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An effective study of continued fractions 

and applications 

八杉満利子，辻井芳樹，森隆一

Mariko Yasugi, Yoshiki Tsujii, Takakazu Mori* 

1 Introduction 

We have worked on computable aspects of real functions which are not 

necessarily continuous. 1 In [6], we developed a theory of IB(irrational 

based)-cornputability, which yields a unifying method to deal with such a 

theme. IE-computability means roughly that effectivity of acquiring func-

tion values as well as modulus of continuity is required only for computable 

sequences of irrational numbers. 

Basing the notion of computability of real numbers and functions on 

computable sequences of irrational numbers (not on recursive rational se-

quences) was a natural arrival point due to the fact that a computable 

sequence of irrational numbers can be uniquely represented with a recur-

sive (double) sequence of positive integers (except the first one) in terms 

of continued fractions, and so various properties of computable objects can 

be shown by dealing with recursive sequences of positive integers. It is 

therefore important for us to study some effective properties of recursive 

continued fractions and their applications to mathematics. 

There are several characterizations of computability of a real number, 

including the the one in terms of continued fraction representation. For a 

good survey, the reader is referred to [l]. 

Here in this article, we first review recursive continued fraction represen-

tations of computable irrational sequences (Section 2). Then, we introduce 

the notion of'initially computable sequences of irrational numbers'whose 

continued fraction representations are recursive and, based on it, re-define 

the computability structure on the continuum (CF-computability), showing 

*yasugi, tsujiiy, morita, @cc.kyoto-su.ac.jp 
1General surveys are seen in [4] and [5]. A list of references is provided in [6] and [7]. 
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that CF-computability is, as a family of sequences, identical with traditional 

computability (Section 3). 

Applications of continued fractions in [2] involve mostly irrational num-

bers alone. So, in relation to Sections 2 and 3, we present effectivizations of 

some theorems in [2]: Liouville's theorem (Section 4), Quadratic irrational 

number theorem (Section 5) and Kuz'min's result (Sections 6 and 7). 2 

2 Recursive continued fraction representation 

and computability of irrational sequence 

We employ technical terms, notations and theorems concerning continued 

fractions from [2]. Some frequently used notations and terminologies are 

listed below. A = [ a0; a1, a2, • • •, ak, • • •] will denote an infinite sequence, 

where a。isan arbitrary integer and ai for each i 2 1 is a positive integer. 

A provides a regular continued fraction 

ー
ao + 

ー
釘＋

1 
a2 + 

1 
的＋

四＋・．

and hence A will be identified with this continued fraction. 

It is known that A represents an irrational number, say a, and that, 

conversely, any irrational number is uniquely represented with an infinite 

continued fraction. A will be called the continued fraction representation of 

a. There is a one-to-one corresponedence between irrational numbers and 

the representations in the form of A. We will hereafter identify them. 

Given an A as above, Bk三 [ao;a1,a2,・・・,a吋willbe called the k-th 

initial segment of A, and will be regarded as a finite continued fraction 

which represents a rational number, say rk・ For k ~ 1,咋 canbe expressed 

in terms of the fraction of a pair of positive coprime numbers, say ~, which 
qk' 

is called the k-th order convergent of A. We will mostly deal with the case 

where ao = 0. Pk and qk are then positive and保＞ Pk・

環｝， calledthe'sequence of convergents associated with A', converges to 

a,and{q叶isstrictly increasing (Section 4 of [2]). rk三 [ak;ak+l, ak+2, ・ ・ ・, ai, ・ ・ ・] 

is called the k-th remainder of A. 

2For details, refer to [7], a longer version of this article, in which various proofs are 
presented without omissions. 
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Definition 2.1 (Recursive continued fraction) A as above is called recur-

sive if the sequence { a0, a1, a2, ・ ・ ・, ai, ・ ・ ・ } is recursive. 

Proposition 2.1 If A is recursive, then also {pk} and {qk} are, and hence 

｛匹｝・1s. recursive. 
qk 

Proposition 2.2 The convergence of the associated convergents匹 ofa 
qk 

recursive A to the number a is eザective.This property can be extended to 

a sequence or a multiple sequence. 

Proof Note that {q叶isrecursive and is strictly increasing. It also holds 

that la -匹|＜占 (Theorem9 of [2]). Given p, one can effectively find a kp 
qk'qk  

is recursive and can serve as a recursive modulus such that qt > 2互 {kp}i p 

of convergence. 

In what follows, the word'computable'without any modifier will mean 

the traditional'computable', of real numbers, real sequences, and so on. 

See, for example, [3]. 

