some heuristics. 

In this paper, we consider the cyclic proof systems with inductively defined propositions (that is, nullary 
predicates), and prove that the cut-elimination holds for the ordinary propositional logic, and it does not 

hold for the bunched logic. 

The cyclic proof system CLKIDどropis the propositional restriction of the cyclic proof system CLKIDw 

in [4] for the first-order predicate logic. For the full system, Masuoka et al. showed that the cut-elimination 
fails. In this paper, we prove the cut-free completeness of CLKIDErop_ 

The bunched logic is logic to express quantitative properties of resources, and it contains both the multi-
plicative conjunction and the ordinary (classical) conjunction. The bunched logic was proposed for applica-

tions of prograrn verification. The assertion logic of the separation logic, which is an extension of Hoare logic 
for pointer programs, is a variant of the bunched logic. The cyclic proof system CLBI和 ofthe bunched logic 
with inductive predicates was proposed in [1]. In this paper, we prove that the cut-elimination does not hold 
for CLBI'!n・ This part has been published in [8], and we give a summary of the result in this paper. 

2 Cyclic Proof System CLKID~rop 

We will use a vector notation, like X, to mean a sequence X1,..., Xn of syntactical objects, and write IXI 
for the length of the sequence X. The set of finite subsets of a set Sis written as Pfin(S). For a natural 
nlllilber n, we write [n] to mean {O,..., n -l }. 
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2.1 Syntax of CLKID~rop 

Definition 1 (Languages). A language£ consists of a finite set PropSym of (non-inductive) propositional 

symbols and a finite set {Po,..., PN} of inductive propositional symbols. The metavariables Q and P are 
used for non-inductive and inductive propositional symbols, respectively. The metavariable R is used for 
either non-inductive or inductive propotional symbols. 

Definition 2 (Formulas). The formulas (denoted by r.p，ゅ，．．．） in£ are inductively defined by 

r.p::=Rlr.p(¥r.p I r.pVr.p I ・'P・ 

An atomic formula is a formula of the form R. The set of formulas and the set of atomic formulas are written 
as Fml and Atom, respectively. 

For a finite set X = {'Pi I i E [n]} of formul邸， I¥X and V X are abbreviations of r.p。(¥．．．(¥外-1and 
四 V ・・ •V 'Pn-1, respectively. 

Definition 3 (Inductive definitions). A production rule for P1 h邸 theform 

(P1, {Qi E PropSym Ii E [ml} U {Ph, Ii E [n]}). 

It is often written as 
Qo ・ ・ ・ Qm-l Ph。•.． phn-1

p 

A finite set of production rules is called an inductive definition set. 

In the following, let (Pj，叱，;)be the i-th production rule for Pj, and <'P be the inductive definition set 

{(PJ叱，，）｝i,j

Definition 4 (Sequents). A sequent of CLKIDw has the form I'ト△， whereI'and△ are finite sets 
of formulas. The left-hand side and the right-hand side of卜ina sequent are called the antecedent and the 
succedent of the sequent, respectively. Let S be a sequent. Then the antecedent and the succedent are denoted 

by L(S) and R(S), respectively. 

We write 互・•.，％m f--外...,如 insteadof｛'Pl,...，砂m}f--{</>1,...，如｝． Wealso write I', cp and I'1, I'2 
instead of I'U { cp} and I'i U I'2, respectively. 

A sequent I'f--△is called normal if I'U△c;: Atom. A strongly normal sequent is a normal sequent and 
its antecedent consists of non-inductive propositional symbols. 

2.2 Semantics 

Let 0, 1 and 2 be the empty set 0, a singleton set {0}, and {O, 1}, respectively. A valuation (denoted by v) 
is a function from PropSym to 2. The interpretation [ip]! and the approximating interpretation [R]!,n are 
defined as the least element in 2 that satisfies the following: 

[Q]! = [Q]!,n = v(Q), 

['Po /¥'P1]! = [ipo]! n [ip1]!, 

[ipo V ip1]! = [ipo]! U［1{)1]!, 

［マ］？ ＝1 ¥ [ip]!, 

[PJ]! = LJ[P心，m

[Pば，0= 0, 

[P心，k+l=U n [R]t,k 
, RE免，t

We often omit the superscript if> and write［cp]v-We write v F <p when［ふ＝ 1.

Definition 5 (Validity). A sequent S is valid if and only if v F V R(S) holds for any valuation v such 

that v F /¥L(S). 
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I'f-△ 
(Ax) where I'n△ # 0 

r卜△

r午△'
(Wk) where I'<;;; I''and△ Cぷ

I'f-△，'P I'，ゃ卜△

r卜△
(Cut) 

r,'Pi卜△

I',<po/¥<p1 f-△ 
(/¥L) i = 0, 1 

［卜△,<po I'f---△,'P1 

I'f---△平0̂'P1 
(AR) 

I', <po卜△ I','Pl卜△

I', <po V <p1 f-△ 
(VL) 

r卜△，やt

r卜△,<po V <p1 
(vR) i = 0, 1 

r卜△，炉

r，ゴP卜△
(,L) 

r，ゃ卜△

r卜△，ゴP
(~R) 

Fig. 1. Inference rules of CLKID四rop(except (UL) and (UR)) 

2.3 Cyclic Proof System CLKIDErop 

The cyclic proof system CLKIDErop is a sequent calculus style proof system for the classical propositional 
logic with inductive definitions. 

