
126

Proof search in multi-succedent sequent calculi for intuitionistic 

logics * 

Toshiyasu Arai 

Graduate School of Mathematical Sciences 

University of Tokyo 

Tokyo 153-8914, JAPAN 

tosarai@ms.u-tokyo.ac.jp 

Abstract 

In this note, terminating and bicomplete proof search procedures with respect to the Kripke seman-
tics are given in multi-succedent sequent calculi for intuitionistic propositional logic and fragments of 
intuitionistic predicate logic. G. Mints [11, 12] in his later years investigated a proof search procedure in 
single-succedent sequent calculus for intuitionistic predicate logic. 

1 Schiitte's schema 

Schiitte's schema in [14] is described as follows. 
Given a logic calculus, e.g., a sequent calculus and a semantics for the logic, search recursively a cut-free 

derivation of a given sequent in a bottom-up manner. This results in a (computable but possibly infinite) 

deduction tree of the given sequent. If the tree is a (finite) derivation, then it tells us that the sequent is 
cut-free derivable in the sequent calculus. Otherwise it yields a counter model of the sequent with respect 
to the semantics. Let us call the division Schutte's dichotomy. Thus the schema shows simultaneously the 
completeness of the cut-free fragment of the sequent calculus with respect to the semantics and the Hauptsatz 

for the calculus. The schema has been successfully applied to (first-order and higher-order) classical logic 
calculi by K. Schutte [15]. 

G. Mints [11,12] investigates a proof search procedure in single-succedent sequent calculus for intuitionistic 
predicate logic with respect to Kripke semantics. On the other side a multi-succedent sequent calculus for 

intuitionistic logic was introduced by S. Maehara [8], and it is known that it relates to semantic tableaux and 

Kripke semantics, cf. [17]. However a naive proof search procedure in a multi-succedent sequent calculus 
for intuitionistic propositional logic may not terminate in a finite number of steps since the left rule for 

implication might be iterated unlimitedly. For example the following proof search for the sequent sequent 

(pつq)つ上 ⇒qdoes not terminate. It is desirable that a proof search procedure for a decidable logic is 
terminating. 

(pコq)つ上，p⇒q 

(pつq)つ上，p⇒pつq 上，p⇒q 

(pつq)つl_,p⇒q 

(pつq)つ上 ⇒pつq 上⇒q

(p ~ q) ~上 ⇒ q 

In this note let us give terminating and bicomplete proof search procedures under the schema for multi-
succedent sequent calculi L」pmcand L」mefor intuitionistic propositional logic Ip and fragments of predicate 
logic lq with respect to the Kripke semantics [6]. By a bicomplete proof search procedure we mean a 

procedure such that we can extract a counter model from failed proof search, cf. [3]. L」pmcdenotes a 
modified multi-succedent sequent calculus for intuitionistic propositional logic. In the calculus conclusions 
of minor formulas are added in succedents when a right rule is applied. It turns out that a proof search 

*This article is dedicated to the memory of a distinguished proof-theorist, Grisha Mints. I have been encouraged and 
stimulated for many years by his interests and helpful suggestions to my researches. 
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procedure for L」pmcis terminating. A terminating proof search for the above sequent (pつq)っ_l⇒qin 
LJpmc runs as follows. 

(pつq)つ上，p⇒pつq,q _l，p⇒ q 
(Lつ）

(pコq)っ_l，p⇒q 

(pつq)っ_l⇒pつq,q 上⇒q

(pコq)::i_l⇒q 
(Lつ）

When the left rules (L ::i) are applied with the main formula (pコq)コ上， theleft minor formula pコqis 

accompanied with its conclusion q. The leaf sequent (pつq)コ」，p⇒p ::i q, q is not a classical tautology. 
In Section 2 we consider a proof search in the sequent calculus L」pmcfor intuitionistic propositional logic 

Ip. A related work is done in [13]. 
Given a sequent S。,oursearch procedure yields a finite (/¥,V)-tree TR(S0) of finite deductions. Each 

leaf in the (/¥，V)-tree receives a value in {O, 1}. Any formula in the sequent at a topmost node is essentially 
either an atom (propositional variable) or an absurdity」-,andthe sequent is obviously falsified when the 

value is 0. Otherwise the sequent is an axiom. Furthermore if the value of the whole (/¥，V)-tree is 1, then by 
pruning, we can extract a derivation of S。fromthe tree of deductions TR(S0). Otherwise a Kripke model 
is readily constructed, in which S。isfalsificd. 

As a corollary and by the depth-first left-to-right implementation of proof search, we see in Section 3 

that the intuitionistic propositional logic is in PSPACE. The fact was first proved by R. Ladner [7]. 
In Section 4 we consider proof search procedures in sequent calculi L」mc for a fragment of the intuitionistic 

predicate logic lq. Proof search procedure for the fragment is terminating and bicomplete. As a corollary 
we see that the fragment is decidable. One fragment denoted by V(＋＋,-）ョ(+,-)is a class of formulas in a 

relational language in which each positively occurring universal quantifier occurs strictly positive. Mints [9] 
showed that the positive fragment V(＋）ョC-) is decidable. 

In Section 5 we consider a proof search procedure for the full intuitionistic predicate logic lq over a finite 
language possibly with function symbols, and shows that Schiitte's dichotomy holds for the proof search. 

2 Propositional case 

In this section we consider a proof search procedure in a sequent calculus L」pmcfor the intuitionistic 

propositional logic Ip. Atm = {Pi : i E w} denotes a countable set of atoms (propositional variables). Atoms 
are denoted by p, q,'T',．．．． Formulas are constructed recursively from atoms and the absurdity J_ by means 
of V, /¥,つ． Cedentsare finite set of formulas. In the calculus L」pmcthe derived objects are sequents, which 

are ordered pairs of cedents denoted r⇒ △,where r is the antecedent and△the succedent of the sequent. 

Th?~gh the.calculus is for in~ui:i?nisyc pr~po_sitional lo~ic Ip'. sev'.:ral for.nmlas m.ay occur in su~~edents, i.~., 
multi-succedent sequents. p in L」pmcstands for propositional, m for multi-succedent sequents. Moreover the 

super script c in LJpmc indicates conclusion. The conclusion f3 of an implicational minor (active) formula 
aつ/3in succedents is augmented in each inference rule. For example a right rule for disjunction in L」pmc
is of the form 

r⇒△,aつ(3,(3

r⇒△,（aコ(3)v,

Let us explain the reason why we augment conclusions in succedents. Let L」pmbe a sequent calculus for 

the intuitionistic propositional logic Ip in which conclusions may be absent in succedents. Namely LJpm is 
the propositional fragment of the calculus m-G3i in [17]. A right rule for disjunction in LJpm is of the form 

r⇒△,aつ(3

r⇒ △,（aコ(3)v,

In searching a derivation of a given sequent, we need to analyze implicational formulas aつfJin antecedents 
several times. 

aコ/3,r⇒△,a f3,r⇒△ 

aつ/3,r⇒△
(Lつ）

Although we can control the number of applications of the left rule (Lつ） interms of the given sequents as 
in [1], let us take another route. By augmenting conclusions in succedents, we see that each formula aっ/3is 

used as the major formula of a right rule (Rつ） atmost once on each branch in the searching tree. Moreover 
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each formula aつf3is used as the major formula of a left rule (Lつ） atmost once in a part of a branch 
such that the part contains no right rule (Rコ）． Inthis way we can conclude that the search procedure 

terminates, cf. (1) and Lemma 2.9. 

A formula of the form aつf3is an implicational formula. 

Let /3; be formulas. /31 つf32二）・・・ニ）。n二） f3n+1 denotes the formula /31 つ(/32コ（・・・つ (f3nつf3n+l)・・・））
in the association to the right. 

Definition 2.1 Let a三 (/31つあっ・・・つぬつ f3n+i)(n?: 0) with a non-implicational formula f3n+i, and 

ak三 (f3kっgK+1コ・・・コ f3nコf3n+1)for k = l, 2,..., n. Then letび＝ ｛f3n+1} andぼ＝ ｛/3k : k = 

1,2,...,n}. 

Note that a V ac is intuitionistically equivalent to a. 

2.1 Sequent calculus LJpmc for the intuitionistic propositional logic Ip 

Axioms. 

(T) 「⇒△ifrn△nAtmヂ0 （上） r⇒△if上Er

Inference rules. 
ao, r⇒△ a1, r⇒△ 

r⇒△ 
(LV) 

ao, a1, f⇒ △ 

r⇒△ 
(L八）

where (a。Va1) Er in (LV), and (ao I¥ a1) Er in (LIi). 

r⇒ △,ao, a0, a1, °'i 

r⇒△ 
(RV) 

r⇒ △,ao,ao r⇒ △,a1,ai 

r⇒△ 

where (a。Va1)E△in (RV), and (a。Aa1) E△in (RA). 

(RI¥) 

{r⇒ △,0，伊： /3E aP} ac,r⇒ △ 

r⇒△ 
(Lつ）

岱，r⇒ac

r⇒△ 
(Rつ）

where皿 irnplicationala E r in (Lつ）， andan irnplicational a E△in (Rつ）．
Each sequent above the line is an upper sequent, and the sequent below the line is the lower sequent of 

an inference rule. For example in a (LV), a;,r⇒ △is an upper sequent for i = 0, 1, and r⇒ △is the 
lower sequent. Observe that the antecedent of the lower sequent is a subset of the皿 tecedentof each upper 
sequent in any inference rules, and the succedent of the lower sequent is a subset of the succcedent of each 
upper sequent in an inference rule other than (Rつ）．

Derivations in L」pmcare defined as usual. These are labelled finite trees whose leaves are labelled訟 iorns
and which are locally correct with respect to inference rules. While deductions are labelled finite trees which 
are locally correct with respect to inference rules. In deductions labels of leaves may be any sequents. 

A K ripke frame is a quasi order〈W,::5〉． Thismeans that W -I 0 and ::5 is a reflexive皿 dtransitive 
relation on W. A Kripke model is a triple〈W,づ,V〉,where〈W,::5〉isa Kripke frame, and V : W →P(Atm) 
such that V(w) c V(v) if w ::5 v. 

For forrnul邸 aand a E W, a p= a is defined recursively as follows. 

l. w pp iffp E V(w). w f".l_. 

2. w p= av(3iff w Fa  or w p=(3．wヒâ(3iffw p= a and w p=(3． 

3. w r= (aつ(3)ifffor any vとW,if V巨a,then v p=(3. 