Proposition 2.3 Any recursive sequence of continued fractions determines 

a computable sequence of irrational numbers. 

Proof By Propositions 2.1 and 2.2, { ~} i 'If!:-} is recursive and converges effec-
qk 

tively to the irrational number a, and hence a is computable. This reasoning 

can be extended immediately to a recursive sequence of continued fractions. 

Proposition 2.4 Let { am} be a computable sequence of irrational num-

bers. Then it can be represented by a recursive double sequence of positive 

integers {Am}, where Am三 [amo;am1, am2, ・ ・ ・, amk, ・・・],in a manner that 

{am} can be approximated effectively by the recursive sequence of irre-

ducible fractions｛だ｝， theconvergents associated with { Am}-

Proof For a computable irrational number a, the process of determing A 

for a in [2] (the proof of Theorem 14, Section 5) is itself effective, since the 

integral part of a computable irrational number can be effectively calculated. 

It is hence extendible to a sequence of computable irrational numbers. 

Putting Propositions 2.3 and 2.4 together, we obtain the following equiv-

alence. 

Proposition 2.5 Given a sequence of irrational numbers { C¥m}. It is com-

putable if and only if its continued fraction representation {Am} is recursive. 

Since those are in one-to-one correspondence as mentioned above, they 

will henceforth be identified. 
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Proposition 2.5 suggests that it should be natural to define computability 

structure on the continuum based on computable sequences of irrational 

numbers. 

3 Computability of number sequences: 

CF-computability 

Definition 3.1 (Computability of real number sequences: [3]) (i) A recur-

sive sequence of rational numbers is computable. 

(ii) A sequence of real numbers is computable if it is effectively approx-

imated by a (double) sequence of recursive rational numbers. (Effective 

approximation means that there is a recursive modulus of convergence.) 

Remark 1 1) Integers are included in (i) above. An integer sequence is 

computable if and only if it is recursive. 

2) (ii) above creates non-recursive but computable rational sequences (cf. 

Example 4 in Chapter O of [3]). 

3) It is proved in [3] that the effective limit of a computable (double) 

sequence is a computable number (sequence). 

Definition 3.2 (Irrational sequence) A sequence of real numbers whose 

terms are all irrational will be called an irrational sequence. 

Proposition 3.1 A recursive sequence of rational numbers is effectively 

approached by a computable double irrational sequence. 

Proof Put 
1 

珈 k=Sn+  
2k(• 

{ynk} is a computalbe double irrational sequence, which effectively con-

verges to {sn} with a recursive modulus of convergence a(n,p) = p. 

Proposition 3.2 Let { xn} be any computable sequence of real numbers. 

Then there is a computable double irrational sequence { Wnp} which effec-

tively converges to {xn}-

Proof There is a recursive double sequence of rational numbers, say { r nk}, 

which converges to {xn} with a recursive modulus of convergence f3(n,p). 

Applying Proposition 3.1 to {rnd, we obtain a computable triple irrational 

sequence, say {znkz}, which converges to {rnk} with a recursive modulus of 

convergence o(n, k,p). Put Wnp = Zn(3（n,p+1)8(n,(3（n,p+l),p+l)・ {wnp} will do, 

with a recursive modulus of convergence 1(n, p) = p. 
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Proposition 3.3 A sequence of integers is recursive if and only if it can be 

effectively approximated by a computable irrational sequence. 

Proof Sufficiency is obvious from Proposition 3.1. Neccesity follows from 

the general properties that computability is closed under effective conver-

gence and that a computable sequence of integers is recursive. 

With those preparations, we can present an alternative definition of com-

putability of real sequences based on computable irrational sequences. 

Definition 3.3 (CF-computability) (i) An irrational sequence is called 

CF-computable if its continued fraction representation is recursive. 

This case is especially called initially CF-computable. 

(ii) Any real sequence is called CF-computable if it is effectively approx-

imated by a double initially CF-computable irrational sequence. 

p roposition 3.4 (1) (ii) in Definition 3.3 does not expand CF-computable 

irrational sequences. 

(2) An irrational sequence is CF-computable if and only if it is com-

putable. 

Proof (1) Apply Proposition 2.5 twice and refer to (i) of Definition 3.3. 

(2) By virtue of (1), an irrational sequence is CF-computable exactly when 

its continued fraction representation is recursive. Thus follows (2) from 

Proposition 2.5. 

Summing up, the following are all equivalent for an irrational sequence 

a= {am}-(Apply (1) of Proposition 3.4 and Proposition 2.5.) 

(a) a is CF-computable. 

(b) a is initially CF-computable. 