The right unfolding rule and the left unfolding rule for <P are defined as follows. 

Definition 6 (Right unfolding rule). Let {Qo,...,Qm-1,Ph0,...,Phn-i} be叱，i・ The right unfolding 
rule (UR)j,i is the following: 

r卜△，Qo... r卜△，Qm-1 I'ト△，Pho ・・・ I'ト△，phn-1

r卜△，PJ
(UR)j,i 

Definition 7 (Left unfolding rule). For each set｛叱，t｝。:Si:SK;of production rules of {Pj} in <P, the left 
unfolding rule (UL)j is the following: 

r，叱，0卜△... r，九，K3卜△

r,Pj卜△
(UL) 

We often omit the subscripts j, i in (UR)j,i and j in (UL)j when the indexes are not important or are 
obvious from context. 

The inference rules of CLKIDErop are the rules shown in Figure 1 and (UL) and (UR). 

Definition 8 (Derivation and pre-proof of CLKIDErop). Let S be a sequent of CLKIDErop. A deriva-
tion (denoted by D) of S is a finite derivation tree constructed by using the inference rules of CLKIDErop, 

and the sequent at the root is S. The sequent at a node w of Dis written D(w). A leaf node of Dis called a 
bud if it does not appear at the conclusion position of (Ax). An internal node C of Dis called a companion 
of a bud B if the sequent at C is the same as that of B. 

Let B be the set of buds in D and X be a subset of B. A pair (D, R) is called a pre-proof of S with open 

buds X when D is a derivation of S and R is a function that assigns each bud in B ¥ X to its companion. If 
X is the emptyset, (D, R) is called a pre-proof of S. 

A trace and the global trace condition in a pre-proof (D, R) with X is defined in a similar way to the 
trace defined in [4]. 

Definition 9 (Cyclic proof of CLKIDErop). Let (D, R) be a pre-proof of S with X. It is called a cyclic 

proof of S with open buds X if it satisfies the global trace condition. If X is the emptyset, (D, R) is called a 
cyclic proof of S. 
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Theorem 1 (Soundness of CLKIDErop). Let (D, R) be a cyclic proof of S. Then all sequents in D are 

valid. 

Proof. It is shown in a similar way to the soundness theorem of CLKIDw [4]. 

3 Cut-Elimination of Cyclic Proof for Classical Propositional Logic 

This section shows that CLKID£rop enjoys the cut-elimination property. 
By the soundness theorem of CLKID£rop, any sequent S of CLKID£rop that has a cyclic proof is valid. 

We show the following cut-free completeness to show the cut-elimination property for CLKIDどrop.

Theorem 2 (Cut-free completeness of CLKIDErop). Let S be a sequent of CLKI虎rap.If S is valid, 

then S has a cut-free cyclic proof. 

This theorem will be shown by the following three steps: 

Claim 1 A valid strongly normal sequent, namely sequents of the form Q f-げ戸， hasa cut-free non-cyclic 
proof (Proposition 1). 

→ → Claim 2 A valid normal sequent, namely sequents of the form Q，戸 f-Q', P', has a cut-free cyclic proof 

(Proposition 3). 
Claim 3 A valid sequent S has a cut-free cyclic proof (Theorem 2). 

First we show Claim 1. 

Definition 10 (Unfolding tree). An unfolding tree uTree(P) of an inductive proposition Pis inductively 

defined as follows. 

uTree(P1,0) = 0, 
uTree(P1,n+ 1) = { ~。.．． T!:.(P;,l) I叱,l= ｛Q。,．．.，Q,.PJ09.．． ,p1,｝,

p3 t E UTree(PJ.，n) for o < i < r }， 
uTree(P1) = Un2:o uTree(P1, n). 

For each TE uTree(P), we define Lvs(T) by the set of (non-inductive) propositions at the leaf nodes in 
T. 

From the definition it is immediately followed that uTree(P1, n)<;; uTree(P1,n+ 1) for any n and P1. 

Lemma 1. v F P1 if and only if there exists T E uTree(P1) such that v F /¥ Lvs(T). 

Proof. To show the only-if part, we show the claim that, for any n, [Pぷ＝ 1implies v F /¥ Lvs(T) for some 
TE  uTree(P1) by induction on n. The case of n = 0 is trivially shown by [.f'.』~ = 0. Assume that n > 0 
and [.f'.ぷ ＝1.Then there exists l and [R]~―1=1forallRE 叱，z. By the induction hypothesis, for each 

Pk E叱，l,there exists nk and Tk E uTree(Pk四） suchthat v F /¥ Lvs(Tk)-Let n b n be them邸 imumnumber 

of nぶs.Then n E uTree(Pk, n) holds for any k. Define T by 

T =  
Q1 ・・ • Qs T1 ・ ・ ・ Tr 

PJ 
(P1,l). 

Hence we have TE  uTree(P1, n + l)<;; uTree(P1). We also have v F Lvs(T) since Lvs(T) = {Q I Q E 
叱l}u u凸vs(Tk)-Therefore the only-if part is immediately obtained from the claim. 