A sequent r⇒ △is intuitionistically valid if w巨/¥f,then w巨V△forany Kripke model〈W,::5,V〉
and皿 ywEW.
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2.2 Proof search in L」pmc

It is easy to define a terminating and bicomplete proof search procedure in a sequent calculus LKp for the 

classical propositional logic, cf. [10]. On the other side each w E W in a Kripke model〈w,ゴ,V〉determines
a classical truth assignment which assigns a truth value to each atom and to each implicational formula. The 

truth value of an implicational formula is determined from ones of its components at v >: w. Let us apply the 
search procedure for LKp to a given sequent S in which we analyze antecedent implicational formulas, but 

leave the succedent implicational formulas. We obtain a deduction Trs, i.e., a tree of sequents which is locally 
correct with respect to inference rules. If every leaf sequent in the tree Trs is derivable, then so is the given 

sequent. Hcre each leaf sequent is of the form r⇒ △，今 withthe sct今 ofsuccedent implicational formulas 
and it is saturated in the sense of Definition 2.3 below. By saturation we see that there exists a formula 
(aつ(3)E今 suehthat a, r⇒ (3is intuitionistically derivable provided that r⇒ △，△:) is intuitionistically 
derivable, r⇒ △is not an axiom and△っ＃c.We keep on examining sequents S0つ/3= (a,r⇒ /3）for 
each (aつ/3)E△っ． Thisyields deductions Trsaっ~, and so forth. We are constructing a tree TR(S0) of 

deduetions for a given sequent S。.Eachnodeび inthe tree TR(So) corresponds to a deduetion Trs(,,)•From 
the whole tree TR(S。)onec皿 extraeteither a derivation of S,。ora Kripke model in whieh S,。isfalse, 

cf. Theorem 2.11. 

Given a sequent S = (I'⇒ △)， Trs denotes the deduction of S constructed in a bottom-up manner. A 
formula is marked with a circle to indicate that the formula has not yet been analyzed. No implicational 
formula in succedents is marked. a0 indicates that the formula a has not been analyzed. rx denotes the 

set of formulas obtained from formulas in r by erasing the circle. 

Definition 2.2 Let S = (I'⇒ △)be a sequent. Sっdenotesthe set of implicational succedent formulas in 
△,while s; denotes the set of implicational formulas a in Sっsuchthat aP (/_ r or ac ¢△・ 

The condition aP C I'& ac E△means that the implicatio叫 succedentformula a has been already analyzed 

in the whole tree TR(S0) of deductions defined in Definition 2.7 below. 

Definition 2.3 A sequent r⇒ △is satumted if the following conditions are met: 

1. If (aV (3) E f, then {a,(3} nrx fc 0. If (a 1¥(3) E△， then { a, /3} n△X ヂ0.

2. If (av (3) E△， then { a, /3} Cぷ． If(a I¥ (3) E f, then { a, /3} C fペ

3. If an implicational formula a is in r, then aP cぷ oracErx.

A saturated sequent r⇒ △is fully analyzed if it is not an axiom, i.e.，戸 nぷ nAtm = 0 and.l_ ¢ r叉
and every marked formula a0 in r U△is either an atom p0 or J_ 0. 

Note that these conditions for sequents to be saturated are only for unmarked formulas. 

Definition 2.4 Put a saturated sequent S at the root of the tree Trs. Let us define inversion steps. 

1. If an antecedent r contains a conjunction (a。/¥a1)0with a circle, then erase the circle and add marked 

conjuncts when these have not yet been analyzed: for (a。I¥aリo¢rぃ

{ a;': a; ¢ r1, i = 0, 1} u r1 u { a。/¥°'1}⇒ △ 

(a。/¥a1)0, r1⇒ △ 

For simplicity let us denote it by 
°'o, at, r1, ao I¥ °'1⇒△ 

(a。/¥a1)0ふ ⇒△ 

where af＝吋 ifa; if_ r1, and可 isabsent else. 

2. If the succedent△ contains a conjunction (a。/¥ai)0, then erase the circle, add unmarked conjuncts 

and starred conclusions: for (a。/¥a1)0 if_△ぃ

r ⇒ a。A0<1，ふ，no,a8* r⇒ a。A0<1，ふ，0<1,ar 

r ⇒ふ，（noA 0<1)゚

where ae*〒（aco ， ;)0 if a;: f-ふ， anda;* is absent else. ， 
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3. If an antecedent r contains a disjunction (a0 Vai)0 with a circle, then erase the circle and add starred 

disjuncts: for (a。Va1)0 if_「1,

a~, r1, a。Va1⇒ △ at, r1, a。Va1⇒ △ 

(a。Va1)0,I'1⇒ △ 

4. If the succedent△contains a disjunction (a0 V ai)0 with a circle, then erase the circle, add unmarked 
disjuncts and starred conclusions: for (a。Va1)0if_ふ，

r ⇒ a。Va1，△1,a。心1,a窟，af*

r ⇒ △1, (a。Va1)0 

5. Suppose the antecedent r contains an implication a0 with a circle. Then erase the circle, add unmarked 
premisses and starred conclusions of premisses to the succedent, and add starred conclusion to the 

antecedent: for a0 !jい，

{a,r1⇒ △,(3，(3C* :(3 €岱｝ ac*,a,r1 ⇒ △ 

ao,「1⇒ △ 

Observe that if the lower sequent enjoys the the following condition (1), then so do the upper sequents in 
each inversion step. 

面€ぷ for any implicational formula a in the succedent△. 

As far as one of the inversions can be performed, continue it to construct the tree Trs. 

Definition 2.5 Define numbers b(a) for marked or unmarked formulas a recursively. 

1. b(a) = b(p0) = b（上゚） ＝0 for any unmarked formulas a. 

2. b((a V (3)0) = b((a I¥ (3)0) = b(a0) + b(f3°) + 1. 

3. b(a0) = max({b（炉0): f3 E aP} u {b(a00)}) + 1 for implicational a. 

For sequents S = (r⇒ △)， let b(S) =区｛b(a):a Er U△}． 

(1) 

Proposition 2.6 The number decreases when we go up in the tree Trs. Namely in the above inversion 
steps b(S1) < b(S0) holds for the lower sequent S。andan upper sequent S1・

Hence the process terminates, and Trs is a finite tree. Each leaf in Trs for a saturated sequent S is a 
saturated sequent, which is an axiom, or a fully analyzed sequent. 

A fully analyzed sequent S = (r, rっ⇒△，兄） with△;= s; =/ 0 is extended by an'inference rule' 
branching (br), where rっisthe set of antecedent unmarked irnplicational formulas. r; is obtained from rっ
by marking each formula to analyze these again, rぢ＝ ｛a° : a c rっ｝． LetaP* = {(3° : f3 E a瓦f3i r}. 

{aP*ururち⇒び0:a E△5} 

r,rっ⇒△，△;
(br) 

where each formula a E△; is said to be a major formula of the rule (br). 
This inference rule is a disjunctive one since if one of upper sequents is derivable, then so is the lower 

sequent using the inference rule (Rつ）． Notethat each upper sequent 80 = (aP* Ur Urぢ⇒年） enjoysthe 

condition (1) vacuously since (Sa)っ＝ （Ba)S = 0. 

2.3 Construction of the tree of deductions 

Let us define a tree TR(S0) of deductions for saturated sequents S。.Eachnode in the tree TR(S。)corre-
sponds to a deduction Trs. 

<ww denotes the set of finite sequences of natural numbers(J,T,.... The empty sequence is denoted 0, 
and (k。,． ..,kn-1)* (j) = (k。,．．．，kn-1,j).
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Definition 2. 7 Given a saturated sequent S:。=（r。⇒△。)， letus define a tree TR(S0) C <ww, and a 
labeling function (S (O'), g（O'),d(O')) for /J'E TR(So), where S位） isa saturated sequent, g(O') E {V, /¥, 0, 1} is 
a (logic) gate and d（/J') is a deduction possibly with the branching rule such that 

1. for each leafび inTR(S。)， d（/J')consists solely of the saturated sequent S（O'), and either 

(a) S(O') is an axiom and g(O') = 1 indicating that S(O') is derivable, or 

(b) S（/J') is fully analyzed and g（/J') = 0 indicating that S（/J') is underivable. 

2. for each internal node /J'in TR(S0), g(O') E {V,/¥} and 

(a) if g(O') =/¥,then S(O') is neither an axiom nor fully analyzed one, and d(O') = Trs(u)・

(b) if g(O') = V, then S（り isa fully analyzed sequent such that (S(CI))S-/-0, and d（び） isa deduction 
with a single inference rule (br) with its lower sequent S(O'). 

TR(S0) is a(/¥, V)-tree, and it is constructed inductively according to/¥-, V-stage. 

initial. First the empty sequence 0 E TR(So) and S(0) = S。.IfS。isan axiom, then g(0) = 1. If S。isfully 
analyzed with (So)S = 0, then g(0) = 0. If g(0) E {O, 1}, then d(0) is the deduction consisting solely of S。.
If S。isfully analyzed with (So)S -/-0, then g(0) = V and the tree is extended according to the V-stage. 
Otherwise g(0) = /¥ and the tree is extended according to the /¥-stage. 

/¥-stage. Suppose /J'E TR(So) and g（O') = /¥. Let S（び） ＝S. Let｛ふ｝i<I(I> 0) be an enumeration of all 
leaves ind（O') = Trs. For each i < I, letび＊ （i) E TR(So) with S(O'* (i)) = Si. If Si is an axiom, then 
g(O'* (i)) = 1. Otherwise Si is fully analyzed. If (S;); = 0, then g（び＊ （i)) = 0. Otherwise let g(O'* (i)) = V 
and the tree is extended according to the V-stage. 

V-stage. Suppose CI E TR(S0) and g（吋＝ V. Let S (O') = S be a fully analyzed sequent r, rっ⇒
△,｛の｝j＜J(J > O) whereし isthe set of antecedent unmarked implicational formulas, and { °'i h<J = SS. 
Then IJ'* (j) E T R(S。)foreach j < J. Also let S（び＊（j)) = (a';* 

J 
urur° 二） ⇒吋0),where each unmarked and 

implicational formula a E r:::Jis marked in rぢtobe analyzed again. d（O') denotes the following deduction: 

{a『*uru旦 ⇒年｝］＜J

r,rっ⇒△，｛aj}]<J 
(br) 

Let g(O'*(j)) = 1 if S（び＊（j)) is an axiom, and g(O'* (j)) = 0 if it is fully analyzed with (S（び＊（j))); = 0. 
Otherwise let g(CI * (j)) = /¥ and the tree is extended according to the /¥-stage. 

Definition 2.8 For a formula a, let Sbfml内(a)[Sbfml; (a)] denote a set of positive [negative] implicational 
subformulas in a defined by simultaneous recursion as follows. 

1. Sbfml古(p)= Sbfml古(..1_)= 0. 

2. Sbfmlぎ(a。Va1)= Sbfmlぎ(a。/¥a1) = Sbfml言(ao)USbfml言(a[1)．

3. Let a be an implicational formula. 

Sbfml古(a)=LJ{Sbfmlう(/3)：/3E aP} U Sbfml古(a門U{a}. 

Sbfmlう(a)=LJ{Sbfml古(/3)： /3 Eぼ｝ USbfmlう（ぷ）．

For sequents S = (r⇒ △)， let Sbfmlぎ(S)= LJ{Sbfml因(a): a E r} U LJ{Sbfml吉(/3)： /3 €△｝． nう (S)
[n;(S)] denotes the cardinality of the finite set Sbfmlj(S) [Sbfml;(S)], resp. and n(S) the total number 
of occurrences of connectives V, /¥,つ inS. 

Lemma 2.9 The whole process generating the tree TR(So) terminates, and the number of V-gates along 
any branch in the tree TR(S0) is at most n古(So)-

Proof. Consider a branching rule in the tree TR(S0). 