(c) The continued fraction corresponding to a is recursive. 

(d) a is computable. 

Using (a)~(b), we obtain the following. 

Proposition 3.5 For any sequence of real numbers, the notion of com-

putability and that of CF-computability coincide. As a consequence, CF-

computability is closed under effective convergence. 

4 Liouville's theorem 

In this and the following sections, two examples will be presented in 

order to show the utility of recursive continued fraction representations of 
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computable irrational sequences. The classical results are taken from [2]. 

Effective procedures to obtain some objects are mostly effectivizations of 

the proofs in [2]. 

Classical Liouville's Theorem (Theorem 27, Section 9 of [2]) For any 

irrational algebraic real number a of degree n, there is a number C >。
such that, for any natural numbers p and q (q > 0), holds: 

|a-E > £. 
q qn 

In order to state the effective version of this theorem, we employ the 

expression that, with a computable sequence of irrational algebraic numbers 

{am}, a recursive sequence of integral polynomials Um(x)} is associated. 

Precisely, {fm(x)} is a sequence of defining polynomials of {am} and the 

sequence of degrees of {f叫x)}as well as the sequence of finite sequences 

of coefficients of {f叫叫｝ arerecursive. 

Theorem 1 (Effective version of Liouville's theorem) Let { am} be a com-

putable sequence of real irrational algebraic numbers, and suppose the se-

quence of degrees of its associated recursive sequence of integral polynomials 

{fm(x)} be {nm}-Then there is a computable sequence of positive numbers 

{Cm} so that, for any natural numbers p and q (q > 0), 

P, _ Cm 
知—-| >—. 

q'q厄

Proof Let us first deal with the case of a single a and show that C can be 

effectively constructed from the information concerning a. 

We consult the classical proof of Theorem 27 in [2], and refine it in order to 

effectivize the process. Let a be a computable irrational algebraic number of 

degree n with the associated integral polynomial f(x) = bn研＋bn-lXn-l+ 

・ ・ ・ + b1x + b0, where bn > 0. Since f(x) is an integral polynomial, it is a 

computable real function. 

Put f(x) = (x -a)g1(x). g1(x) is al x) is also a computable real function, since 

the coefficients of g心） canbe effectively determined. It holds that g1 (a)ヂ

0, and hence either g1 (a) > 0 or g1 (a) < 0. It can be effectively determined 

which is the case. We will deal with the case g1 (a) > 0. The other case can 

be treated in exactly the same way. 

1 ° Since g1 (x) is effectively continuous and a is computable, one can effec-

tively find a rational number r5 > 0 so that g1 (x) > 0 if x E [ a -r5, a+ r5]. r5 

does not depend on p and q. 
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Each step of the foregoing process is effective, and hence it can be ex-

tended to the case of a computable sequence {am}-2° below and the rest 

of the proof can be extended to a sequence likewise. 

20 la -~I> o 
q I > 6 or I a - ~ I < 6 q 

I < 6, and it can be effectively detemined which is 

the case. 

This is so since o is rational, while la―町 isirrational and computable. 
q 

Using 2°, we proceed as follows. 

Case (a) la - ~ I < o. Then ~ E [a -o, a+  o], and hence g1碍） ＞ 0 by 

1°. In this case holds ~ -a=/ 0. Put M = maxxE[a-8,aH] g1(x). Mis q 

computable and effectively obtained, independent of p and q, and satisfies 

O<g碍）:::;M. So, I~ -al 2:凸
Case (b) la―町＞ o.Then, since q 2: 1, laー引＞ 6 

q q ' q  

Now put C = 
min（ふ古）

2 
. C is computable and is effectively determined 

from f and a, independent of p and q, and satisfies O < C < o, ti・ C then 

satisfies, for both cases, la 叫＞ C 
q I ~ qn • 

[Corollary to Theorem 1: Constructing computable transcendental num-

bers] The classical construction in Section 9 of [2] itself produces com-

putable transcendental numbers. 

5 Quadratic 
． 
irrational numbers 

Classical Theorem (Quadratic numbers: Theorem 28 of [2]) Let a be 

an irrational number. a is quadratic if and only if its continued fraction is 

periodic. 

Theorem 2 (Effective version of quadratic number theorem) Let { am} be 

a computable irrational sequence. 

{am} is effectively quadratic if and only if its continued fraction repre-

sentation is effectively periodic. 

Precisely, the sufficient condition can be stated as follows: there is a recur-

sive sequence of quadratic integral polynomials (the sequence of coefficients 

are recursive) which have { am} as simple roots. 