For showing the if-part, we prove the claim that, for any n, k and T, if TE uTree(Pk, n) and v F Lvs(T), 
then v F Pk. This claim is shown by induction on n. The case of n = 0 is trivially shown by uTree(Pk, 0) = 0. 
Assume that n > 0, TE  uTree(Pk,n) and v F Lvs(T). Then there exist <Pk,l = {Q1,---,Qs,Pk,,・・・,Pkr} 
and T; E uTree(~柘， n -l) such that 

t= 
Q1 ・・ • Qs T1 ・ ・ ・ Tr 

pk 
(Pk,l). 
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For each i, by v F Lvs(T;) and the induction hypothesis, we have v F P,柘． Hence[/¥ Pk，小＝ 1holds by 
using v F Q for all Q E'Pk,l・ Therefore [Pk]v = LJ{[/¥'Pk，山 1こlこM叶＝ 1.The if-part is immediately 
obtained from the claim. 

Proposition 1. Any valid strongly normal sequent has a cut-free non-cyclic proof. 

→ 
Proof. Let S be a valid strongly normal sequent Q f-Q', Pj,,..., Pj•. Define the valuation v by v(Q) = 1 

if Q E Q, v(Q) = 0 otherwise. Then v仁VQ'or v p= P;, for some i since v p=/¥Q and S is valid. If 

vヒvが， thereexists Q’E Q'suchthat v巨Q’.So Q'E砂'bythedefinition of v. Thus we have a cut-free 
non-cyclic proof of S by using (Ax) and (Wk). Otherwise v p= Pj, for some i. Then, by Lemma 1, there 
exists TE uTree(Pj』suchthat v p= /¥ Lvs(T). Now we consider the following claim: if T'E uTree(Pk, n) and 
v p= /¥ Lvs(T'), th;nひf-Pk has a cut-free non-cyclic proof. It is enough to show this claim, since a cut-free 

non-cyclic proof of QトQ',Pj,,..., PJ• is constructed by applying (Wk) to the cut-free non-cyclic proof of 

ひf-PJ, obtained from the cl~im. 
The claim is shown by induction on n. The case of n = 0 is trivially shown. Suppose that n > 0, T'E 

uTree(Pk, n) and v p= /¥ Lvs(T'). Then there exist <Pk」=｛Q1,...,Q~,P,和•.．， Pkr} and T; E uTree(Pk,, n-1) 
such that 

T'= ~ 
pk 

(Pk,l)・

By v F f¥Lvs(T;) and the induction hypothesis, Q卜Pk,has a cut-free non-cyclic proof. We also have 

cut-free non~cyclic proof of Q f---Q;'for all 1 :S: i :S: s, since v. F Q:'-Therefore we have a cut-free non-cyclic 

proof of Q卜P炉

ひf---Q『...ひ←Q;1 乃f---P朽．．．り f---P柘

召f---Pk
(UR)k,l 

Next we show Claim 2. Before that, we need to discuss the finiteness of sequents that can appear in a 
cut-free cyclic proof for a given sequent, which is our key observation in this section. 

Definition 11 (Extended subformulas). The set of extended subformulas exSub(<p) of <pis inductively 

defined as follows: 

exSub(Q) = {Q}, 

exSub（,cp) =｛,cp} U exSub(cp), 

exSub(cp1ロcp2)=｛'Pl仁］“）2}U exSub(cp1) U exSub(“'2) （口 is/¥,V), 

exSub(P1,0) = {P1}, 

exSub(P戸＋ 1)={QI Q E LJ<I>1} U LJ{exSub(hn) I Pk E LJ<l>サ，

exSub(P1) = LJ exSub(P1,n). 
n20 

For a set X of formulas, exSub(X) is defined by LJ{ exSub(<p) I <p E X}. 

Lemma 2. The following claims hold. 

{1) If <p is a subformula ofゆ， then<p E exSub（ゆ） andexSub(<p) C::: exSub（心），
(2) If PE LJ町 thenexSub(P) C::: exSub(Pj), 
{3) Pj E exSub(cp) implies exSub(Pj) C::: exSub（ゃ）．
(4) exSub（<p) is finite for any formula cp. 

Proof. (1) is shown by induction on 1/J. To show (2), assume PE  LJ叱． ThenexSub(P,n)C::: exSub(Pj,n+l) C::: 
exSub(Pj) for any n. Hence we have exSub(P) C::: exSub(Pj)-(3) is shown by induction onゃusing(2). We 
only consider the case of Pj. This case is immediately obtained from the claim: Pk E exSub(Pu, n) implies 
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exSub(Pk)こexSub(Pu)for any n, k, u. This claim is shown by induction on n. The case of n = 0 is easily 
shown since Pk = Pu. Assume n > 0 and Pk E exSub(Pu, n). Then Pk E exSub(Ps, n -l)こexSub(Ps)for 
some Ps E LJ虹 Hence,by (2), we have exSub(Pk)<;; exSub(Ps)<;; exSub(Pu)-For (4), the finiteness of 
exSub(<p) is shown by induction on <p since the number of proposition symbols is finite. 

Let X be a set of formulas. We define Seq(X) by {I'ト△ ru△<;;exSub(X)}. Seq(I'ト△） isalso 
defined by Seq (I'U△).By the above lemma, Seq(X) is a finite set if X is finite. Hence Seq(S) is finite for 
any sequent S since both the antecedent and the succedent of S are finite. 

The finiteness of cut-free cyclic proofs in CLKIDErop is stated as follows. 

Proposition 2 (Finiteness of cut-free proofs in CLKIDprop). We have the following claims. 
{1) Let S E Seq(X) and ~ be an instance of an inference rule R cJ (Cut) in CLKI虎rap_Then 

S; E Seq(X) for all l：：：：： i En. 
(2) Let D be a cut-free derivation of S with open buds B in CLKI虎rap.Then all sequents in D belong 

to Seq(S). 