-（br) I s 
: 7r 

a『*urur;⇒吋゚

r,rっ⇒△，｛匂｝］＜J
(br) 



132

Each major formula O:j of the branching rule is in the set Sbfml:1,(S0). In the branch 7r up to an upper 

sequent Si = (a:r u r u rち⇒吋0),each formula in the set心 isin the antecedents of sequents S in冗

Moreover S enjoys the condition (1) since Si enjoys it and it is preserved upward. 
We claim that there occurs no branching rule I on 7r above the upper sequent Sj one of whose major 

formulas is the formula O:j-Suppose that there is such a branching rule I, and let S be the lower sequent of 

I. Then the formula O:j is in the succedent of S, and hence a:1 is in the succedent by (1). Furthermore each 
formula in the set碍isin the antecedent of sequent S. Hence O:j rf_ s;, and O:j is not a major formula of 
the branching rule with the lower sequent S. 

Therefore there are at most n古(So)applications of the branching rules along a branch in TR(So). This 
means that the number of V-gates along any branch in the tree TR(S。)isat most n古(So)- Since each 
deduction Trs is finite, the whole process generating the tree TR(S0) terminates. ロ

Let us compute the value of the(/¥, V)-tree TR(S0) with gates g(a). Let v（a) denote the value ofび ETR(So). 
If the value v(0) is 1, then S,。isderivable where a derivation of S。isobtained by putting the deduction 

Trs(a-) of S（a) from｛ふ｝i<I

S; 
＼ ↓ ( 

(S(a),/¥) 

to the/¥-node a, and choosing one of upper sequents S(a * (i，ぶ）） suchthat v(a * (i,j;)) = 1 for each lower 
sequent S(a * (i)) of (br), i.e., g(a * (i)) = V. 

In what follows consider the case when the value v(0) of TR(S0) is 0. In a bottom-up manner let us 
shrink the tree TR(S0) to a tree T C  TR(S0) as follows. Simultaneously a set Vr(a) of atoms is assigned. 
For each node a E T g（a)ヂV.First 0 ET. 

Suppose v(a) = 0 for a node a E T with g(a) = /¥. Pick a son a* (i) such that v(a * (i)) = 0, and 
identify the node a* (i) with a. This means that we have chosen an underivable sequent S(a * (i)), which is 

a non-axiom leaf in the deduction Trs(a-)・ Let V:亨） ＝国）xn Atm where r（a)⇒ △(a) denotes the leaf 
sequent S(a * (i)) chosen from Trs(a-)・ If g(a * (i)) = 0, then a will be a leaf in T. Otherwise g(a * (i)) = V, 
and keep its sons in a shrunken tree, i.e., a* (i,j) ET. 

Thus we have defined a Kripke model〈T,Ce,V:叶whereび CeT iff a is an initial segment of T. In this 

case we say that Tis an extension of a. By definition, a Ce a. 
For each a ET, f(a)⇒ △(a) denotes the leaf sequent S（び＊ （i)) chosen from Trs（グ）・
From the construction we see readily the followings for anyび， TET. 

1. a Ce T⇒ r(6)x c r(T)又 r(6)⇒△(a) is saturated. r（ぴ） X n △(a)x has no common atom, and 
J_ ¢ r(a)又

2. if an implicational formula a E△(a), then there exists an extension TE T of a such that aP C r(T)x 
and ac E△(T)又

Proposition 2.10 If a E f(a)X [a E△(a)x], then a巨a[a F a], resp. in the Kripke model〈T,Ce, V:介
Hence a F /¥ r(a) and a F V△(a). 

Proof. By simultaneous induction on a using the above facts. ロ

Theorem 2.11 (Schiitte's dichotomy) 
For any saturated sequent S。,v(0)= 1 iff L」pmef---S。.

Specifically if v(0) = 0, then each K呻 kemodel〈T,Ce,VT〉falsifiesthe given saturated sequent S。,no
matter which non-axiom leaves aだ chosenfrom Trs,. 

On the contrary, if v(0) = 1, then we can extract a (cut-free) derivation of S,。bychoosing a derivable 
sequent from each (br). 

Hence L」pm0is intuitionistically complete in the sense that any intuitionistically valid sequent is derivable 
in L」pm0.Moreover L」pm0admits the Hauptsatz, i.e., the cut rule is admiissible: if both of the sequents 

ro ⇒ △。,aand a，い ⇒△1叩 derivablein L」pm°,then so is the sequent r。,r1⇒△。，△1・ 

Proof. Let S = (I'⇒ △，△っ） bea sequent without circles, where△っ＝ Sっisthe set of implicational 
formulas in the succedent. Then S。=（F ⇒ △°，ふ） issaturated. If a derivable sequent is chosen from 
upper sequents of a (br), then the rule (br) turns to a (Rつ）．ロ
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Definition 2.12 For a sequent S:。=（r。⇒△o), let S名＝ （rg⇒ △f，△っ） bethe saturated sequent, where 

△。＝ふu△っ with△っ＝ （So)っ． ThenDe(S0) denotes the deduction with the branching rule (br), obtained 
from TR(S0) by carrying out the intermediate deductions Trs(u) for er E TR(S名） withg(cr) = /¥. 

p roposition 2.13 Let S。bea sequent and 1r be a branch in the deduction De(So). 

1. For each implicational formula a in Sbfmぢ(S0),the詑 isat most one application of a rule (br) with 
the major formula a along the branch 1r. Hence the number of applications of the rule (br) along the 

branch 1r is at most n古(S砂

砂． Thenumber of applications of the left rule (Lつ） alongthe branch 1r is at most n:_;(S0) (1 + n~(S0)). 

3. The depth of the deduction De(S0) is bounded by n(S0) (1 + n古(S8)).

If the sequent S。isintuitionistically valid, then we can extract a derivation D of S。inL」pmcfrom De(So) 

enjoying the above conditions. In D the number of applications of the rule (Rつ） alongeach branch is at 
most n古(SS)．

Proof. These are seen from the proofs of Proposition 2.6 and Lemma 2.9 using the fact b(S) :S n(S)．ロ

3 The intuitionistic propositional logic is in PSPACE 

In this section we describe a PSPACE-algorithm deciding the deducibility of the given sequent S。inL」pmc.
This is a result due to R. Ladner [7], who shows that a modal logic 54 is in PSPACE, and it is well known 
that 54 interprets the intuitionistic propositional logic Ip linearly. J. Hudelmaier [4] sharpens the result by 
giving an O(n logn)-space decision procedure for Ip. 

Corollary 3.1 (Ladner [7]) 
The intuitionistic propositional logic Ip is in PSPACE. 

Recall that De(S0) denotes the deduction obtained from TR(S0) by carrying out the intermediate de-
ductions Trs(<>) for a E TR(S0) with g(a)＝八． Let#S be the size of the sequents S, which is the total 
number of occurrences of symbols in S. 

Proposition 3.2 Let § = S。,S1,...,Bn-l be a branch in De(So), where Si+l is an upper sequent of an 

切ferencerule with its lower sequent Si. Then料：＝区i<n#Si is bounded by a (quartic) polynomial in the 
size #S。ofthe given sequent S。.

Proof. From Proposition 2.13 and n(S。)~ #S。wesee that the length n of branches § is at most (1 + 
炉 (So)）• #S。,which is bounded by a quadratic polynomial in #g。.On the other side the maximal size 
#Si of sequents Si is bounded by a quadratic polynomial, too, since each Si is essentially a sequence of 
subformulas of formulas in S。．ロ

Let us traverse sequents in the tree De(S0) starting from the root S。asfollows. Let S be the current sequent. 

Case 1 If Sis a lower sequent of an inference rule in De(So), then visit the leftmost upper sequent next. 
Case 2 Otherwise Sis a leaf in De(S0), and in TR(S0). Let a E TR(S0) be the node such that S(a) = S. 
S(a) is a leaf in a deduction Trs(r) for a TE TR(S0) with g(r) = /¥. 
Case 2.1 First consider the case when g(a) = 1. 
Case 2.1.1 Let T be the uppermost sequent below Sin Trs(r) such that there is an upper sequent S'of the 
inference rule with its lower sequent T, which we have not yet visited. Next let us visit the leftmost such 
sequent S'if such a sequent exists. 

s 
... : S'... 

T 
Trs(r) = 

Case 2.1.2 Suppose that there is no such sequent. This means that S(T) is derivable. If T = 0, then we are 
done. Otherwise S(T) is an upper sequent of a (br), and we see that the lower sequent S(p) of the (br) is 
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derivable. Let us change the gate g(p) = V to g(p) = 1, and continue the search for the next visiting sequent 

in the deduction Trs(1<), where S(p) is a leaf in the deduction Tr8（ん）・
Case 2.2 Second consider the case when g(a) = 0. This means that S(T) is underivable. If T = 0, then we 
are done. Otherwise S(T) is an upper sequent of a (br). 
Case 2.2.1 If S(T) is not the rightmost upper sequent, then visit the next right one. 

Case 2.2.2 Otherwise the lower sequent S(p) of the (br) is underivable. Let us change the gate g(p) = V to 
g(p) = 0, and continue the search for the next visiting sequent in the deduction Tr8に）， whereS(p) is a leaf 

in the deduction Trs（ん）・

In the PSPACE-algorithrn, we record sequences S = S。,S1,...,Bn-l of sequents on a tape, where S is 

an initial segment of a branch in De(S0). The next sequence S'is recursively computed邸 follows.If the 

tail Bn-l is a lower sequent of an inference rule in De(S0), then S'= S * (Sn), i.e., extend the sequence S 
by adding the leftmost upper sequent Sn as a tail, cf. Case 1 in the traversal. Suppose Bn-l = S(a) is a 
leaf in a deduction Trs(7)・

First consider the c邸 ewhen g(a) = 1. If there is an S; (i < n -l) such that S;+l is not the rightmost 

upper sequent, then break the sequence S at S; and put the next right upper sequent S', S'= S。,．．．，S;,S'

for the maximal such i, cf. Case 2.1.1. 
---si+l s'---

Si 

Suppose there is no such S;. If T = 0, then halt and print'DERIVABLE'. Otherwise S(T) is an upper 

sequent of a (br) with the lower sequent S(p). Continue the computation of the next sequence S'in the 

deduction Trs（,.), where S(p) is a leaf in the deduction Trs（tc), cf. Case 2.1.2. 
Second consider the case when g(u) = 0. If T = 0, then halt and print'UNDERIVABLE'. Otherwise 

S(T) is an upper sequent of a (br). If S(T) is not the rightmost upper sequent, then break the sequence S 

at S; and put the next right upper sequent S', S'= S。,.．．，S;,S1,where 8;+1 = S(T) and S; is the lower 
sequent of the (br), cf. Case 2.2.1. 

・ ・ ・ 8;+1(= S(T)) S'・ ・ ・ 

si 
(br) 

Otherwise continue the computation of the next sequence S'in the deduction Trs（"), where the lower sequent 

ふofthe (br) is a leaf in the deduction Trs（に）・

In each moment, we see from Proposition 3.2 that the size #S of the recorded sequence Sis bounded by 
a (quartic) polynomial in the size #S。ofthe given sequent S。.Thereforethe algorithm runs in a polynomial 

space in the size #S。ofthe input S。・

When we restrict the number of positive implicational subformulas to a constant, the decision problem 

is in the polytime hierarchy. Let言 denotethe class of sequents S such that n古(S)<:'. c(c E w). 