The precise form of the necessary condition is the following: there are re-

cursive sequences of positive integers{/'i,m} and｛入m},and a recursive (dou-

ble) sequence of integer tuples {(ami)i:s;（氏m＋入m-l)}m,where ami is positive 

except for i = 0, so that am is represented by 

Am= [amoi am1, ・ ・ ・, am(氏m-1)，am氏m9..．，am（氏m＋入m-1)]，

where~（叫＋入:;;:-=i) represents the block that iterates in A加
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Proof The desired recursive objects are inherent in the classical proof in 

Section 10 of [2]. We thus merely pont out where effectivity matters in the 

classical proof. 

'If'part: We will deal with one a, which is irrational and computable, hence 

its representation is recursive (Proposition 2.5) and effectively periodic. A 

quadratic polynomial associated with a will be determined effectively. Let 

a be represnted by the following A. 

A 三 [ao;a1,··•,a（代ーl),~伍十入— 1)] ．

Let Tk be the k-th remainder of A. Since A is recursive and periodic, so is 

｛叫： rk＝い fork 2'. t,,, and it is a computable and irratio叫 sequence.

The corresponding {Pk} and { qk} are also recursive. From the classical 

result,｛叫 isa sequence of solutions of integral quadratic equations for k 2'. 

t,,. The construction in [2] is in fact effective, and hence is not reproduced 

here. 

Due to effectivity of obtaining the coefficients of the desired quadratic 

polynomial, the argument above can easily be extended to a sequence｛叫｝．

'Only if'part: The classical proof in [2] is furnished with a method to obtain, 

for an irrational number a, three sequences of integers { Aふ{Bn},{Cn} 

which have uniform bounds and satisfy 

Anr; +B汀 n+Cn=0. (1) 

This fact implies that there can be only finitely many values of {rn}-Clas-

sically, one can then claim that｛叫 isperiodic. We will effectivize this 

process. 

Let 0: be a computable, quadratic irrational number, with which are as-

sociated an integral equation a丑＋bx+ c = 0, so that 

aふ＋ ba+c= 0, (2) 

and a recursive continued fraction representation A二 [ao;a1, a2, ・ ・ ・, an,・・・]. 

Put 

Xn= 
Pn-lrn + Pn-2 

=a. 
qn-lrn + qn-2 

Substitutingふ fora in (2), we obtain aX; + bXn + c = 0, from which 

follows 

Aは＋ B心＋ Cn=0, 

where An, Bn, Cn are integers obtained effectively from the given data as 

below. 

An= ap;,_1 + bPn-l伽ー1+ cq;,_1; 
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Bn = 2aPn-1Pn-2 + b(Pn-1伽ー2+ Pn-2伽ーi)+ 2cqn-1伽ー2;

2,  L_ _ ,  __ 2 
Cn = ap~-2 + bPn-2伽ー2+ cqn-2• 

This implies that rn is a root of the equation 

An丑＋ B戸＋ Cn=0. (3) 

By simple calculations, it can be derived that 

Cn = An-1；虎ー4AnCn = b2 -4ac. (4) 

Following the classical argument, we can find a positive integer E, uniformly 

for all n, such that 

IAnl, IBnl, IC叫<E. (5) 

E can be effectively acquired as an application of (4). From the definition 

and the computability of 2laal + lal + lbl, one can effectively find a positive 

integer D such that, for all n, 

IAnl < 2laal + lal + lbl < D. 

Then, ICnl < D also follows, hence IB叫<✓|b2 -4ac+4D叫<D'foran 

integer D', effectively evaluated. Now put E = max(D, D'). There can be 

less than F = 8E3 many triples Gn = (An, Bn, Cn)-
Having all this information, we can find effectively, numbers,,,, and入such

that,,,,.:; 2F + 1 and入.::::2F+ 1ー,,,,so that 

Vk 2': fi,.ak = ak十入・ (6) 

This assures us that {an} is periodic from 1,, onward with period入． Tofind 

such 1,, and入effectively,we proceed as follows. 

Among Gn for nさ2F+1, th ere occur at least three distinct numbers n,, 

i = 1, 2, 3, such that Gn1 = Gn2 = G応}.LetG三 (A,B, C) be the common 

triple of these three. The equation (3) with the coefficients A, B, C have at 

most two roots, which can be effectively calculated, hence are computable. 