Proof. The claim (1) is shown by case analysis of the inference rules in CLKIDErop by using Lemma 2. To 
show the cases (UL) and (UR), it is enough to prove the following fact: if Pj E exSub(X), then LJ Pjこ
exSub(X). Assume Pj E exSub(X) and Pj」=｛Q1,．．．，QK,p11,．．．，肛｝ takingarbitrary l E {1,...,Kj}-
Then exSub(Pj)こexSub(X)holds by Lemma 2 (3). Thus we have Q; E exSub(Pj, 1)こexSub(Pj)<;; 
exSub(X). We also have Pj, E exSub(Pj,)こexSub(Pj)こexSub(X)by Lemma 2 (2). Therefore we obtain 
LJ Pj <;; exSub(X) since仇，l<;; exSub(X) holds for any 1 :::; l：：：：： Mj. The cl叫m (2) is sh゚wnby in如面⑳⑳

'Dusing (1). 

Definition 12. Let S be a normal sequentひ，Pj,,・..,Pj=卜5.The set 

Ldec(S)疸但叫，l19・・・心lm卜三 1::::'. l;'.'::'. Mj, for all i E {1,..., m}} 

is called the left decomposition of S. 

Let X and Y be sets of sequents. A sequent S is said to be cut-free derivable from X (denoted by X[>S) 
if S has a cut-free derivation with open buds Band all sequents at Bare in X. We write X[>YifXパ for
all S E Y. We note that the relation[>is transitive, namely X[>Y and Y[>Z implies X[>z. 

Lemma 3. Ldec(S)[>S holds for any normal sequent S. 

Proof. Assume that S is Q, Pj,,..., Pj=卜5.Define Ldec'(S, {jい...嘉｝） by

{?J, Pj,,...'Pjk'Pjk+1,h+1>...心 lm卜三 I1 ::::'. l;'.'::'. Mj, for all i E { k + l,..., m}}. 

We note that Ldec'(S,0) = Ldec(S) and Ldec'(S,{j1,...,jm}) = {S}. It is enough to show the claim 
Ldec'(S, {j1,...,jk})[>Ldec'(S, {j1,...,jk+1}) for any k E {O,..., m -1}, since 

Ldec(S) = Ldec'(S,0)[>Ldec'(S, {j1})[>．．． [>Ldec'(S, {Ji,...,jm}) = {S}, 

holds by the claim, and then Ldec(S)[>S is obtained from the transitivity of[>. 
In order to show the claim, take arbitrary SE  Ldec'(S,{j1,...,jk+i}). Then S has the form 

d,戸,P3k+19ぶf--5, where戸and亙arePi,,..., Pik and <l>Jk+2,lk+2・,...，虹，l=:respectively. We have 

d，瓦Pjk+1,l、卜5... Q，庄ゥ3k+1,M,K+1、卜5

d,戸,p1K+19苓卜日

(UL) 

which is a cut-free derivation of S from Ldec'(S, {j1,...甚｝）． ThusLdec'(S, {j1,...,jk})[>S holds for any 
Ldec'(S, {j1,...,jk+1}). Hence Ldec'(S, {j1,...,jk})[>Ldec'(S, {j1,...,jk+i}). 
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Input S0, normal sequent 
Output ('D,冗 ,13),a cut-free CLKID/;rop, proof ('D, R) of S0 with open buds/3 

'D := So (single node (only root) derivation of So with bud So) 
A:= {root} (set of current bud nodes) 
B :=0 
冗：＝ 0
while A-/-0 do 

Take w EA and let S be'D(w) 
A:=A¥{w} 
if S is strongly normal then 

B := { w} U B; continue (a) 
if an internal node v is on a path from root to w s. t.'D(v) ='D(w) then 

R := {(w,v)} UR  ; continue (b) 
Update'D replacing S at the node w of'D by江?Ldec (c) 
A:= {w1,...,wn} UA, 
where w,,..., Wn are new children of w for S1,..., Sn, respectively. 

done 
return ('D, B，冗）

Fig. 2. Algorithm: normProof 

The derivation of S from Ldec(S) constructed in the above proof is a multiple times application of the 
(UL) rule. We note that, for any Si E Ldec(S), all inductive predicates in L(S) are eventually unfolded by 
the rule instances of the (UL)-rule in the path from S to Si, that is, any trace following this path contains a 
progressing point. 

We consider an inference rule (Ldec) of the form 

S1 ・・・ Sn 

s 
(Ldec), where {Sい•.．， Sn}= Ldec(S), 

which is admissible in CLKID£rop. 

Definition 13. CLKID£rop'is a proof system whose inference rules are obtained from those of CLKID£rop 

replacing the (UL)-rule by the (Ldec)-rule. A preproof in CLKID四rop'(withopen buds) is defined in a similar 

way to that of CLKID£rop_ A cyclic proof in CLKID£rop'(with open buds) is defined by a preproof in which 

any infinite path passes through an infinite number of rule instances of the (Ldec)-rule. 

Lemma 4. If there is a cut-free cyclic proof of S in CLKI虎rap'withopen buds B, then there is a cut-free 
cyclic proof of S in CLKI虎rapwith open buds B. 