Corollary 3.3 The decision problem of the intuitionistic validity for formulas in the classつtis solvable in 

IIf +c of the polytime hierarchy. 

Proof. This is seen from Proposition 2.13. ロ

R. Statman [16] showed that Ip is PSPACE-complete. Is the decision problem for the classコ;;of formulas 

IIf+c―complete for each c E w? 

4 A decidable fragment of lq 

A relational language £, of the predicate logic (without equality) consists of propositional connectives 

..1_,v,̂，っ， quantifiersヨ，V,(finite) list of predicate symbols R,..., individual contants c,..．肝eevariables 
a; (i E w) are denoted a,..., and bound variables xぃ(iE w) are denoted x,y,z. FV ={a;: i E w} denotes 
the set of free variables. Each predicate symbol receives a fixed positive integer, its arity. In this section 

Atm denotes the set of atomic formulas R(t1,..., tn),where t; is a term, i.e., either an individual const叫
or a free variable. A formula is said to be relational if it is a formula in a relational language. lq denotes the 
intuitionistic predicate logic over a relational language. 
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4.1 Sequent calculus LJmc for lq 

LJmc is obtained from L」pmcby adding the following inference rules for quantifiers with their eigenvariables 

a and non-empty lists { tふ ofterms: 

a(a),r⇒ △ r ⇒ a(a)，a a c {a(t,)｝, ur ⇒ △ r ⇒ △U { a(t;), a(t;)c}, 
(Lヨ）

（） 
r⇒△ r⇒△ 

(RV) r⇒△ 
(LV) r⇒△ 

(Rヨ）

whereヨxa(x)Er in (Lヨ）， 'vxa(x)E△in (RV),'vxa(x) Er in (LV), andヨxa(x)E△in (Rヨ）．
A K ripke model for a relational language £, is a quadruple〈W，::C:,D,I〉,where〈W，ゴ〉 isa Kripke frame. 

This has to enjoy the following for a ::C: b. D : W →P(X) for a set X such that 0ヂD(a)c D(b), and for 
each a E W, I(a) is an £-structure with the universe D(a) and relations Ra C D(a)n for n-ary predicate 
symbols RE£, and elements ca E D(a) for individual contants c E £, such that Ra C Rb, and ca= cb. 

For closed formulas a E £,(X) and a E W, a巨ais defined recursively. 

l. a戸R(c1,...,cn)iff (c1,...,Cn) E Ra. a~ 上．

2. a p= a V /3 iff a巨aor a p= /3. a巨a/¥/3iff a p= a and a巨/3.

3. a戸(aつ/3)iff for any b t a, if b p= a, then b戸/3.

4. a r=ヨxa(x)iff there exists a c E D(a) such that a巨a(c).

5. a戸'vxa(x)iff for any bとaand any c E D(b), b p= a(c). 

4.2 Proof search for a fragment 

A formula is said to be positive (with respect to quantifiers) iff any universal quantifier [ existential quantifier] 

occurs only positively [negatively] in it, resp. Here positive/negative occurrence of quantifiers is meant in 
the usual classical sense. 

G. Mints [9] showed that it is decidable whether or not a given positive formula is intuitionisitically 
derivable, cf. [2] for an alternative proof. Let us introduce a class V(＋+，-）ョ(+,-)of formulas. 

Definition 4.1 A relational formula is defined to be in the class V(＋＋，一汀(+,-)iff each positively occurring 

universal quantifier occurs strictly positive. Universal quantifiers may occur negatively, and existential 

quantifiers may occur positively and/or negatively. 

In this subsection we show that there is an algorithm, which decides the intuitionistic derivability of 
formulas in the class V(＋+,-）ョ(+,-)_

A sequent is said to be in the class V(＋＋，-）墨＋，―） iffany succedent formula in it is in V(＋+，一汀(+,-),

universal quantifiers occur only positively in its antecedent formulas. 
A formula of the form'vx a(x) is a universal formula. In a proof-search of sequents in V(＋+，-）ョ(+,-)only 

sequents in V(＋＋，-）::J(+,-) are produced. 

For a sequent S, let VC(S) denote the set of free variables and individual contents occurring in a formula 
in S. If there is no such free variable nor individual constant in S, let VC(S) = { c} for an individual constant 

C. S = (I'⇒ △)is saturated iff it cnjoys thc following conditions bcsidcs oncs in Dcfinition 2.3: 

1. If（ヨyf3(y)) Er, then (f3(b)) E戸 fora free variable b E FV. 

2. If（ヨyf3(y))E△， then(f3(a)) E△x for every a E VC(S). 

3. If ('vxa(x)) Er, then (a(a)) E rx for every a E VC(S). 

A saturated sequent r⇒ △is fully analyzed if it is not an axiom, any marked formula a0 in r U△is one 
of atomic formulas R(t1,..., tn)0,上゚ （上0~ r). 

Inversion steps for/¥,V,つareas in Definition 2.4. For quantifiers define as follows. 

1. If an antecedent r of a sequent S = (I'⇒ △)contains a universal formula (Vy f3(y))0 with a circle, then 

erase the circle and add starred instances for VC(S): for r = {(Vy f3(y))0} U r1 with (Vy f3(y))0 ~ r1, 

{f3(a)*: a E VC(S)} U r1 U {Vy f3(y)}⇒ △ 

(Vy f3(y))o，几 ⇒△ 

where {f3(a)* : a E VC(S)} = {f3(a)0 : a E VC(S), f3(a) ~ rサ
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2. If a succedent△of a sequent S = (r⇒ △)contains a universal formula (Vy(3（y))0 with a circle, then 
erase the circle: for△ ＝ふ u{(Vy(3（y))0} with (Vy(3（y))o ~ふ，

r⇒ふ，Vy(3（y)

r ⇒ △ぃ (Vy(3（y))o

3. If a succedent△of a sequent S = (r⇒ △)contains an existential formula（ヨyf3 (y)) 0 with a circle, 
then erase the circle and add instances for VC(S) together with starred conclusions: for△ ＝ふ U

｛（ヨyf3(y))0} with（ヨy(3(y))orj_ふ，

r ⇒ ｛ヨyf3(y)}U△1U {f3(a), f3(a)°* : a E VC(S)} 

r ⇒ △1,（ヨyf3(y)）゚

where {f3(a), f3(a)0* : a E VC(S)} = {f3(a) : a E VC(S)} U {/3(a)00 : a E VC(S), f3(a)0 rf_ふ｝．

4. Suppose that an antecedent r contains an existential formula（ヨyfJ(y))0 with a circle, and r contains 
an instance fJ(a) ofヨyfJ(y) for a free variable a. Then erase the circle: Let r =｛（ヨyfJ (y)) o, fJ (a)} LJ r 1 
with（ヨyfJ(y))orf_I'1 

r1，ヨyfJ(y), fJ(a)⇒ △ 

（ヨyfJ(y))0, fJ(a), r 1⇒ △ 

5. Suppose that an antecedent r contains an existential formula （ヨy．f3(y)）° with a circle, and r contains 
no instance fJ(a) ofヨyfJ(y) for free variables a. Then erase the circle, add a starred instance with an 
eigenvariable and instances for the eigenvariable together with starred conclusions: Let fv denote the 

set of universal unmarked formulas in r, and△ョ theset of existential unmarked formulas in△.Then 
r = {（ヨyf3(y))0} U r1 U rv with（ヨYfJ(y))o (j.いand△＝ △1U△ョ

B(b)°ぶ，ヨyf](y), fv(b)＊ ⇒ △心(b)，△ョ(b)C*

（ヨyfJ(y))oぶ，rv⇒ふ，△ョ

where the variable b does not occur in the lower sequent, fv(b)* = { a(b)0 :'ix a(x) E fv, a(b) (j. r}, 

ふ (b)= b(b)：ヨq(z)Eふ｝ andふ (b)e*＝ ｛1(b)co ：ヨZ1(z)Eふ，1(b)ct/.△}． 

This inversion step for existential antecedent formulas is a condensed one. The lower sequent is derivable 

from the upper one using some (LV) and some (Rヨ） followedby an (Lヨ）．

Observe that if the lower sequent enjoys the the condition (1), then so do the upper sequents in each inversion 
step. 

As far as one of the inversions can be performed, continue it to construct a tree Tr8. As in Proposition 

2.6 we see that the process terminates, and Trs is a finite tree. Its depth is bounded by the size #S of the 
sequent S. Each leaf in Trs for a saturated sequent Sis seen to be a saturated sequent, which is either an 
axiom or a fully analyzed sequent. 

LetS=(f，いぶ ⇒△，△らふ） bea sequent in ¥;/(＋＋,-）ョ(+,-),where rっdenotesthe set of unmarked 

implicational formulas in the antecedent, fv the set of unmarked universal formulas in the antecedent, 

晃＝s;defined in Definition 2.2, andふ theset of (unmarked) universal formulas in the succedent, resp. 
ru△is the remainders. 

Assume that△5 U △vヂ0.The sequent follows from several sequents. The branching rule (br) here is 
of the form: 

{aP*ururぢ，rv⇒びo:a E△;} {r,rぢ，rv⇒1(a),1(a)c0:(¥/y1(y)) E△v} 

r,rっ，rv⇒△，△；，△v
(br) 

where a is an eigenvariable of the (br) and does not to occur in the sequent r, rっ，rv⇒Vy,(y).Implicational 

formulas and universal formulas in the antecedent are marked to be analyzed again. Each formula a E△5 
and each (Vy,(y)) E△v is a major formula of the rule (br), and each,(a) is a minor formula. 

Let S。bea given saturated sequent in the class ¥;/(＋＋，-）ョ(+,-).As in the propositional case, Definition 

2.7, a (A, V)-tree of deductions TR(S0) is constructed from deductions d(u) = Trs(u) for u E TR(S。)with
g（u) = A, where S(u) denotes the sequent at the nodeび inTR(So)-
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Definition 4.2 Let a be a formula. nt+(a) [n吉(a)]denotes the number of nesting of strictly positive 
universal quantifiers in a [the number of positive/negative existential quantifiers in a], resp. q(a) denote the 
maximal number of bound variables occurring in a positive existential subformula, and of bound variables 

occurring in a negative universal subformula in a. These are defined recursively as follows. 心国） ＝ 
叶(a)＝q士(a)＝ 0 if ais an atomic formula．吋ザ(a。om) ＝ max{n；打叫： i ＝ 0, 1}，哨(a。om) ＝ 
巧 (ao)＋吋(a1),and『(aooa1)=max{q打叫： i= 0,1} for o E {V,A}. nt+(aつf3)＝吋十(B)．尼(a二）

戸f3) = n工(a)＋ n]（f3). q土(aつf3)= max{q干(a),q士(f3)}.nt＋（ヨxa)= n↓+（a). nt+(Vxa) = 1 + nt+(a). 
nt（ヨxa)= 1 +-n!(a). ni（ヨxa)= ni(a). n告(Vxa)= n言(a). q+('efxa) = q+(a). q―（ヨxa)= q―(a). 
q―(Vxa)=l+q―(a) and q刊ヨxa)= 1 + q+(a) if x occurs in a. q-(vxa) = q―(a) and q+（ヨxa)= q+(a) 
otherwise. 

