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1 Introduction 

Proving mathematical theorems in theories of bounded arithmetic is a fruitful problem. 
It sheds a light on the structure of various branches in mathematics as well as giving a 
new insight into the propositional proof complexity. 

Among such problems, theorems in linear algebra gained much attention. Skelley and 
Cook [7] gave formal systems which treat operations of matrices and studied the proof 
complexity of theorems in linear algebra, especially those concerning the determinant. 

Soon after, Tzameret and Cook [8] showed, based on the earlier result by Hrubes and 
Tzameret [4], that the multiplicativity of the determinant 

det(AB) = det(A) det(B) 

can be proved in VNC2. 

In complexity theory, many properties of matrices can be computed in the complexity 
class DET, logspace reducible to the determinant (cf. von zur Gathen [9]). Since DET is 
equivalent to the logspace counting class #L, we might expect that a fairly amount of 
linear algebra can be done in the theory for #L or its mild extensions. 

For the class #L, a theory V #L is defined by Cook and Fontes [2] by formalizing the 

power of matrix. However, there seems to be a large gap between V #L and VNC乞
There are complexity classes in between, #SAC1 and TC1. So we may consider the 

corresponding theory. The main contribution of this article is the construction of such 
theories V #SAC1 and VTC1 and the inclusions of the complexity classes are preserved: 

V #L ~ V #SAC1 ~ VTC1 ~ VNC2. 

Turing our attensions to the provability of determinant identities, there are several 
options for the choice of the definition. Tzamaret and Cook adopted NC2 algorithm based 

on Schur complement. On the other hand, Skelley and Cook [7] formlized Berkowitz's 
#L algorithm in his theory of linear algebra. In the final section, we propose the third 
approach which uses the algorithm by Mahajan and Vinay [5]. This algorithm is based on 
the fact that the determinant can be defined by way of clow sequences and the algorithm 
is purely combinatorial. So we may expect esssentially different proofs. 



79

It seems that there are many interesting problems in the relation between bounded 

arithmetic and linear algebra. For instance, many theorems in combinatorics are proved 

using linear algebra methods. So proving nontrivial upper bounds on the provability of 

linear algebra theorems will be a great leap forward in proving theorems in other branches 

of mathematics in bounded arithmetic. 

We omit the detailed proofs for most of the results. Rather we concentrate on pre-

senting overview of the state of the art of the connection between linear algebra and weak 

systems of arithmetic. 

2 The theory VTC1 

The theories constructed in the following sections are based on the theory VTC0. For 

the detail of the theory, we refer the textbook by Cook and Nguyen [3]. 

We define a theory whose provably total functions are exactly those computable by 

polynomial size and logarithmic depth circuits with majority gates. We encode circuits 

by d x w two dimensional array so that d and w denote the depth and the width. So 

gates are of the form〈x,y〉forx < d and y < w where x determines the layer in which 

the gate is placed. 
Without loss of generality, we may assume that TC1 circuits consists only of majority 

gates 

majoritym(Xo,..., Xm-1) = { ~ ~｀こ:.lm」 /2,
So we encode TC1 circuits by a string Eこ([d]x [w])2 for logarithmic d which represents 

the input-output relation in such a way that 

〈x,y〉receivesan input from〈x',y'〉⇔ E(x',y', x, y) I¥ x'< x. 

We construct the theory VTC1 by expanding VTC0 with a single axiom which states 

that any TC1 circuit can be evaluated. We adopt VTC0 as our base theory instead of v0 

since the evaluation of majority gates requires TC0 functions. 

We occationally denote the cardinality of碍 definablesets as 

l{x <a: rp(x)}I 

for叫） E望
Define the formula好c(d,w, E, I, Y) as 

如 (d,w,E,I,Y)⇔ 

¥:/y < w (Y(O, y)⇔ I(y)) I¥ 0 < ¥:/x < d ¥:/y < w 

Y(x,y) ←}|｛〈x',y'〉E[d] X [w] : x'< X八E(x',y', x, y)八Y(x',y')}I 

> l|｛〈x',y'〉E[d] x [w] : E(x', y', x, y)八Y(x',y'）}|」／2
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Definition 1 Let 

TCV三 ¥:/d,w¥:/C,IヨYこ[ldl]x [w]好c(ldl,w, E, I, Y). 