Proof. Assume that P'is a cut-free cyclic proofof Sin CLKID£rop'with open buds B. Let P = ((N, l, r), R) 
prop be a cut-free preproof of S in CLKIDt'wp with open buds B obtained by replacing each rule instance of 

(Ldec) by a multiple application of (UL) as constructed in the proof of Lemma 3. Take an infinite path 7r of 
P. Then define an infinite path 1r'of炉 obtainedfrom 7r by replacing each subsequence (V1,..., Vm) of 7r by 

(v1, vm), where l(v1) is not a premise of a rule instance of (UL), r(v;) = (UL) for each i E {1,..., m -1 }, 
and r(%）ヂ (UL).Thenが containsinfinite number of rule instances of (Ldec) since P'is a cyclic proof of 

CLKIDP.roP'. H ence any trace following 7r has infinite number of progressing points as we mentioned before. 
Therefore P is a cut-free CLKID£rop cyclic proof of S with open buds B. 

The algorithm no:nnProof given in Figure 2 constructs a CLKID£rop'cyclic proof of a normal sequent 
with open buds of strongly normal sequents. 

Lemma 5. no:nnProof terminates for any input. 

Proof. Assume that no:nnProof(S) does not terminate for some S. We show a contradiction. Consider the 
non-terminating run of no:nnProof(S). Let⑰, be the D after the k-th while-loop in the run,ふ bethe A 
after the k-th while-loop, and Sk be the sequent S taken in the k-th while-loop. We note that, in each loop, 
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either line (a), (b), or (c) is executed, and line (b) is executed infinitely many times in the run since otherwise, 
from some k0, the numbers of elements inん (k~ k0) strictly decrease and the run eventually terminates. 
If (b) is executed in the k-th loop, then Vk is strict extension of Vk-l, since Sk is not a strongly normal 

and at least one (UL) is done in Ldec(S砂． DefineV00 := LJk>O Vk. Then V00 has infinite nodes with finite 
branches. Hence, by Konig's lemma, there is an infinite path 1r = (root,w1,w公...)in V00. For each Wj, 
there is unique nj such that Wj is added to A in the nrth loop. In each nrth loop, (c) is executed皿 dthe 
sequent S朽 doesnot appear in { S。,Sn1,...,S巧ー1},since (b) is skipped in the loop. Let M be ISeq(S)I and 
X be{S。,S叩・・・,SnM }. Hence IXI = M + l, but it contradicts X c;;; Seq(S) obtained from Proposition (2). 

Lemma 6. Let S be a valid no可 alsequent, and (V,R,B) be the output ofnormProof(S). Then (V尺） is

a cut-free CLKI虎rap'cyclicproof of S with open buds B. Moreover, the sequents that appear at nodes in B 
are strongly normal and valid. 

Proof. By the previous lemma, the run of normProof(S) terminates in K-times loop. Let割ぃ応，ふ， and
恥 bethe V, the R, the A, and the B after the k-th loop in the run, respectively. 

We show the claim that（匹応） isa cut-free cyclic proof of S with open buds Ak U氏 byinduction 
on k. The case of k = 0 is easily shown, since V。=｛S}，冗。＝ 0,and A。UB。=｛root}. Suppose k > 0. 
Let w be the node taken from Ak-l in the k-th loop,皿 dSk be Vい (w).The k-th loop executes either (a), 
(b), or (c). In the cases (a) and (c), we have the expected result by the induction hypothesis. In the case 
(b), there is an internal node v between root and win Vk-l such that Vい (v)= Sk. We have vk = vk-1, 

応＝｛（w,v)}U虞 1,andふ UBk = (Ak-l U Bk-i) ¥ {w}. Then the only new infinite path in Vk is 
7r = (root,..., v,..., w, v,..., w,...). We note that all inductive predicates in the皿 tecedentof Vk (v) are 

unfolded before reaching割,(w),since Ldec is applied at least once between v皿 dw. The other infinite paths 

in V also pass through Ldec by the induction hypothesis. Hence（匹応） isa CLKIDErop'cyclic proof of S 

withふ uBk・

By the claim, (V, R) is a cut-free CLKIDErop'cyclic proof of S with open buds B, since (V, R) = 

（応欠k)皿 dB=BK皿 dAK=c. 
We can easily check that, for any k, Ak U恥 isa set of nodes whose sequents are strongly normal. Hence 

so is B. We claim that Vis constructed by using only the (UL)-rule. Thus all sequents in V are valid because 
all assumptions of the (UL)-rule are valid if its conclusion is valid. 

The cut-free provability of valid normal sequents is obtained by combining the previous results. 

Proposition 3. Any valid normal sequent has a cut-free cyclic proof in CLKI虎rop.

Proof. Let S be a valid normal sequent, and (V, R, B) be the output of normProof(S). Then, by Lemma 6, 

(V戊） isa cut-free CLKID匹rop'cyclicproof of S with open buds B and the sequents on B are strongly 
normal and valid. By Lemma 4 there is a cut-free CLKID匹ropcyclic proof of S with open buds B. The 
sequents on B have cut-free non-cyclic proofs by Proposition 1. Hence, by combining them, we can obtain a 
cut-free cyclic proof of S in CLKIDErop. 

Next, we prove the cut-free provability of valid sequents. It is shown by the fact that a valid sequent has 
a cut-free derivation with open buds of valid normal sequents. The cut-free derivation is constructed by the 

algorithm normalization given in Figure 3. 