Let them be s1 and s2. Since the discriminant of the equation is an integer, 

it can be determined whether they are equal or not. Corresponding to 

叫，Gn2,Gn3, there are remainders, say, r1, r汽r3,and at least two of them 

must be eq叫 a丑＋加＋ cis the quadratic polynomial for a:, and so 

b2 -4ac > 0. Since B; -4An仇＝炉 4ac> 0 by th y the equation (4), 

s1 -=J s2. Compare each of r＼芦，r3with each of s1, s2. At least two of the 

former must be ineq叫 withone of the latter, say s1 for simplicity. Then 

they must be equal to the other, which means that the two are equal. All 

this can be effectively determined, since the inequalities involved here are 
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decidable, and the equality is not directly judged. Supposer"'is the one with 

the least subscript, and r（氏十入） bethe second. From the definition of {rn}, 

follows that r"'= r"'十入 impliesa"'=％＋入 and,for any i, a"'十i=%＋入＋29

entailing (6). 

The argument above can be extended effectively to a sequence {am}. 

6 Recursively defined function sequence 

One of the significant topics in [2] is Gauss's problems (Section 15 of 

Chapter III in [2]). On the way to it,'Kuz'min's result'is proved at length 

in Section 7 of [2]. In order to effectivize it, a meta-lemma (Theorem 3) will 

be proved in this section. 

[General assumption] Throughout the rest of this article, the domain of 

functions is [O, 1], a compact and computable interval. 

Kuz'min considers the following function sequence, which is recursively 

defined from an initial function f0. 

Definition 6.1 (Kuz'min's function sequence: cf. Theorem 33 in [2]) {fn(x) : 

n = 0, 1, 2,... } is a sequence of real functions defined by the equation 

1 1 
fn+1(x) ＝叫1(K+x)凸(~), (n 2: 0). (7) 

It is assumed that f0(x) is a differentiable function, and that O < f0(x) < 

Mand Ii訊x)I < μ for some M > 0 and μ > 0. 

Remark 2 (1) Since Jo is continuous on a compact interval, M = max{f0(x) : 

Oさx:S 1} + 1 will do for the above M. If J0(x) is computable, then Mis 

a computable number. 

(2) It is classically true that the infinite summation of (7) converges and 

that continuity of fn(x) for every n is proved by induction on n, 

The following lemma is placed here for later use. It is a consequence of 

Lemma 3 in Section 15 of [2], and no effectivity problem is involved. 

Lemma 1 Of the functions defined by (7), the assumption O < f0(x) < M 

implies O < fn(x) < G = 2M for all n = 0, 1, 2,.... 

Theorem 3 (Computable case of Kuz'min's function sequence) Let J0(x) 

be a positive computable function. Then the function sequence {fn(x)} 

defined by the formula (7) is computable. 
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Proof 3 First, notice that O < f O (x) < M, M being the computable number 

as in (1) of Remark 2, and Lemma 1 is valid. 

Define some functions and numbers. 

1 1 
Sn,l (x)＝葛＝1 2fn( ）・

(K+x) K+x' 

t心）＝ SOO
1 

k=l+1 (K + x)2; 

1 
Wl = Xk=l―・ k2' 

7r 
2 

8(p) = m_in[G(~ -wz) <上
l 6 l 2P' 

where G = 2M. Then, {t心）｝ isa computable function sequence,｛叫 is

a computable sequnce of numbers, and 8(p) is a recursive function. Note 

that those are independent of n. 

The theorem will be established by showing the following I and II simul-

taneously. 

I The function sequence {fn(x)} is computable. 

II The double sequence of functions { sn,l (x)} is computable. 

What are to be worked out are the following. 

(i) (Sequential computability) Given a computable sequence of numbers 

{ Xm}- {f n(xm)} is a computable double sequence of real numbers and 

{ sn,l (xm)} is a computable triple sequence of real numbers. 

(ii) (Effective and uniform continuity) There are recursive functions d(n,p) 

and 1(n, p) such that 

1 
¥Ip, n, Nx, y. Ix -YI < ~ ⇒ |sれ」 (x) -Sn,z(Y)I <~; 

1 1 
¥/p,n¥/x，叫x-yl< ⇒ |fn(x) -fn(Y)I＜沙・2,(n,p) 

Notice that d depends only on n,p and is independent of l. 

For n = 0, computability of Jo is assumed, and hence hold (i) and (ii) for 

f o-sn,l is not irrelivant here. 

By sheer computation, we obtain the following. 

2 2 1 7r 1 7r 

叩）勺迄l+l炉＝百―葛＝1匝＝す― Wl•

By Lemma 1, 

1 1 1 
f n+l (x)-snz(x)＝喜こl+l 凸（ ) < GXOO 

(K +x) K + X ― k=l+1 (K +x)2 

2 

= Gtz(x). 