For sequents S。=（r ⇒ △),let nt+(So) = max{nt+(a) : a E△},ni(So)＝匹(ArコV△)， and

が(So)＝が(Arっv△)．

Lemma 4.3 The whole process generating the tree TR(So) for V(＋＋，-）ョ<+,-)_sequents terminates, and the 
number of V-gates along any branch in the tree TR(S0) is at most nt+(S0) + n古(So)・ dq, where d = 

吋＋（So)＋匹（So)+#VC(So) and q＝が（Sa).

Proof. We say that a formula a is an instance of a formula f3 if a is obtained from f3 by replacing some 
variables by variables and individual constants. 

Each major formula of a branching rule in the tree TR(S0) is an instance of a positive subformula of S。,
which is either implicational or universal. 

Consider a branching rule in the tree TR(S0) one of whose major formulas is a universal formula Vy1(y). 

0 (br)I s 

r,rぢ⇒,(a),,(a)co

r,rっ⇒△，△ぢ，△v
(br) 

where (Vy,(y)) E△v and a is the eigenvariable not occurring in r, rっ⇒Vn(y).
Suppose that there occurs a branching rule I above an upper sequent S, = (r, rぢ⇒,(a),,(a)co)

one of whose major formulas is a universal formula Vz o(z). Then the formula Vz o(z) is an instance of a 
subformula of 1(a)0 since (Lっ） isthe only rule where formulas are added to the succedent of the upper 
sequent, which may not be a subformula of the succedent of the lower sequent, and no universal quantifier 
occurs in premisses aP of antecedent implicational formulas a in V(＋+，-）ョC+,-)_sequents.

Therefore each universal positive subformula in s。isanalyzed at most once along any branch in TR(S。),
and there are at most nt+ (S0) applications of the branching rules along any branch whose minor formula is 

an instance of a universal major formula. This means that there occurs at most one instance of the matrix 
1(y) of a universal subformula Vy1(y) in S。alongany branch in TR(S0). 

Next consider a negative existential formulaヨyf3(y). Such a formula is analyzed in an inversion step 

9(b)°,r1，ヨyf3(y)⇒ △1，ふ（b），△ョ(b)C*

（ヨyf3(y))o, r⇒ △1，ふ

Once it is analyzed, it will be never analyzed again, since the formula f3(b) is in the antecedents in sequents 
occurring above the upper sequent. 

Since a new variable is introduced only when either a universal formula in succedents or an existential 
formula in antecedents is analyzed, each bound variable is replaced by at most one free variable along any 
branch. For each formula a occurring in S。,onlyone instance of a occurs in the whole tree TR(S。)of
deductions. Therefore the number of terms (free variables and individual constants) occurring in De(S0) is 
bounded by d. Furthermore along any branch, there is at most one instance a'of a positive implicational 
subformula a which is one of major formulas of a branching rule. As in Lemma 2.9 we see that there is at 

most one branching rule along any branch one of whose major formula is the instance a'. 

Therefore the number of V-gates along any branch in the tree TR(So) is at most nt+(So) + n";(So) ・ dq. 
Therefore the whole process generating the tree TR(S0) terminates. ロ

As for the propositional case, let us compute the value v（er) of the node er in the（八，v)-treeTR(S0). If the 
value v(0) is 1, then S。isderivable. Otherwise shrink the tree TR(S0) to a tree TC  TR(S。)ina bottom-up 
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manner. Simultaneously a structure fr(a) with a universe Dr(a) is assigned. Suppose v(a) = 0 for a node 

a ET with g(a) = I¥. Pick a son a* (i) such that v(a * (i)) = 0, identify the node a* (i) with a, and choose 
the underivable sequent S(a * (i)), which is a non-axiom leaf in the deduction Trs(,r)・ Let f(a)⇒ △(a) be 

the leaf sequent S(a * (i)) chosen from Trs(,r)• Then let Dr(a) = VC(S(a * (i)) and for a1,..., an E Dr(a) 
and n-ary predicate symbol R, R(a1,..., an) is true in the structure Ir(a) iff R(a1,..., a叫 cr(a)x. If 

g(a * (i)) = 0, then a will be a leaf in T. Otherwise g(a * (i)) = V, and keep its sons in a shrunken tree, i.e., 

び＊ （i,j) ET. 
Thus we have defined a Kripke model〈T,Ce,Dr,f砂
For each a ET, f(a)⇒ △(a) denotes the leaf sequent S(a * (i)) chosen from Tr5（び）・
From the construction we see readily the followings for any a, T E T. 

1. a Ce T⇒ r(a)x c r(T)又

2. r(a)⇒ △(a) is saturated. 

3. if an implicational formula a E△(a), then there exists an extension TE T of a such that aP C f(T)x 

and ac E△(T)へ

4. if a universal formula Vx a(x) E△(a), then there exists an extension TE T of a such that a(a) E△(T)X 
for a variable a. 

5. r（グ）xn △(a JX has no common atom, and..l ¢ r(a)又

Proposition 4.4 If a E f(a)x [a E△(a)x], then a巨a[a Fa], resp. in the Kripke model〈T,Ce,Dr,Ir〉.
Hence a F /¥ r(a) and a F V△(a). 

Proof. By simultaneous induction on a using the above facts. 

Theorem 4.5 (Schiitte's dichotomy) 
For any saturated sequent S。inV(++，-）ョ(+,-l,v(0) = 1 ijJL」mef--S。・

Corollary 4.6 There exists a constant c > 0 for which the following hold. 

口

Each intuitionistically valid sequent S。inthe class ¥/(＋+，→ョ(+,-)has a derivation 1J in L」m0such that 

1J is a binary tree and the depth of the tree is bounded by cnn for the size n = #(S。)ofthe sequent S,。.Also
the size of the sequents occurring in 1J is bounded by cnn. 

Corollary 4. 7 The decision problem of the intuitionistic validity for formulas in the class ¥/(＋＋,-）ョ(+,-)is 

solvable. 

5 Proof search in L」m

In this section we consider a proof search procedure for the full intuitionistic predicate logic lq over a finite 
language possibly with function symbols. Here a search tree may be infinite. 

L」mdenotes a standard sequent calculus m-G3i for the intuitionistic predicate logic lq in [17]. For example 
the right rule for existential formula is of the form. 

△⇒r,a(t) 

△⇒r (Rヨ）

where ::lxa(x) Er and the minor formula a(t) need not to be accompanied with its conclusion a(t)c. 

For sequents S, the search tree Trs is in general infinite due to the presence of universal formulas Vx a(x) 
in antecedents and existential formulas ::ly/3(y) in succedents. A formula is non-invertible if it is either an 
implicational formula or a universal formula. It is desirable for us that each stage in constructing the tree of 
deductions is executed in a finite number of steps. In order to do so, each stage tests only a finite number of 
free variables for universal formulas in antecedents and for existential formulas in succedents. Let {t;}; be 
an enumeration of all terms. Tm(A) denotes the set of all terms over a set A C FV of free variables, and 

let Tm(A)「n:= {t; E Tm(A): i < n}. 
Let n < w and A a set of free variables. A sequent r⇒ △ is (n, A)-satumted iff it is saturated with 

respect to propositional connectives V, /¥ as in Definition 2.3, and it enjoys the following conditions: 
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1. If aつ/3E f, then a E戸 and/3E △¥  

2. If（ヨyf3(y)) Er, then (/3(a)) E戸 fora free variable a E FV. 

3. If (::ly/3(y)) E△， then (/3(t)) E△x, and if ('efxa(x)) Er, then (a(t)) E rx for every t E Tm(A) 1n. 

An (n, A)-saturated sequent r⇒ △is (n, A)-analyzed if it is not an axiom, any marked formula a0 in r U△ 
is one of atomic formulas R(t1,..., tn)0,.1_0 (.1_0 ff_ r), or non-invertible formulas in△.An (n, A)-analyzed 
sequent is fully analyzed if there is no existential succedent formula [no universal antecedent formula], resp. 

Note that each fully analyzed sequent is (0, A)-analyzed for every A. 
(n,A): 

A deduction Tr'f/'~1 is constructed in a finite number of steps as for propositional case by leaving any 

non-invertible succedent formulas and applying (Lヨ），（Rヨ），（LV)up to the n-th terms in Tm(A). Put the 

given sequent S at the root of the tree Tr_~n,A). Th ・. The inversion steps for quantifiers are as follows. 

a(a)0,r，ヨxa(x)⇒△ 

玉xa(x)0,r⇒△ 
(Lヨ）

where the eigenvariable a does not occur in the lower sequent nor in the finite set A of free variables. 

Moreover a is chosen so that the condition (t) in the next subsubsection 5.1 is met. 

△ ⇒ヨxa(x),r, { a(t)0}tETm(A)柘{a(t)0}tETm(A)切,r,'efxa(x)⇒△ 

△ ⇒ r，玉xa(x)゚
(Rヨ）

'efxa(x)0,r⇒ △ 
(LV) 

All of terms in the finite set Tm(A)「nare tested for existential formulas in succedent and for universal 
formulas in antecedent. 

(n,A): 
Each leaf in Tr'f/'~J is (n, A)-saturated, which is either an axiom or an (n, A)-analyzed sequent if S is 

(n, A)-saturated. 

5.1 Extensions for non-invertible succedent formulas and postponed instantia— 
tions 

In a V-stage of our proof search for the predicate logic we examine all possibilities with succedent non-

invertible formulas by introducing a branching rule (br) as for the propositional case. Consider an (n, A)-
saturated sequent 

r,rっ，rv⇒△ョ，△，△り，△;

where r:::,denotes the set of unmarked implicational formulas, and rv the set of unmarked universal for-
mulas in the antecedent, resp.ふ denotesthe set of unmarked existential formulas,△り theset of marked 

implicational formulas, and and△v the set of marked universal formulas in the succedent, resp. r U△is the 
remainders. Each marked formula in r U△is an atomic formula R(t1,..., tn)0 or J_ 0 with J_ 0 ff_ r. Each 

unmarked formula in r is one of a disjunctive formula, a conjunctive formula and an existential formula. 

Each unmarked formula in△is either disjunctive or conjunctive. 
Assume that fv U△ョ U△;u△v c/ 0. The sequent may follow from several sequents. Let us depict the 

several possibilities as an'inference rule'as follows. 

r,rっ，閂 ⇒△g，△，△；，△v {,°,r,r~,rv ⇒ 6°: （1つ8)0E△ら｝ ｛r,rら，rv⇒,(a)0: (Vy,(y)) E△9} 

r,rっ，rv⇒△ョ，△，△ら，△9
(br) 

where the sequent r, rっ，rt⇒ △g，△，△ぢ，△vis absent when fv Uふ＝ 0,and a is an eigenvariable distinct 
each other for universal formulas (Vy1(y)) E△v and chosen such that the condition (t) below is met. 