We define the theory VTC1 to be VTC0 + TCV. 

Theorem 1 A function is computable by a uniform TC1 circuit family if and only if it 
is ~f definable in VTC1. 

3 Coding arithmetic circuits 

Our first goal is to show that a certain fragment of PJ-1-proofs are coded and its con-
sistency is provable in VTC1. To this end, it is required that arithmetic circuits used in 
such proofs can be evaluated in VTC1. 

Definition 2 Arithmetic TC1 circuis are arithmetic circuits of O(log n) depth and n°C1l 

size with unbounded fan-in + gates and fan-in two x and + gates. 

We code the computation of arithmetic TC1 circuits in a similar manner as that for 

TC1 circuits. An arithmetic circuit with +, x and + gates is a pair〈C,E〉suchthat 
C: [d] x [w]→2 and E ~ ([d] x [w])2. The intended meaning of C is that for x < d and 

y<w, 
C[x,y] = 0⇒〈x,y〉is+,
C[x,y] = 1⇒〈x,y〉isx and 
C[x,y] = 2⇒〈x,y〉is+. 

For a times gate or a + gate, we assume that it receives two inputs 

input0(x, y, E) = min{〈x',y'〉E[d] X [w] : x'< X八E(x',y', x叫｝

and 

inp叫 (x,y, E) 
=min{〈x',y'〉E[d] x［叫： X1< X八E(x',y', x, y)八〈x',y'〉＞ input0(x,y, E)} 

If〈x,y〉isa x gate then its output is given by the multiplication of outputs of its two 

inputs. If〈x,y〉isa-;-gate then outputs of input0(x, y, E) and input1 (x, y, E) are treated 
as the nominator and denominator respectively. If the output of inp叫 (x,y, E) is O then 
the output if〈x,y〉isundefined and is assigned -1. 

Note that unbounded fan-in + gates are computed by vector summation which can 
be computed by TC0 circuits. 

We encode the value of each gate in an arithmetic TC1 circuit by an integer, that is a 

number with its signature. The only case in which the gate has a negative value is when 
it is undefined as stated above. 
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Now define the formula 6arithTc(d, w, C, E, I, Y) as 

6arithTc(d, w, C, E, I,）⇔ 

where 

't:/y < w(Y[O, y] =〈＋，I[y]〉)八

(C[x, y] = 0 I¥ SumComp(x, y, E, Y))V 

0 <Vx < dVy < w ((C[x,yl= 1八MultComp(x,y,E,Y)）V

(C[x,yl = 2八DtvComp(x,y,E,Y)））
SumComp(x, y, E, Y)三

(V〈:,':'〉 E[d] x [W] （x'＜ XAE(x',y'，x,y)→ Y[x'，y'］ナー1)A

Y[x,yl＝区｛〈X＇，y'〉： x'< XAy < W 八E(x'，y'，x,y)｝)
（瞑，y＇〉E[d] x [W] （X'< x八E(x',y', x, y) I¥ Y[x', y'] = -1)/¥ 

Y[x,yl= - 1)  

MultComp(x, y, E, Y) = 

（△Y[mputK(x,y,E,Y)］ナー1:[input,(x, y, E, Y)]) V 

Y[x, y] = Y[input0(x, y, E, Y)] ・ Y[input1(x, y, E, Y)] 

(y1 Y[inp叫 (x,y, E, Y)] = -1 /¥ Y[x, y] = -1) 

DivComp(x, y, E, Y)三（△Y[mputK(x,y,E,Y)］ナー1AY[mputl(x,y,E)］-1-0A 

Y[x,yl= Y[mputo(x,y,E,Y)］／Y[mpuh(x,y,E,Y)］)  
V 

V 

(~;〗ll(Y= ［t-n：叫（x,y, E, Y)] ~ -1 A Y[x, y] ~ -1) V Y[input,(x, y, E)] ~ 0) A) 

Theorem 2 VTC1 proves the following: 

't:/d, w't:/C, E, I C : [ldl] x [w]→ 2 →ヨYさt(d,w) 6arithrc(ldl, w, C, E, I, Y). 

(Proof). It is easy to see that each gate in arithmetic TC1 circuits can be computed by 
some TC0 circuit. so wew ca construct any arithmetic TC1 circuit by replacing each gate 
by the corresponding TC0 circuit. ロ

Now we associate an algebraic proof system to VTC1. 
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Definition 3 P 1-1(TC)-proofs are P 1-1-proofs in which all formulas are arithmetic TC1 

circuits. 