3 1 The facts刃~
1 

k=l和 6
=:;,;;:. and 1 < 刃~k=l困 = 1.202 ・ ・ ・ < 2 will be utilized in the 

proof. 
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From those follows 

n一

2 

0 < fn+1(x) -Bnl(x) さ G(- —皿）．
6 

With the function 8 above holds 

1 
VpVl〉6(p)Vx.|fn+1(x)-Snl(x)| ＜荻

Summing up, the facts below are at our disposal. 

(a) 0 < fn(x) < G = 2M for all n: by Lemma 1. 

(b) There is a recursive function o (p) such that (8) holds. 

(8) 

Proof of (i) We take the advantage of Definition 5a in Section 2, Chapter 

0, of [3], an alterntive definition of computable real sequences. 

Definition 5a,[3]: A real sequence { xn} is computable if there is a recursive 

sequence of rationals, {rnk} satisfying 

1 
1::/nl::/k.lxn -r叫＜一2k・

(9) 

When (9) holds, {rnk} is said to effectively converge to { Xn}-This definition 

of computability is equivalent to the original one. 

Given a computable sequence of numbers, say { xm}-In order to claim 

computability of the double sequence {f n(xm)}nm, it suffices, in view of 

Definition 5a above, to construct a recursive triple sequence of rational 

numbers {rnmp} such that 

1 
碕 m¥:/p.lfn(Xm)-Tnmpl < ~- (10) 

Jo is assumed to be computable, hence there is a sequence {romp} effec-

tively converging to {fo(xm)}om• 

Suppose such a sequence has been defined effectively for i ::; n (for all 

m and p), {rimp}区 n,so that (10) holds for i ::; n. The construction of a 

recursive rational sequence converging to { Bnl (Xm)} will be assumed here. 

It is constructed effectively from {rnmp}m,p• Let it be {qnlmp}, 4 so that 

From (8) follows 

1 
¥:/Np.lsnz(xm) -qnlmpl < i,:; 2P. (11) 

1 
'vp'vl ~ 8(p)'vm.lfn+1(Xm) -Snz(xm)I < ~- (12) 

4The construction of {qnlrnp} is omitted here, since it is a mere technicality, though 
laborious. 
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By (11) and (12), 

lfn+1(xm) 
1 

n+1lXm) -q悩 (p)mpl< 2P-1. 

Now put T(n+l)mp = q面 (p+l)m(p+l)・ Then (10) holds for n + 1. 

{rnmp} is a recursive triple sequence of rational numbers satisfying (10). 

Proof of (ii) Effective and uniform continuity is proved as follows. 

First, define recursive functions v, d,,. (8 above will also be used.) Since 

Jo is computable, there is a recursive modulus of uniform continuity for it, 

say(. 

2 

（）・
1 2-~ 

v(p) =mm. —< 6. 

m 加 2P+3G'

d(O,p) = max(((p),v(p)); d(n,p) = max(d(n-l,p+3), v(p+3)) (n ~ 1); 

1(0,p)=((p); 1(n,p)=d(n-1,p+3) (n~l). 

What is to be proved is the following: for all n, p. 

1 1 
lx-yl＜ ⇒ふ(x)-fn（訓くー． （13) 27(n,p) 2P 

The proof is carried out by induction on n. Namely, assume (13) for n 

and for all p, and then establish (13) for n + 1: 

1 1 
lx-yl < ⇒|fn+1(x) -fn+i(Y)I < i;;; 2T(n+1,p) 2P. (14) 

For the proof of (14), we will first show the following. 

1 1 1 
lx-yl<~= 別（n,p+3) ⇒ |Sn,z(x) -Sn,l(Y)I＜百万. (15) 

Notice that this holds uniformly in l. 

For the proof of (15), assume 

1 
lx-yl < 2,(n+l,p). 

By the definitions of functions, for n：：：： 1, 5 

'Y(n + 1,p) = d(n,p + 3) = max(d(n -1,p + 6), v(p + 3)) 

= max('Y(n,p + 3), v(p + 3)) 2".'Y(n,p + 3), v(p + 3), 

hence from the assumption follows 

1..  1 
lx-yl < ~; lx-yl < 2-Y(n,p+3)'1~ "I ~ 2v(p+3) ・ (16) 

5For n = 0: "f(l,p) = d(O,p+3) = max(((p+3), v(p+3)) = max("l(O,p+3), v(p+3)) 2: 
"!(0,p + 3), v(p + 3). 
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lsn,z(x) -Sn,z(Y)I :S ~l=1(h + J砂

where 

1 1 1 1 1 1 1 
Ik = | fn( ） fn( ）| =|fn( ）-fn( ）|． 

(K+x)2k+x― (K +x)2 k+y (K +x)2 k +x K +y 

1 1 1 1 1 1 1 

Jk =| （K + x)凸 (K+ y)―(K+ y)凸 (K+ y)| = fn(K + y)| （K + x)2―(K+ y)2 |． 

As for the arguments of fn, using (16), 

1 1 1 
| - -
k+x k+y 

| ：：：：： y-xl < 2,(n,p+3) ・ 

Then by the induction hypothesis, the conclusion of (13) holds for p + 3. 