If one of upper sequents of (br) is derivable, then so is the lower sequent possibly using one of non-

invertible inference rules (Rつ） and(RV). Each upper sequent 1°,r,rら閂 ⇒6° with (1つ5)0E△り and

each r,rぢ，鍔⇒1(a)0with (Vn(y)) E△vis said to b v is said to be a non-invertible upper sequent of the inference rule 
(br). While the leftmost upper sequent r, r ::i,鍔 ⇒△ふ△，△＄，△vis the continued sequent. Here is the 
condition on eigenvariables. First each eigenvariable is distinct each other, and 

(t) each eigenvariable occurs only either above the inference rule or 
in the right part of the inference where the variable is introduced. 
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This means that if a is the node of the upper sequent of the inference rule where an eigenvariable a is 

introduced, and a occurs in the sequent at a node r, then either a Ce r(, i.e., T is above a) or p * (i) Ce a 

and p * (j) Ce T for some p and i < j (, i.e., Tis right to a). 
As in the propositional case of Definition 2. 7, let us construct a tree TR(S0) C <w w for a given sequent S。.

The tree TR(S。)isconstructed in w-steps. TR(S叫 denotesthe piece of TR(S0) in the nth step such that 

for each a E TR(So)n, the length lh(a) :Sn. The labeling function (S(a), d(a), g(a)) for a E UnEw TR(So)n 
is defined simultaneously in the construction of TR(S0). 

Let S(r) be the sequent at the node Tin TR(S0), and FV(r) the set of free variables occurring in the 

sequent S(r). A finite set FVc,(a) of free variables is assigned to sequences a E TR(So) as follows. The set 
is finite since the tree TR(So)n C <n+lw is finitely branching. 

FVc,(a) = LJ{FV(r)：ヨp(pCe a&p c~ TE TR(So)lh(a))} 

where 

p C~ T：⇔ p Ce T＆'ef/'i,[p Ce 1'i,呈 r&g(/'i,)= V⇒r(lh(/'i,)) = O] 

with the i-th component T(i) of sequences T for i < lh(T) ．び c~ T means that T continues to substitute 
terms for'efy in antecedents andゴxin succedent for any V-stage after a. 

Let us denote 
Tr,,:= Tr 

(lh(a),FVc, (a)) 
S(a) 

De(S0) denotes the whole tree of deductions obtained from TR(S0) by fulfilling intermediate deductions, 
and is constructed recursively. Each /¥-stage analyzes the current leaves parallel as in the propositional case. 
After the /¥-stage, we extend the tree by non-invertible (br) inference rules in V-stage. In each moment 

De(S0) is constructed so that the condition (t) on eigenvariables is met. 

Definition 5.1 Given a sequent S。=（r。⇒△。),letus define trees TR(So)n C <n+lw, and a labeling 

function (S（び），d（び），g（u))forびETR(So)n, where S(u) is a sequent, g（u) E {V, A, 0, 1} is a gate and d（u) 
is a deduction possibly with the branching rule. 

First the empty sequence 0 E TR(S0)。=｛0} and S(0) = S。whereeach formula in S。ismarked. Let 
FV(0) be the set of free variables occurring in S。ifthe set is non-empty. Otherwise FV (0) = { a0}. If S。is
an axiorn, then g(O) ＝ 1. If S。isfu~'.X analyze~, _then g（り） ＝0. ~f q(0) E 1?, 1}, t~en d(0) is the deduction 
consisting solely of S。.Otherwiseg(0) = /¥ and the tree is extended according to the /¥-stage. 

Suppose that T R(S叫 hasbeen constructed, and there exists a leaf u E TR(S叫 suchthat g（u) E {A, v}. 
(Otherwise we are done, and TR(So)n+i is not defined.) If n is even [odd], the tree is extended according 
to the /¥-stage [according to the V-stage], resp. 
/¥-stage. Consider each leafび ETR(S叫 withg（u)= /¥. Extend the tree De(S。)byputting the deduction 

d(u) = Tr,, for each such u. Let｛ふ｝i<lbe an enumeration of all leaves in d(u). For each i < I, let 

び＊ （i) E TR(So)n+l with S(u * (i)) = S;. If S; is an axiom, then g(u * (i)) = 1. If S; is fully analyzed, 
then g（び＊ （i)) = 0. Otherwise S; is not fully analyzed, but (lh(u),FVc,(u))-analyzed. This means that 
either its antecedent contains a universal formula, or its succedent contains either an existential formula or 
a non-invertible formula. Let g（び＊ （i)) = V, and the tree is extended according to the V-stage. 

TR(So)n+l is defined to be the union of TR(So)n and nodesび＊ （i) for each leaf u E TR(So)n such that 

g(u) = I¥ and i < J. 
V-stage. Consider each leafび ETR(So)n with g(u) = V. Extend the tree De(So) by the inference rule (br) 

parallel for each such u. 

LetS(u) = S. Sisanon-invertiblesequentr,rっ， rv ⇒ ふ，△，△〗，△V where cedents r, rっ，rv，△ョ，△，△り
and△v are defined as in the beginning of this subsection, and rv U△ョ U△ら U△v /c 0. Let S（び＊ （0)) 
be the sequent r, rっ，rv⇒ △]，△，△＄，△v・ Let△; =｛町｝O<j:".Jつ， and凶＝国｝らくi:".Jv・ Then 
び＊ （j) E TR(So)n+i for each j with O :S j :S Jv. For j > 0 the sequent S（び＊ （j)) is defined by ana-
lyzing the j-th non-invertible formula街． Namelyif /3j =（ァニ） ,5),then S(u * (j)) = (,0, r, rら，rv⇒,50).

If /3j = ('efy1(y)), then S（び＊ （j)) = (r, r;, rv⇒1(a)0) where the eigenvariables a are fresh, i.e., do not 
occur in any S(T) for TE TR(So)n, and distinct each other for ('efい (y))oEふ． d(u)denotes the deduction 
consisting of a (br) with its lower sequent S = S（び）．

Let g（u * (j)) = 1 if S(u * (j)) is an axiom, and g(u * (j)) = 0 if it is fully analyzed. Otherwise let 
g(u * (j)) =/¥and the tree is extended according to the /¥-stage. 

TR(So)n+l is defined to be the union of TR(So)n and nodesび＊ （j) for each leafびETR(So)n such that 

g(u) = V and j :S Jv・

Finally let TR(So) = UnEw TR(So)n. 
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Let 0 =J T C T R(S0) be a subtree of T R(S0) such that g（a-) =J 1 for any <T ET. Let us construct a Kripke 
model〈T,Ce,DT,JT〉asfollows. 

Definition 5.2 1. For S（び） ＝ （r（0)⇒ △(a-)), let r00(T;T) = U{r(p)X : Tc~ p ET}, r巴（び；T)= 
U{r00(T;T): T Ce a-}, and△00(T;T) = LJ｛△（p)x : Tc~ p ET}. 

Note that r（a-)X C rooに；T)er巴(a-;T) and△（a-)X C△00(a-; T) for a-ET. 

2. Let DT(a-) = Tm(F唸 (a-;T)),where FV00(T;T) = LJ{FV(p) : T c~ p ET} and FV,ご(a-;T)= 
LJ{FV00(T;T): T Ceび｝．

3. For a-ET and an n-ary predicate symbol Rand function symbol f, letだ＝ ｛（tl,・・・,tn): tl,・・・,tn E 
Dパa-)& R(t1,..., tn) Er巴(a-;T)} and j"(t1,..., tn) = J(t1,..., tn) for ti,..., tn E DT(a-). 

4. IT（び） isa structure with its universe Dパa-)and relations R" and functions f四

Proposition 5.3 Let 0 =J T C TR(So) be a subtree of TR(So) such that g（a-) =J l for anyび ET. Then 
〈T,Ce,DT,JT〉isa K ripke model. 

Proof. LetびCeT for <T,T ET. Then FV/!',,(a-;T) C FV,巴(T;T), and hence D亨） cD正）． Moreoverwe 
haver乞(a-;T)cr巴(T;T),and Ra CRT. ロ

A pair r⇒ △of (possibly infinite) sets r，△ of formulas is A-satumted for a set A of free variables iff it is 
(n, A)-saturated for any n. This means besides the saturation with respect to propositional connectives and 
existential formulas in r that if（ヨyfJ(y)) E△， then (/3(t)) Eぷ， andif (¥/xa(x)) Er, then (a(t)) E戸 for
any t E Tm(A). A-saturated pair r⇒ △is A-analyzed if上¢戸 rand△h as no common atomic formula. 

p roposition 5.4 Let 0 =J TC  TR(S0) be a subtree ofTR(S0) such that g(a-) =J 1 for any <TE T. Suppose 
that T enjoys the following conditions for anyび ET.

1. r巴（び；T）⇒△00(a-;T) is FV,ご（び；T)-analyzed.

2. {a) If (aつ/3)E△00 (a-; T), then there exists an extension T E T of a-such that a E r巴(T;T) and 
/3 E△00(T;T). 

{b) If(¥/xa(x)) E△°°(a-; T), then there exist an extension T E T of <T and an a E FV,巴(T;T)such 
that (a(a)) E△00(T;T). 

(c) r巴(a-;T)n△00( a-; T) has no common atomic formula. 

Let <T E T and a be a formula all of whose free variables are in the set D玉）． Inthe Kripke model 
〈T,Ce,DT,IT〉,ifa E r巳（び；T),then <T p= a, and if a E△00(a-;T), then a-~ a. Hence a-F八r（び） and

び ~v △（び）．

Proof. This is shown by simultaneous induction on a:. Consider the case when a: is an atomic formula 
R(t1,..., tn)- By the assumption we have a: !/. r巴(u;T)n△呵u;T). Hence if a: E△可u;T),then 
a !/. rぞ立；T),i.e.，び f"a:. On the other side if a: E巧立；T)and t1,..., tn E DT(u) by the assumption, 
then u Fa:. 

Next consider the case when a:三 (Vx/3(x)).Suppose a: Er巴（び；T).For any extension T ofびinT, i.e., 
CY Ce T E T, a E f巴（び；T）c r乞(r;T).f3(t) E f巴(r;T) for any t E I祈(r)by the supposition. By IH 
T巨f3(t).HenceびFa:. Next suppose a: E△呵び；T).Then by the supposition, for an extension T E T of 
u and a free variable a E FVJ!'. (r; T), we have/3(a) E△可r;T).Hence a E DT(r) as long as a occurs in 
/3(a), and T f" f3(a) by IH. Thus u f" a:. Other cases are seen easily. ロ

The first condition (1) and the second (2a) and the third one (2b) in Proposition 5.4 are easily enjoyed 
when T has sufficiently many nodes, i.e., when nodes are prolonged in T unlimitedly. It is hard to meet the 
fourth one (2c). Obviously the tree TR(S0) of the deductions enjoys the conditions besides the fourth one. 
But r巴（び；TR(S0))n△呵u;TR(S0)) may have a common atomic formula for au E TR(S0) with g(u) = V. 

Proposition 5.5 Let 0-/-TC  TR(S0) be a subtree ofTR(S0) such that g（u) -/-1 for any u ET. Suppose 
that each /¥-gate has a unique V-gate son in T. Then r=（u;T)n△~（u; T) has no common atomic formula 
for any u ET. 
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Proof. Suppose that r00 (a; T) n△00(a; T) has a common atomic formula a. Let a C~ Pa, Ps E T be such 
that g(pa) -/-1, g(ps)ヂ1and a E代 (Pa)n△x (p8). We see that Pa and Ps are comparable in the order 
Cぶsinceeach /¥-gate has a unique V-gate son in T, and each V-gate has a unique son, i.e., the leftmost 
continued one in C~. Then a E戸 (p)n△x (p) for a common extension p E {Pa, Ps}, and S(p) is an axiom. 
This is a contradiction 1 = g(p) -/-1. ロ

5.2 Completeness 

In order to have the Schiitte's dichotomy, we need to transform the tree T R(S0) of deductions, cf. subsection 
5.3. However when we need only to show the completeness of L」mwith the cut rule (cut) denoted L」m+(cut),
one can extract a consistent tree T from TR(S0) by which S。isrefuted provided that S。isnot derivable 
in Um+ (cut). In this subsection we consider the tree TR(S0). For formulas a,び denotesambiguously 
formulas obtained from a by binding some (possibly none) free variables by universal quantifiers. 