Define ISi by the total number of the logical connectives in a sequent S. We note that normalization(S) 
terminates for any S, since, if normalization(S) has an infinite run, then there is a constructed derivation 

V with a path of length ISi + 1 (say (root,w1,...,w1s1)), and then we have a contradiction from ISi = 

IV(root)I > IV(w1)I > ・ ・ ・ > IV(w1s1)I ~ 0. Hence, for any S, normalization(S) returns (V,B), where Vis 
a derivation of S with open buds B. Also we can easily see that all sequents on nodes in B are normal. 

We now show the cut-free completeness theorem of CLKIDじrop.

Proof (Proof of Theorem 2). Let S be a valid sequent and (V, B) be the result of normalization(S). Then 
Vis a derivation of S with open buds B of normal sequents. Let {w1,...,wn} be Band SJ be V(wj) for 
1 ::; j ::; n. We claim that, in each case (a)-(f) of the while-loop, Vis extended keeping validity of sequents, 
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Input S0: sequent 
Output ('D, B), where'Dis a cut-free derivation of S0 with open buds B 

'D := s。 (singlenode (only root) derivation of S。withbud So) 
G : = {root} (set of unfinished nodes) 
B :=0 
while G cf. 0 do 

Take w E G and let S be'D(w). 
G:=G¥{w} 
if S is normal then 

B := {w} U B; continue 
if S = r，や1/¥:2 I-△ then S '(a)  

let S'be r,'Pl,や2I-△;update'D replacing S at w by ~ (/¥L); 

G := {w'} U G, where w'is the new node for S'; conti!ue 
if S = I', <p1 V <p2 I-△ then (b) 

let s; and s; be I',やlI-△ and r,'P2 I-△,respectively; 
S'S' update'D replacing S at w by 2 

s 
(VL); 

G := {w;,w砂UG, th where w'. and w~ are the new nodes for s: and S 2 2, : continue 
if S= I', ~<pl- • then (c) 

let S'be I'I-△,<p; 
S' update'D replacing S at w by — (~L); 

G ・:= {w'} U ~, wh:re w'is t~e ~e; n~~e for S' : conいnue
if S=I'I-△,'Pl V <p2 then (d) 

let S'be I'I-△，中1,<p2; 
S' update'D replacing S at w by~ (VR), 

G := {w'} U G, where w'is th/ne~ ~~de for S' : continue 
if S=I'I-△,'Pl/¥<p2 then (e) 

let s; and s; be I'I-△,'Pl and r I-△,<p2, respectively; 
S'S' update'D replacing S at w by 2 

s 
(/¥R)； 

G := {w;,w ;,w;} U G, where w; and w; are the new nodes for s; ands;; continue 
if S=I'I-△,-<p then (f) 

let S'be I',<p I-△; 

S' update'D replacing S at w by ー (~R),

; := {w'} U-G, w~ere w'is t-h/ne~ n~de for S' : continue 
done 
return ('D, B) 

Fig. 3. Algorithm: normalization 

that is, if a bud node of'D is valid, then the additional nodes are also valid. Hence S1,..., Sn are valid normal 

sequents. By Proposition 3, Si has a cut-free cyclic proof for any j. Therefore S has a cut-free cyclic proof. 

Theorem 3 (Cut-elimination property of CLKIDprop). Any provable sequent in CLKI虎raphas a 

cut-free cyclic proof. 

Proof. Let S be a provable sequent in CLKID£rop_ Then it is valid by soundness. Hence S has a cut-free 

cyclic proof by Theorem 2. 

4 Fail ailure of Cut-Elimination for CLBI':: IDO 

This section is a summary of the result in [8]. 
In this section, we show the cut-elimination fails for the cyclic proof system of the bunched logic CLBirno, 

which is a core subsystem of the logic in [l]. 

4.1 Core Bunched Logic Blrno 

As with CLKID£roP, we fix a signature consisting of non-inductive and inductive propositional symbols. 

In this section, we use metavariables A, B,... for non-inductive propositions and P, Q,... for inductive 

propositions. 
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Definition 14 (Formulas of Blrn0). Let I and T be propositional constants. The formulas of Elmo, 
denoted by ¢;,心，．．．， aredefined as 

¢, ::= I I T I A I p I ¢, * ¢, I ¢,/¥¢ 

In this paper,* and/¥are treated as left-associative operators, that is, we write釘＊如＊如 for（釘＊西）＊如．
The notation An denotes A*・・・ * A where the number of A's is n. We also use the notation P * An for 

P *A*・・・ * A, namely (・ ・ ・ ((P *A)* A)・・・)* A). 

Definition 15 (Bunch). The bunches, denoted by I'，△，．．．， are defined as 

r，△ ：：＝</> I r, r I r; r. 

We write I'（△） to mean that I'of which△is a subtree. For a bunch I'（△）， r（△')is a bunch obtained 
by replacing the subtree△of I'by△’. 

The labels 11, 11 and 11; 11 intuitively mean * and /¥, respectively. For a bunch I', we define the bunch formula 

¢ r as the formula defined as: 

釘＝ I',

¢ハ，I'2= ¢,ハ＊ ¢几；

釘1;I'2= ¢ハ^ ¢圧・

(I'is a formula); 

Definition 16 (Equivalence of bunches). Define the bunch equivalence= as the least equivalence relation 
satisfying: 

-commutative monoid equations for','and I; 

-commutative monoid equations for';'and丁；

-congruence: if△三△'thenI'（△）三バ△').