We have thus 
1 1 1 1 

IKく くー
一 (k+ x)2 2P+3一炉 2P+3

(17) 

Next consider Jk. By (a), (16) and the definition of v, 

4Glx -YI _ 4G 1 _ 2―后
Jkく くマ く炉 k32v(p+3) 炉2P+4・

(18) 

By (17) and (18), 

1 2-!f-
6 Sl 1 

葛叫IK+JK) ＝ EいIK+SいJk::;~葛＝1戸十 2P+4 k=1戸

2 

1 --- 1 2ー !f-___ 1 1 1r2 2-'!f-
> OO —+く 1 1 召 2―賢 1

-2P+3 k=1 
6 > OO

炉 2P+4 k=1屈こ 2P+3「+2P+4 2 = 2P+2 

s umming up, under the assumption Ix -YI < 1 
2'Y(n+l,p), we have the con-

clusion of (15): lsn,1(x) 1 
-Sn,l(Y)I < ~-

Now the proof of (14). Assume Ix -YI < ~し，vf, and put lp = o(p+ 2). 

By (8) and (15), we obtain 

lfn+1(x) -fn+1(Y)I 

さlfn+1(x)-Sn,lp(x)I + lsn,lp(x) -Sn,lp(Y)I + lsn,lp(y) -fn十心） 1

1 1 1 1 
く ＋ ＋ ＜ー2P+2'2P+2'2P+2 ~ 2P. 

This completes the proof. 
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7 Effectivization of Kuz'min's result 

Theorem 4 (Effective version of Kuz'min's basic result: cf. Theorem 33 

of [2]) Consider a sequence of functions Un} on the compact and com-

putable interval [O, 1], which satisfies the conditions below. 

(Kl) (Condition on Jo) 

Jo is computable, differentiable, and possessed of the following properties: 

0 < fo(x) < M, IJ~(x)I < μ, x E [O, l]. 

where M and μ are positive computable numbers. 

(K2) (Recursive definition of function sequence) The functions in the se-

quence are successively defined as in (7). 

From the conditions (Kl) and (K2) follow the facts below. 

(Rl) (Computability) 

{f n} is a computable sequence of functions. 

(R2) (Effective representation) 

There are computable numbers a0, A = A(M, μ)，入， anda computable 

sequence of functions {0n(x)} with which {fn} is represented: 

fn(x) = 
a。

l+x 
+ Bn(x)Ae―入vn, (19) 

where a。＝ば J。~ fo(z)dz, l0n(x)I < 1 and入＞ 0.a。and入areabsolute 

constants, and O <A= A(M, μ) is obtained from Mandμ effectively. 

Remark 3 The computable constants A and入areto be constructed, 

independent of n, x. As for 0n(x), the existence is classically secured, and 

its computability is forced by (Rl) and the formula (19). 

Proof (Rl) is Theorem 3 in Section 6. 

(R2) Those constants can be obtained by faithfully tracing the proof of 

Theorem 33 in [2] (cf. pp.74-81). The proof in [2] is not reproduced here. 

Only relevant lines will be quoted, by pointing out where effectivization is 

necessary. There are four lemmas to Kuz'min's theorem. Those are used for 

mathematical proofs and no effectivity is questioned thereby. Computable 

(sequences of) numbers will be successively gained. 

1 * Let m > 0 be the minimum value of f O (x), which is computable, and 

put g =閉， G= 2M. Then 

g G 
< fo(x) < 

(1 +x) （1 + x)． 
(20) 
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2* For any (temporarily) fixed n and for any l = 1, 2,..., n, one can define 

numbers gn-l, Gぃ SOthat O < g < gn・(l-l) < gn・lく Gn-l< Gn・(l-l) < G, 

and缶<fい (x)＜邑l+x . In particular, 

伽 2 伍 2

l+x 
くに(x)< 

l+x・ 

(n -l is meant here the multiple of n and l.) 