It is easy to see that there exists a濾 formulaPr fpr-1crc)(P,〈C,E〉=〈C',E'〉） which
states that Pis a PJ-1(TC)-proof of the equiation〈C,E〉=〈C',E'〉forarithmetic TC1 

circuits〈C,E〉and〈C',E'〉）． Alsothere exists a ~点 formula Sat(C, E, C', E', I) which 
states that the equation〈C,E〉=〈C',E'〉holdsfor all input I. 

According to these formalization, we prove that VTC1 proves the soundness of P 1-1 (TC)-

proofs. 

Theorem 3 VTC1 proves the following: 

V〈C,E〉ヨPPrfPI-'(Tc)(P,〈C,E〉=〈C',E'〉)→ VISat(C, E, C', E', I). 

(Proof Sketch). By Theorem 2, VTC1 can eval叫 earithmetic TC1 circuits. So the claim 
follows from by induction on the number of inference rules in a given P 1-1 (TC)-proof.ロ

4 The theory V #SAC1 

We define the theory for #SAC1 by formalizing the following characterization. 

Theorem 4 A function is in #SAC1 if and only if it is computable by a uniform family 
of arithmetic circuits of polynomial size and degree with + and x gates. 

We code cricuits by a pair〈C,E〉withC ~ [d] x [n] and E ~ ([d] x [n]戸whered and 
n denotes the depth and the width as before. The intended meaning is that C determines 
the type of the gate〈x,y〉insuch a way that 

C(x,y)⇒〈x,y〉isa x gate, 
---,C(x,y)⇒〈x,y〉isa + gate, 

and E gives the input-output relation. 

The idea of the formalization is to code the computation of a given circuit on a iput of 
lenth n by two lists D which codes the degree of each gate and V which codes the output 
of each gate. The degree of the gate has the upperbound砧 fork E w and if the degree 

of a gate exceeds nk then the output is set to 0. 

Specifically, we formalize this by the formula咋SAC'(d,n, C, E,I, D, V) which is de-
fined by 

咋SAC'(d,n, C, E, I, D, V)⇔ 

Vy < n(D[O, y] = 1 A V[O, y] = I[y])八

0 < Vx < d Vy < w ( 
(C(x, y) A MultDegComp勺x,y,n,E,D,V)) 

V(---,C(x,y) ASumDegComp勺x,y,n,E,D,V)）)
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where 
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SumDegComp勺x,y,n,E,D,V)⇔ 

(V〈X'，y'〉m[d]x[W] （x'＜ XAE(X'，y'，x,y)→ D[x'，y'] ＜砧＾

:；xx9,yy] ： ;:：:＇［／/： ly'］X'x/: :：：二：［x；9X/:，y/'9Xy9)；）｝八）V 

（沢X',y'〉叫d]x [W] （x'＜ XAE(x'，y',x,y) AD[x'，y'] 2 nKA 

D[x,yl = nk八V[x,yl=。）
Definition 4 Fork E w. #SAC1怜 denotesthe formula 

¥Id, n VG, E, IヨD：：：：：犀＋1ョv：：：：：厨＋1咋SAC'(d,n, C, E, I, D, V) 

The theory V #SAC1 is axiomatized by 

VTC0+{#SAC惰： kE w}. 

Theorem 5 A function is computable by #SAC1 circuits if and only if it is叫f-definable
in V#SAC1. 

5 Proving properties of the determinant 

In this section we consider the problem of whether properties of the determinant can be 
proved in VTC1 or V #SAC1. It is already proved by Tzameret and Cook [8] that VNC2 
proves basic properties of the determinant, namely, 
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Theorem 6 (Tzameret-Cook) VNC2 proves the followings: 

1. the multiplicativity of the determinant: det(AB) = det(A)det(B), 

2. the cofactor expansion 

3. Cayley-Hamilton Theorem 

The proof heavily depends on how we define the determinant in the theory and the 
above theorem uses the recursive defintion via Schur complement. 

On the other hand, several other algorithms for the determinant are known. Berkowitz 
[1] gave a #L algorithm for the characteristic polynomial in the following manner. 