For formulas a and /3, EFJ(a, /3) denotes the formula'efx(,（豆）つ (,5（豆）V/3)) if a is a formula'efx(1(五）つ 6（豆））
for a (possibly empty) list x of bound variables, where召doesnot occur in /3. Otherwise EFJ(a,/3)：二 (av/3). 

For sequences a = ao, a1,..., °'n-1 of formulas a;, let EFJ(a, /3)：= EFJ(ao, EFJ(a1, ・ ・ ・, EFJ(an-1, /3) ・ ・ ・)), and 
ざ賃，/3)denotes formulas EfJ v (a。,EfJV(a1, ・ ・ ・, EfJV(an-1, /3) ・ ・ ・)). 

For the sequent S（び） ＝ （r（a)⇒ △（a)) let x(a)：⇔ (/¥rに）っv△(a)).
Let T c TR(S0) be a finite subtree such that for eachび ET, if g(a) = !¥, thenび hasa single 

sonび＊ （i) in T. And if g(a) = V, then either a is a leaf in T, or a has all of sonsび＊ （j) in T, i.e., 
'efj[a * (j) ET⇔ a* (j) E TR(So)]. Moreover g（a) E {O, V} for any leaves a in T. Such a tree T is called 
a selected tree. Following [6] let us introduce characteristic formulas x（a; T) for nodes a of such a tree T 
recursively as follows. Recall that FV(a) denotes the set of free variables occurring in the sequent S(a) for 

び ETR(So)-
For leaves a in T, x(a;T) = x(a). Let a E Tbe aninternalnodewithg(a) = /¥, anda*(i) the unique son 

of a in T. Also let x（び＊ （i);T)二 a(a)where a is the set of eigenvariables of inference rules (Lヨ） occurring
between the leaf S(a* (i)) and the root a of the deduction Tr". Then let x（び；T):==ゞ (a*(i); T) :=='ef和（豆）．

Let a E T be an internal node with g(a) = V, and a * (j) (j・::;Jv) all of sons of a in T, where 
△v=｛均｝ゎ<j:',Jvfor the set△v of marked universal formulas in the succedent of S(a). For each j with 
Jっ<j::; Jv let x(a * (j); T) = a(a) for the eigenvariable a introduced at the j-th upper sequent S(a * (j)). 
Then forゞ （び＊ （j);T)三 'efxa(x), let 

x(a; T) = EfJ (x(a * (O); T), O<~又Jっ x(a * (j); T) vらくySJvゞ (a*(j);T))

Finally let x(T)：三 x(a;T)for the root a in T. 

p roposition 5.6 1. L」m+ (cut)卜 av gコ①(a,/3). L」m+ (cut)卜①(a，上） ⇔ a ⇔ EfJ(上,a)and 
L」m+(cut)f--翌（炉(a,/3),,)⇔炉(a,/3V1).

2. Let T C TR(S0) be a selected tree, andび bea leaf in T. Then there exist formulas a such that 
L」m+ (cut) f--x(T)い①刈a,x（び））．

3. Let g(a) = I¥ and L」m+ (cut) f,I EB"'（ふ①(x'l(a),/3)) for some formulas a, /3. Then there exists a leaf 
a* (i) in the deduction Tr" such that Um+ (cut) f,I EE立＇（ふ① (xv（び＊ （i)), /3)). 

4. Let g(a) = V and L」m+ (cut)げむ1"(a,①（x(a),/3))for formulas a,{3. Then for eachj there exists a 

leaf a* (j，り） inthe deduction Tr "*(i) such that L」m+ (cut)げ①（a,①（①(x(a* (O,io)), V。<J<Jっx(6* 

(j,り)） VVむ <JSJvx刈び＊ （j,り））），/3)).

5. Let Tc  TR(S0) be a selected tree. Assume L」m+ (cut)げx(T). Then for each leaf a E T and each 
j there exists a leaf a * (j,り） inthe deduction Tr "*(i) such that L」m+ (cut)げx(T')for the tree T' 
obtained from T by extending each leaf a to a * (j)，び＊ （j,り）．

Proof. 5.6.2 is seen by induction on the size of the tree Tusing Proposition 5.6.1. 
5.6.3 is seen by inspection to inference rules in L」mexcept non-invertible ones (Rつ） and(RV). 
5.6.4. Assume g(a) = V and L」m+ (cut)げ①（d，EB(x(a),/3)).Then 

L」m+ (cut)げ①（d，①(EB(x(a* (0)), Vゞ (a*(j))),/3)) 
j>O 
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by the definition of the rule (br). In other words, 

L」m+ (cut)げ①（＆心（x(a* (0)), Vゞ (H(j))V/3））．
J>O 

By Proposition 5.6.3 pick an i0 such that 

L」m+(cut)f,IEB(＆心（ゞ (a*(O,io)),Vゞ (a*(j)) V/3））． 
J>O 

Hence 

L」m+ (cut) t,"①（ふ①（CD(ゞ (u*(O,io)), Vゞ (u* (j))) V/3，x（び＊ （1)))). 
J>l 

Then again by Proposition 5.6.3 pick an i1 such that 

L」m+ (cut)尺（ふ①（①（ゞ (u* (0, io)), Vゞ (び＊ （j))) V/3，x （び＊ （1,釘））））．
J>l 

In this way we can pick numbers ij so that 

L」m+ (cut)旦（ふ攣（ゞ(u* (0, io)), Vゞ (u* (j占）））9/3））．
J>O 

5.6.5. Letび bea leaf in T. By Proposition 5.6.2 we have L」m+ (cut)卜 x(T)り①刈a,x（u))+-+ 
〶噴，①（x(u), 上）） for some formulas a. On the other side the formula x(T') is obtained from x(T) by 

replacing x(u) by 〶（ゞ（u * (0, io); T), V。く区Jコゞ (6* （j, り)； T)VVわく区J~ ゞ(u * (j，り）；T))for the le叫書 6
in T. Thus the proposition is seen from Proposition 5.6.4. ロ

Supposing the given sequent S。isunderivable in Um+ (cut), let us pick a tree TC  TR(S0) for which 

the following holds. Let Tn = { u E T : lh(u)：：：：： 2n + l}. 

1. for anyびET,g（び） E{O, II, V}, 

2. 0 E T, and there exists a unique son (i) of 0 in T such that L」m+(cut)げS((i)).Namely 71。=｛0, (i)}. 

Let x(To) == x((i)) = (/¥川（i))っv△((i))).Then L」m+ (cut)げx(To)-

3. for anyび ETn with g（u) = V, every son u * (j) E TR(So) is in Tn+1, and there exists a unique son 

び＊ （j,り） foreach j. Namely Tn+l = Tn U｛び＊ （j),び＊ （j,朽） ：び ETn,lh（u) = 2n+ l}. 

Let lh（u) = 2n + 1 and assume Um+ (cut)げx(Tn)-The sons (j,り)arechosen so that L」m+ (cut)げ
x(Tn+1)-Such an extension is possible by Proposition 5.6.5. 

It is clear that Tis a subtree of TR(S0) such that g(u) cJ 1 for anyび ET, and each /¥-gate has a unique 
V-gate son in T. 

Lemma 5.7 For u ET, r巴(u;T)⇒△00(u;T) is FV,己(u;T)-analyzed, and r巴(u;T)n△00(u;T)has no 

common atomic formula 

Proof. It is easy to see that for any TE T,上tf.rx (r), and hence上tf_r巴（び；T).

Since each term over the set F唸 (a;T) is eventually tested for universal antecedent formula and exis-
f tential succedent formula in the extensions T ofび witha c~ T r°°(a;T)⇒△OO 

Ce (a;T) is FV,ご（び）—saturated.
Suppose that a is a common atomic formula in r巴(a;T)and△00(a;T). Let a1 ET  be such that 

g（び1)-/-1, a C~ a1 and a E△(a1)ぺ Alsolet p,a。ET be such that g（びo)ヂl,p Ce a, p C~ びo and 
a € r（びo)x.We seep已ea from Proposition 5.5, a tf. r00（び；T)n△00(a;T).

We see that p r/-~ a, otherwise a。andび1are comparable in the order Cぶandone of sequents S(a0) 
and S(a1) would be an axiom with 1 E {g（びo),g（び1)}.Therefore there exist a μ and an i -/-0 such that 

p Ceμ,μ* (i) Ce a and g(μ) = V. Letμ be the lowest, i.e., the shortest such sequence. Then p C~ μ and 
μ * (O) c~ ワ0. We can assume that p = μ. In other words p is the infimum of a0 andび1・

S（びo):a,Il。⇒A。 S(a1): Il1⇒ふ，a

:d。:dl 
恥 ⇒△。．．． r1⇒ふ

S(p) : r⇒△ 
(br) 
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Let 2n + 1 := m訟 {lh(u0),lh（叫｝． Leta be an eigenvariable of an inference rule occurring between u1 
and p. If the variable a occurs in the formula a, then so does in the sequent S（uo) : a, II。⇒A。,andthis 

contradicts (t). Hence the variable a does not occur in the formula a. 
There are formulas(3and cp(a) such that Um+ (cut)卜x(p;Tn)⇔ ((a!¥(3）つ cp(a))v,where a occurs in 

孤a)possibly in the scopes of V, V and in the succedents ofつ， butno universal quantifier binds free variables 
in a. Namely cp(a) is in the class i[>(a) such that a E i[>(a), cp(a) E i[>(a)⇒ {(3Vゃ(a),((3つcp(a))v}c i[>(a) 
for any(3．No universal quantifier in ((3つcp(a))vbinds free variables in a since a universal quantifier in 
(/3つcp(a))'Ibinds an eigenvariable of an inference rule occurring betweenび1and p. 

We see inductively that L」m+(cut) f---aつcp(a)for any cp(a) E i[>(a). Hence L」m+(cut)卜x(p;Tn), and 
L」m+ (cut)卜x(Tn)by Proposition 5.6.1. On the other side L」m+ (cut)げx(Tn)-This is a contradiction. 

ロ

Theorem 5.8 Suppose that L」m+(cut)¥1 s。.EachK ripke model〈T,Ce,DT,JT〉falsifiesthe given sequent 
S。,nomatter which tree T is chosen. Hence L」m+ (cut) is intuitionistically complete. 

Proof. T enjoys the conditions in Proposition 5.4. The fourth condition (2c) follows from Lemma 5.7. 

Hence for S。=S(O) ＝ （r(O)⇒ △(O)）， 0 F Ar(O) and o片V△(0)in the Kripke model〈T,Ce,DT,JT〉
defined from the tree T. ロ

5.3 Transfer 

It may be the case that for aびETR(So), r已（び；TR(S。))n△00(u;TR(S。)） hasa common atomic formula, 
and we need to transform TR(S0). 