We use the notation le/JI and II'I for the sizes of the formulas and the bunches, which are defined as usual. 

In the case of the bunched logic, the inductive propositions are defined by not only the ordinary con-
junctions but also multiplicative conjunctions, so the rules of inductive definitions are slightly generalized as 
follows. 

Definition 17 (Inductive definition). An inductive definition clause of P is of the form P := ¢;. For a 

set <I> of inductive definition clauses of inductive propositions, we define <I> p = { ¢; I P := ¢; E叫． Wesay that 

P is defined by P:＝ゆ1I.. ・ I ¢k in<J> if and only if Pp= {¢1,・..,¢k}-

Definition 18 (Blrno sequent). Let I'be a bunch and ¢, be a formula. I'f---¢; is called a Birno sequent. 

I'is called the antecedent of I'f---¢; and¢; is called the succedent of I'f---¢;. We define L(I'f---¢) = I'and 
R(I'f---¢) = ¢. 

The standard models of Birno are defined in [1]. However, in the following we need only a particular 
class of the standard models, called the multiset models. For the set of atomic propositions { A1,..., An}, the 

multiset model Mmulti forど isthe tuple〈Rmulti心，0〉suchthat 

-Rmulti is the set of multisets consisting of a1,...,an; 

- l±J is the merging operation of two multisets; 
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-the satisfaction relation r巨¢!for r E Rmulti is given as: 

r F T always holds 

r巨I⇔ r=0 

rr=A;~⇒ r = {a;} (for an atomic proposition A;) 

r r= P⇔ r F p(m) for some m 

r F p(o) never holds 

r Fp(m+l) ~r F の[P}ml,...,P~m)/Pi,...,Pk] 
for some¢; E il>p containing inductive propositions P1,..., Pk 

r r=釘＾伽⇔ rr=釘 andr F ¢;2 

r巨企＊¢2⇔ r= r1 o r2 and r1巨¢1and r2巨伽

for some r1,乃 ER.

For example, { aサ F Aぃ{a1西｝ F A1 * A2, and {a1,a1}戸A1* A1 * I are true, and { ai} F A2 and 

{ai} F A1 * A1 are false. 
The cyclic proof system CLBI恥 forthe core bunched logic is defined as with CLKIDどropby the following 

inference rules. 

Definition 19. The inference rules of CLE椛。 arethe following. 

(Ax) 
r卜¢ △(¢)卜ゅ

計¢ △(I')卜ゅ
(Cut) 

r（△）卜¢ r（△；△)f--¢; /~\ I'ト¢)

r（△；△＇）卜¢)
(W) 

r（△）卜¢ (C) ~ (E) （△三 I')
△卜¢

r(¢，心） f--x
(*L) 

r卜¢ △卜ゅ r他；心） f--X 1. T¥ I'ト¢ r←心
I'(¢;＊ゆ）卜 x r，△ ← ¢＊心

(*R) 
I'(¢;^ 心）卜 x

（八L)
r ← ¢̂ ¢ 

(/¥R) 

r（か）卜の ．．． I'(伽）ト¢;ITTT¥ I'f--¢; 

I'(P)←¢ 
(UL) ~ (UR) (lSiSn) r卜P

where the inductive predicate P is defined by P :=か|．．． |¢in• (UL) and (UR) are called unfolding rules. 

The soundness is proved in [1]. 

Theorem 4 (Soundness CLBI恥）． IfI'f--¢; is provable in CLE伶0,then I'ト¢;is valid. 

4.2 Proof Unrolling 

Our proof of the failure of the cut-elimination relies on a new technique, called proof unrolling: for a given 
cyclic proof of I'ト¢ and a bunch I''that is obtained by completely unfolding the inductive predicates in I', 
we can construct a non-cyclic proof of I''卜ゅ byunrolling the cycles in the given cyclic proof. 

For example, consider two inductive propositions PA and PAA, whose inductive definitions are: 

PA:= I I PA *A p AA := I I p AA * A * A. 

For these inductive propositions, the sequent PAA f---PA is provable in CLBI佑。 asFigure 4. The sequents 
marked (t) are corresponding bud and companion. The numbers (1), (2),... are identifiers of sequents. 

From this cyclic proof, we can construct a non-cyclic proof of I * A * A * A * A f---PA for I * A* A * A * A E 
Unf(PAA) by the proof unrolling邸 Figure5. The identifiers of sequents indicate the corresponding nodes in 
the cyclic proof, where we unroll the cycle at (t) twice, and for (UL) in the cyclic proof, we choose the right 
premise twice at (3) and the left premise at (2). 
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I卜I(2)
(Ax) 

If-PA 
(UR) 

PAA I-P A(8)(t) A I-A(9) 
(Ax) 

PAA, A I-PA* A(7) 
(*R) 

PAA,A I-PA(6) 
(UR) 

AI--A(lO) 
(Ax) 

(PAA,A),A I-PA •A(5) 
(＊R) 

(PAA,A),A I--PA(4) 
(UR) 

PAA •A,A I--PA(3) 
(＊L) 

PAA•A•AI--PA 
(*L) 

p AA I-p A(l)(t) 
(UL) 

Fig. 4. Cyclic proof of PAA f--PA 

If---I(2) 
(Aが）

I卜PA(8)
(UR) 

I, A f---PA * A(7) 
(*L) 