Berkowitz's Algorithm: 
Let A be a n x n matrix and define A。,A1,...,Anas

A=A。=（悶誓） andAぃ＝（悶誓）
Then define Bif, B2,..., Bn by 

1 

゜-aii 1 

-RSi -aii 
B;= I＿凡Aぶ -Rぶi

ー凡At2Si ー凡A戸Si

Finally, let 

P(A) = B虜2・ ・ ・Bn. 

It is easily seen that this algorithm can be done in #L. Skelley and Cook [7] formlized 
this algorithm in their theory of linear algebra and showed that the multiplicativity of 
the determinant can be proved in the system LAP expanded by two axioms 

CHT三 PA(A)= 0, 
det(A) = 0→¥/BAB-/-I. 

It is also easy to see that these two definitions of the determinant are equivalent 
provably in VNC2. 

Theorem 7 Let P(A) = (Pn,...,Po) be the sequence which are coefficients of the char-
acteristic polynomial of A. Then VNC2 proves that 

det(xl -A) = PnXn +・・・+Po-
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(Proof Sketch). The proof of this theorem uses a similar idea as in [8]. We will first show 
that the equation 

det(xI -A) = Pn炉＋・・・ +Po・

has a Polynomial Identity proof with division provably in VNC2. Specifically, we formal-
ize the following proof in VNC乞

Let A be a n x n matrix. If n = 1 then the proof is trivial. Otherwise, let 

A=（閏誓）
where Rぃふ andA1 are 1 x (n-1), (n-1) x 1 and (n-1) x (n-1) matrices respectively. 
By the definition of det(A), we have 

det(xI -A) = (x -a11) det(xI -A1) -R1 det(xI -Aリ(xI-A1)→S1. 

Let 

恥 (x)= qn-1Xn-l + ・ ・ ・ + qo・

and n 

B(x) = L(qn-1Ak-2 +・・・十 qn-k+lI)xn-k・ 
k=2 

By a simple calculation from the defintion of PA(x), we have 

PA(x) = (x -a11)PA1 (x) -R1B(x)S1 

and by the inductive hypothesis, we have 

恥 (x)= det(xI -A1). 

So it suffice to show that 

B(x) = det(xI -A1)(xI -A1)―1. 

Let B'(x) be obtained from B(x) by replacing the coefficient砂 bythe corredponding 
coefficient in det(xJ -A1). Then by the inductive hypothesis, it suffices to show that 

B'(x) = det(xI -A1)(xI -A1)-1. 

Let adj(A) denote the adjunct of A. Then as in Soltys [6], we can show that 

叫 (xI-Aリ(xI-Aリ＝ det(xI-AリI

which proves the claim. 
Now as in [8], we convert the pJ-1-proof into VNC2-Frege proof. 

There is yet another algorithm. Mahajan and Vinay [5] constructed a #SAC1 algorithm 
which utilizes clow scquences. Specifically, a clow in [n] is a closed walk〈W1,...,Wりwhere

W1,...，皿 <nand the first element, called the head of the clow head(C), can only occur 
once in the walk. A clow sequence is a sequence〈C1,...,Cりofclows such that 
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• head(C1) < ・ ・ ・ < head(C砂and

• the sum of edges in the sequence is [n]. 

Then weight w(C) = w(〈W1,...,Wり） ofa clow on a n x n matrix A = (a;j) is defined 

to be 

w(C) = aw,w2 ··•a四—1Wla皿W1

and the weight of a clow sequence W =〈C1,...,Cりis

w(W) = IT叫C;)
1:,;i:,C:k 

The sign sgn(W) is defined to be (-1 t+k. 
The it is known that 

Theorem 8 Let A be a n x n matrix. Then 

det(A) = こ sgn(W)w(W). 

w : claw sequence in [n] 

Using this theorem and divide and conquer technique, a #SAC1 algorithm for the 

deteminant is given in [5]. Moreover, the algorithm can be formalized in V#SAC1. 

Theorem 9 There is a濶 definitionof the #SAC1 circuit for the determinant by Ma-
hajan and Vinay provably in V #SAC1. 

We finish the article by addressing a problem. 

Problem 1 Let detc10w(A) be the function computing the determinant computed by Ma-

hajan and Vinay algorithm. Show that the multiplicativity of the detc10w is provable in 
V#SAC1. 
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