We consider a transformation of deductions inspired by the transfer rule in [6]. The tree TR(S0) of 

deductions is transformed to another tree TT R(So) in which there is no u such that r巴(u;T)n△00(u;T) 
has a common atomic formula, where T is a subtree of TT R(S0) such that each /¥-gate has a unique V-gate 
son in T. 

Let us modify the inference rule (br) by combining a weakening as follows. 

II, r, r::,, rv⇒A，△3，△，△3，ぷ｛,0,r,r;,rv⇒150:(,つ 15)0Eふ｝

rr,r,rっ，rv⇒A，ふ，△，△ら，△し

where II and A are arbitrary cedents. 

Moreover let us introduce the following inference rule. 

r,rv,rv⇒ △g，ふ，△
r,rv⇒ふ，△

(o) 

{r,rs,rv⇒1(a)0 : (¥/y1(y)) E△v} 
(wbr) 

where fv is the set of unmarked universal formulas in the antecedent of lower sequent,△ョ theset of unmarked 
existential formulas in the succedent. 

Let T be a (finite or infinite) labelled tree of deductions in which the inference rules (wbr), (o) may occur 
besides inference rules in L」m,and S(cr) is a sequent for er ET. Suppose that the tree T of deductions enjoys 

the condition (t) on the eigenvariables. For er戸 1E T, we say that a pair (era, cr1) is a transferable pair if 
the following conditions are met, cf. the proof of Lemma 5.7: 

1. The antecedent of S(cr0) and the succedent of S(cr1) have a common marked atomic formula a0. This 

means that S (cr0) is a sequent a0, II。⇒A。,andS（叫 isII1⇒A1, a0 for some cedents II;, A;. 

2. Each inference rule at er。andat the infimum p ofびo直 1is a (wbr). 

3. No non-invertible upper sequent occurs from S(cro) to S(p* (0)) in the deduction, i.e., p C~ cr0 = P* K,o 
for some K,o = (0) * K,~, and p呈 cr1= p * K,1 with p嬬 cr1for some K,1 = (i) * K,~ and iヂ0.

All of transferrable pairs have to be removed from the constructed deduction in proof search to avoid an 
inconsistency in the definition of Kripke models, cf. Proposition 5.4 and Lemma 5.9. 

For this, let us transform the tree TR(S0) of deductions to another tree TTR(S0). The gate g(cr) is 

changed simultaneously in the transformations. 
Let TTR(S。,0)= TR(S0) with the same labeling functions S(cr,O) = S(cr), d(cr,O) = d(cr) and g(cr,O) = 

g(cr). Suppose that TTR(S。,n)has been defined. Pick a minimal transferable pair (cro,cr1) in TTR(S。,n),
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where the minimality means that the length lh(p) of the infimum p of a。anda1 is minimal. Let ai = p *凡

for i = 0, 1. 

P*向： a0・,II。⇒A。 P*凡： II1⇒A1,ao

: d。:d1 

rr,r,rっ，鍔 ⇒頌，△，△；，△v,A ．．．几，r;,r;⇒ふ

p:II,r,rっ，rv⇒△ョ，△，△3，△v,A
(wbr) 

where d。denotesa deduction of the leftmost continued sequent up to p * lio, and d1 a deduction of a 

non-invertible upper sequent r,r;,r;⇒ふuptop* /'i,1. 
Then let us combine these two deductions, and transfer the current tree TT R(S,。,n)by the pair（びo，叩

to get TTR(S。,n+1). 

P*向＊向： a0,II。,a'o'Ilb⇒Ab,A。 p* Ko * K1 : a0, II1⇒A1,a゚

: a°恥＊ db*A。:a° * d1 

a0,II。,rr,r,r:::J，rv⇒△合，△，△＄，△v,A,A。.．． a0,r1,r~昇 ⇒ ふ
P*向： a0,II。,rr,r,rっ，rv⇒ふ，△，△3，△v,A,A。

: r2 *do*△2 

rr,r,r:::J，q,r,r:::J，rv⇒△ョ，△g，△，△;，△v,A

p:II,r,r:::J，rv⇒ふ，△，△ぢ，△v,A
(0) 

(wbr) 

where p *Ko*凡： a゚'II1⇒Ai,a0 is an axiom, a0 * di is a deduction obtained from di by appending 

a0 to antecedents.応＊ do＊ふ isa deduction obtained from d。byappending r2 = II Ur U r:::Ju rv to 

antecedents andふ＝ふu△U△ぢU△似JAto succedents. a0II。*db*A。isa deduction obtained from do by 
appending a0 U II。tothe antecedents, A。tothe succedents, and renaming eigenvariables from ones in d。for

the condition (t) on eigenvariables. a10 (IIb) [Ab] is obtained from a0 (II。)［A0] by renaming free variables 
which are introduced as eigenvariables of (Lヨ） indo, resp. The above deduction is said to be tmnsferred by 

the pair (u0, ui) (and the common atomic formula a0). 
Let g(u, n+ 1) E {O, 1, V，八｝ bethe gate labeling function for the transferred deduction. In the transferred 

deduction, each sequent up to p * 1.0 : a0, r，応ぶ ⇒ふ，△,梵，凶 receivesthe same label μ and the same 

gate g(μ, n + l) = g(μ, n) as in the original deduction, e.g., g(p, n + l) = V = g(p, n) and g(p * (0), n + l) = 

八＝ g(p* (0), n). On the other side in the above part of p * 1.0 : a0, r, rっ，rv⇒△ョ，△，△ぢ，△v,insert 

Ko to each label whereびo= p * Ko. g(p * Ko * Ko, n + l) = g(p * Ko, n + l) = V = g(p * Ko, n). In the 
transferred deduction TTR(S:。,n+ l) the gate of the node p *Ko*氏ibecomes 1, g(p * Ko *凡，n+ l) = 1, 

since S(p *Ko* Ki,n + 1) is an axiom. Below the axiom p *Ko* Ki, modify the values of gates as follows. 

Let T1 = p * Ko * μ for T = p * μ with 0 c/ μ呈 Ki-Consider the case when g(T,n) = V. If there exists an i 

such that g(T * (i), n) = 1, then g(T1, n + l) = 1. If g(T * (i), n) = 0 for any i, then g(T1, n + l) = 0. Second 

consider the case when g(T, n) = /¥. If there exists an i such that g(T * (i), n) = 0, then g(T', n + l) = 0. If 

g(T* (i), n) = 1 for any i, then g(T', n+ 1) = 1. In all other cases the gate is unchanged, g(T', n+ 1) = g(T, n). 

Some gates might receive the value 1 by this modifications. 
Let us check the conditions on multi-succedents and eigenvariables. Since there is no non-invertible upper 

sequent from p to p * Ko, we can append formulas in A。andformulas in△2=△ョ U△ u △ぢ U△v to the 

succedents. Next consider a free variable a occurring in a. Assume that a is introduced as an eigenvariable 

ofan (Lヨ） or a (wbr)（， which subsumes (Ry)） between p and p＊町 ind1. But the variable a occurs in p*Ko, 
and this is not the case by (t) since p * Ko is not above the inference rule nor to the right of it. Furthermore 

free variables occurring in応 U△2 is distinct from eigenvariables of (Lヨ） occurringin do since p is below do. 

Iterate the transformations to yield a tree of deductions TTR(S0), in which there is no transferable pair. 
This ends the construction of TT R(S0) C <w w, where 

TTR(So) = 1杷悶fTTR(S。,n)=LJn TTR(S:。,m).
n m>n 

S(a,n),d（び，n),g(a, n) are labeling functions of sequents, deductions and gates for the nodes a E TTR(S。,n).
Let for a E TTR(So) 

S(a) = lim S(a, n 
n→OO 
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如） ＝ lirn d(a, n （） 
n 

如） ＝ lirn g(a, n) 
n→~ 

These limits exist since for any k there exists an nk such that for any m and any transferable pair 
（びo，び1)in TTR(S。,nk+ m), lh(p) > k holds for the infimum p of cr0，び1-Then S(cr, nk + m) = S(cr, nk) 
and d(er, nk + m) = d(er, nk) for any m and any er with lh(er) <:'. k. Furthermore for such a er, the series 
{g(er，加＋m)}mchanges the values monotonically, g(er，狐十m)S g(er, nk + m + l) in the order V, /¥ < 0 < 1 
on {O, 1, V, /¥}. Hence the limit g(er) exists, too. 

Lemma 5.9 Let 0 -/c T C  TTR(S0) be a subtree such that Ver E T[g(er) -/c 1] and each /¥-gate has a unique 
V-gate son in T, i.e., Ver E Tヨ！i[g(er)= I¥⇒g(er * (i)) = V & er* (i) E T]. Then for er E T, there is no 
common atomic formula in r巴(er;T)n△可er;T).

Proof. Suppose that a is a common atomic formula in r乞(er;T) and△呵er;T). Let er1 E T be such that 
aE△（び1)xand er C~ び1 ・

First consider the case when a E r(To)X for some To Ce er. Then a E I'(er1)x. This means that S(erりis
an axiom, and g(er1) = L Let p，びaE T be such that g(ero, lh（びa))= V, p Ce er, p C~ びa and a E r(ero)又
We see a !f_ r=(er; T) n△呵er;T) from Proposition 5.5, and p <;;e er. Furthermore p r/-~ er otherwise er。
and er1 are comparable in the order C~, and one of sequents S(er0) and S(er1) would be an axiom with 
1 E {g（びO,lh（ero)),g(er1,lh（び1))}.Therefore there exist a T and an i -IO such that p Ce T, T * (i) Ce er and 
g(T, lh(T)) = V. Let T be the lowest, i.e., the shortest such sequence. Then pc~ T and T * (0) c~ er。.This
means that (er0,er1) is a transferable pair. Such a pair has been removed from TTR(S。,n)for an n, and 
from TTR(S0). Hence this is not the case. ロ

Theorem 5.10 (Schiitte's dichotomy) 
In TTR(S0), g(0) = 1 iff L」m卜S。.

Proof. If g(0) = 1, then it is plain to see that L」mf-S。・
In what follows assume g(0) -/c L Then g(0) E {O, /¥}. Extract a subtree TC  TTR(S0) as follows. First 

0 ET. The nodes er ET with g(er) = 0 are leaves in T. Suppose er E T has been chosen so that g(er) = /¥. 
Then in the deduction d(er), pick a leaf er* (j) such that g(er* (j)) -/c L If g(er* (j)) = 0, then we would have 
g(er) = 0. Hence g(er * (j)) = V, and g(er * (j,i)）-/c 1 for any son er* (j, i). Moreover there exists an i such 
that g(er * (j, i)) -/c 0. Otherwise we would have g(er * (j)) = 0. Let er* (i), er* (j, i) ET for any i such that 
g(er * (j, i)) = /¥. 

Then T enjoys the conditions in Proposition 5.4. The fourth condition (2c) follows from Lemma 5.9. 

Hence for S。=S(0)= (r(0)⇒ △(O)）， 0 ← A「(0)and 0 ~ V△(0) in the Kripke model〈T,Ce,Dr,Ir〉
defined from the tree T. Therefore L」m~s。．ロ
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