(UR) 
I,A卜PA(6) A卜A(lO)

(Aぷ）

(I,A),A卜PA*A(5) 
(＊L) 

(I,A),A卜PA(4)
(UR) 

I*A,A卜PA(3)
(*L) 

I* A* A f---PA(8) 
(＊L) 

Af---A(9) 
(Ax') 

I*A*A,A卜PA*A(7) 
(＊R) 

I*A•A,A 卜 PA(6)
(UR) 

A卜A(lO)
(Ax') 

(I *A* A,A),A f---PA* A(5) 
(*R) 

(UA•A,A),A f---PA(4) 
(UR) 

I*A*A*A,A卜応(3)
(*L) 

I*A*A*A*Af---PA(l) 
(*L) 

Fig. 5. Non-cyclic proof of I* A* A* A* A f---PA constructed by proof unrolling 
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4.3 Failure of Cut-Elimination 

We give a counterexample of the cut-elimination property in CLBI100. We fix the language E consisting of 
the atomic propositions A and B, and the inductive propositions P AB, PBA, PA, and PB. We also fix the set 

<JJ of inductive definitions for P AB, PBA, PA, and PB defined by: 

p AB := p B I p AB * A; 

p BA := p A I p BA * B; 

p A := I I p A * A; 

PB:=IIPB*B. 

Intuitively, PA and PB mean I* An and I* Em with arbitrary n, m 2'. 0, respectively. P AB and P BA mean 
(I*B門＊Anand (I＊炉）＊即 witharbitrary n, m 2'. 0, respectively. We note that P AB and P BA are logically 

equivalent in the standard models since the separating conjunction * and the formula I are interpreted as a 
commutative monoid operator and the unit of it, respectively. 

The intention of the name P AB is that, during the unfolding of P AB, A's appear first, and then B's appear 
in the unfolding of PB. PBA is also named with a similar intention. 

Then, we show that the entailment P AB f---PBA is a counterexample for the cut-elimination. 
First, a cyclic proof of P AB f---P BA in CLBI恥。 with(Cut) is given in Figure 6. 

PsA,A f---PsA(#) Bf---B 
(Ax) 

(Ax) ---,----,------(Ax) (*R) 
PA卜PA A卜A (PBA,A)，B卜PsA*B 

(*R) (PsA,B),A f---PsA * B 
(E) 

PA,A f---PA *A 
(UR) ~ (UR) 

PA,A卜PA
(UR) 

(PsA,B),A卜PBA
(*L) 

PA,A卜PBA PBA *B,A ← PBA 

PsA,A f---PsA(#) 
(UL) 

PAs,A卜PBA
(Cut) 

PAB *A卜PsA(1) 
(*L) 

PAB卜PEA(@)

is the subproof of the following proof figure: 

PB f---PBA(t) Bf---B 
(Ax) 

(Ax) ~ (*R) 
I f---I (UR) 

PB,Bf---PBA*B 

I f---PA 
(UR) 

PB,B f---PBA 
(UR) 

If---PBA PB *B f---PBA 

PB f---hA(t) 

(*L) 
(UL) 

: the above proof figure 

PAE *A卜PEA(1) 
(UL) 

PAB卜PEA(@)

Each bud marked (t), (@),or(#) has its companion with the same mark. 

Fig.6. CLBI和。 proofof p AB f-PBA 

Proposition 4. P AB卜PBA is not cut-free provable in CLE尼o・

Here we give a proof sketch. We assume the existence of a cut-free cyclic proof of P AB卜PBA・ By the 
proof unrolling, we can construct non-cyclic proofs of,p f-P BA for any unfolded formula,p of P AB. Hence we 
have proofs of I* Aれ卜 PBA for arbitrary n. We consider parts of the proofs of I* An卜P叩 whichcontain the 

conclusion and do not contain the rule (UR). We call such parts the proof segments. In such a proof segment, 
{ an} E Mmulti satisfies every antecedent. Then, { an} also satisfies every antecedent in the corresponding part 
of the cyclic proof. Since the cyclic proof is finite, for a sufficiently large n, the antecedents cannot contain 
An, but they must contain either P AB or丁， andthen both {an} and {an, b} satisfy the antecedents. On the 

other hand, since the proof segment does not contain (UR), every succedent is PBA・ When we unfold PBA, 
we have to decide either PA or PBA * B. However, neither of them can be satisfied by both { a吋 and{a叫b}.
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Theorem 5 (Failure of cut-elimination in CLBI恥 [81).CLB症。 doesnot enjoy the cut-elimination 

prope仕y.

This result is easily extended to the original cyclic proof system CLBI和 in[11, which contains full logical 

connectives of the bunched logic and inductive predicates with arbitrary arity. 

Corollary 1 (Failure of cut-elimination in CLBI'fD[B]). CLBI和 doesnot enjoy cut-elimination prop-

e廿y.

5 C onclusion 

We have considered two cyclic proofs with inductively defined propositions: CLKID£rop for the ordinary 

propositional logic and CLBI脳 forthe bunched logic. We have proved the cut-elimination holds for 

CLKID£rop, while fails for CLBI『00.In [8], it was also discussed that the proof of the failure of the cut-

elimination can be applied to the (multiplicative) linear logic and the separation logic with nullary inductive 

predicates. 

It is interesting for future work to investigate the reason for success or failure of the cut-elimination of 
the cyclic proof systems. 
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