3* Define μnz＝凸＋ 4M. This is a computable double sequence of 

positive numbers (for l::; n), depending also on μ,M. Then, by Lemma 2 

in Section 15 of [2], 6 

lf~-(!-l)(x)I < μn(l-l)・

4* There are several points at which a formula is valid'for sufficiently large 

n'. They are the following three. 

(i) Put a = ½ Ji。1(fo(x) —土）dx. For sufficiently large n, a —岸序＞ 0.
(ii) Put a'= ½ Ji。1(凸-fO (x)) dx. For sufficiently large n,開?-a'< 0. 

(iii) μnlく 5M,orかい <Mholds for sufficiently large n. 

In any of (i)-(iii), all the terms are computable, and hence a relevant n 

can be effectively found for each case from M, μ and computability of f0. 

Let n。=n0(M,μ) denote the greatest among them. We will call an n 

sufficiently large if n：：：：：加． Thenfor all sufficiently large n, the inequalities 

in (i)-(iii) hold. 

5* For sufficiently large n, 

Gn2-g研く (G-g)5n+2―n+2 [(μ+ 2M)5n-l + 7 M江二~-2が］（三 Hm), (21) 

where /j = 1―咽1,hence O < /j < 1. Put L =max{μ+ 2M, 7M}. 

(μ + 2M)5n-l + 7M江悶＿2が::;L喜 n-1が＝ L < 
1ー炉 L 

1 -8 1 -6. 

From this and (21), follows 

L L 
0 < Gn2 -g研く (G-g炉＋ 2―n4 < G6n + 2―n4 （三 H).(22) 1-5---,- -1-5 

6* Define入andB by: 

L 
入＝ rnin(-log8,log2)(=-log8); B=G+4ー一・

1-8 

6Differentiability of fn for all n is classically ensured. 
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Then,入，B> 0, and『 :Se→n and 2-n :Se―入n,implying H < Be→n. 

7* By virtue of (22), Gn2 -gn2 converges effectively to 0, or limG研＝

limgn2, whose value a。is,in fact, a。＝中 J。~ fo(z)dz. 7. 

8* Put A=  2Be入

9* For an arbitrary N = 0, 1, 2,..., let v(N) denote the n satisfying n2さ

N く (n+1)乞 vis a recursive function. Put Ni。=n5for no in 4 *. Then 

N 2 N。impliesv(N) = n 2". no. 

10* For N 2". Ni。holds
恥 (x)- a。| ＜Ae― 入 咽

l+x 

ao,B,A,入arethe constants defined in 7* and 6*. 

(23) 

11 * For each N = 0, 1, 2,..., N,。-1,an A = A(N) can be selected so that 

(23) holds. 

12* Put A*= max{A(N)(N = 0, 1, 2,..., N,。— 1), A}. 

13* Due to 10*, 11 *, and 12*, the formula in (23) with A* in the place of 

A holds for all N: 

ふ(x)-~。 |<A*e―入繹―•
l+x 

14* Define恥 (x)on [O, 1] by 

e 
入咽

0N(x) = =--x_;-UN(x) -
a。

l+x 

(24) 

） 

{0N(x)} is a computable sequence of functions, since {JN(x)} is (Theorem 

3). l0N(x)I < 1, and we have 

f叫）＝ ~ + 0N(x)A*e―入繹．
l+x 

[Application] Kuz'min's result is a prelude to a Gauss's problem (cf. Sec-

tion 15 of [2]). There is nothing to add to it here. We only lightly reference 

that a function sequence relevant to it, { mn (x)}, is in fact computable. 

w = [O;a1,a公．．．， an...]; Zn(w) = [O; an+l, an+2,... ]. 

品(x)= {w: Zn(w) < x}; mn(x) = M(Sn(x)), 

7Effectivity of convergence of Gn2 -gn2 is established without any mention of com-
putability of {Gn} and {gn} 
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where M denotes Lebesgue measure. 

The function sequence｛叫（x)}satisfies 

1 1 
叫＋1(x)=雰こ1(mn(~) —叫（ ）），x E [0, l],n：：：：： 0. (25) 

k k+x 

The formal differentiation of equation (25), 

I 1 1 
叫＋1(x)＝泣ゴ 2叫（ ） 

(K+x) K+x' 
(26) 

deternines a function. 

In order to apply Theorem 4, put fn(x) := m~(x). Since m0(x) = x, 

fo(x) and f~(x) are computable. So, the conditions (Kl) and (K2) hold for 

{fn(x)} with M = 2 andμ= 1, and hence the results (Rl) and (R2) are 

valid. Computability of {m~(x)}, hence also that of {mn(x)}, now follows. 
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