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Abstract 

We summarize a topological representation of the completely distribu-
tive algebraic lattices. This together with the discussion in [KF19] gives 
a definition of lattice models from an abstract viewpoint, with respect to 
which the completeness of the basic system of second-order intuitionistic 
propositional logic is ensured. 

1. INTRODUCTION 

A framework of Kripke models have been studied to give a mathematical semantics 
of the basic formal system IPC2 of second-order intuitionistic propositional logic, for 
which we can find some aspects on structure of domains of the models. Actually, when 
we restrict to the class of principal Kripke models, that is, every member of the class is 
endowed with a constant domain consisting of all upsets of worlds, the logic defined by 
such models is known to be non-recursively formalizable, as is shown in [Skv97, Kre97]. 
Furthermore, even if we generalize the definition of constant domain by adopting the 
class of secondary Kripke models satisfying Gab bay's completeness property, the logic 

characterized by such models is known to be formalized not by the system IPC2 but by 
a variant system with the Grzegorczyk scheme, as is shown in [Gab74]. These results 
suggest that another structure of domains is indispensable to ensure the completeness 
of the system IPC2 unless we maintain the framework of Kripke models. In this 
respect, a nested structure of domains satisfying Sobolev's completeness property is 
incorporated into the Kripke models by Sobolev [Sob77], by which the system IPC2 is 
ensured to be complete. 

Directing our attention to the semantics of intuitionistic propositional logic, we can 
also find a framework of lattice models based on Heyting algebras as an alternative 
approach, which correlates to the framework of Kripke models. However, the cor-
respondence between them is not very strict and Heyting algebras might give more 
general aspects of semantics in a sense. Actually, every Kripke model can be regarded 
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as a neighbourhood model especially based on the Alexandrov topology, in which an 
order structure of complete Heyting algebra is inherent. In contrast, existence of arbi-
trary joins is not guaranteed in Heyting algebras in general, which would be one of the 
obstacles to giving a successful interpretation of the second order quantification from 
an algebraic point of view. 

To overcome the deficiency above, in [KF19] the category of completely distributive 
algebraic lattices is applied, into which we incorporate the structure of nested domains 
satisfying Sobolev's completeness property for giving an algebraic semantics of IPC2. 
Indeed, this category is ensured to be dually equivalent to the category of Alexandrov 
spaces by a version of Stone duality, and it enables us to present a definition of lattice 
models in which the interpretation of second-order quantification in [Sob77] is simulated 
exactly. We briefly review this result in Section 2. 

In every lattice model introduced in [KF19], the interpretation of a proposition is 
presented not directly as an element of the lattice but indirectly as an open set on its 
topological representation. This presentation of lattice models is mainly for the sake of 
simplifying the correspondence with the Kripke models by Sobolev and we note that 
the complication associated with our definition would be not inevitable to establish 
the completeness theorem. This is because of a representation theorem that every 
completely distributive algebraic lattice is prime algebraic [Win83, Win09] and so order 
isomorphic to its topological representation. Actually, this isomorphism enables us to 
simulate the interpretation in [KF19] exactly in terms of the elements of the underlying 
completely distributive algebraic lattice. As an additional remark on lattice models of 
the system IPC2, we demonstrate it in Section 3. 

2. LATTICE MODELS ON TOPOLOGICAL REPRESENTATION 

We fix a syntax of the formal system IPC2,4 and the set Prop2 of the propositions 
of IPC2 is generated by the following abstract grammar: 

A::=pl..l |A I¥ A I A V A I A -+ A I ¥:Ip.A Iヨp.A

where p ranges over the set Vars of propositional variables. We use letters p, q, r,... 
to denote propositional variables and A, B, C,... to denote propositions. We also use 
letters I',△，．．． to denote sets of propositions. If a proposition A is derivable from 

assumptions in I'by means of the deduction rules of IPC2, then we write I'トIPC2A. 

In the lattice models of the system IPC2 presented in [KF19], the interpretation of 
each proposition is given as an open set on a topological space generated from the order 
structure of a completely distributive algebraic lattice. Here we briefly review some 
basic definitions and the completeness theorem with respect to this interpretation. 

Let〈L,i:::::〉bea poset. Then we say that a subset X of L is directed if every finite 
subset of X has an upper bound in X. An element x E L is said to be compact if 

xこげX implies↑xnxヂ0for every directed subset X of L. Here we denote by 
↑x the smallest upset containing x, namely↑x = {y EL Ix i::::: y }. We define KL to 
be the set of compact elements of L and KL(x) = {y E KL I y i::::: x} for every x E L. 

4We can refer to the system in [SU06, Definition 11.1.2], a Hilbert-style counterpart of which we 
can also find as the system C2J in [Sob77] and the system H2 in [Skv97]. 
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Then a complete lattice〈L,こ〉 issaid to be algebraic if it satisfies X = ut KL(X) for 
every x E L, and completely distributive if it satisfies 

n u X;_ = u n X;_ 

入EAxEX xEX入EA

for every cartesian product X = IT入EAふ ofsubsets of L. We write CDA for the class 
of completely distributive algebraic lattices. 

With this specified class of lattices, we can associate a class of topological spaces 
according to a version of Stone duality. Suppose L E CDA.5 Then an upward closed 
subset of L is said to be a filter on L if it is also closed under finite meets. For instance, 
it is clear for every x E L that the set↑x is a filter, which is called the principal filter 
generated from x. Then a filter F on L is said to be completely prime if LJ X E F 
implies F n Xヂ0for every subset X of L. An element of L is said to be completely 
prime if the principal filter generated from it is completely prime. We use letters 
a, b, c,... to designate completely prime elements of L, and define CL to be the set of 
completely prime elements of Land CL(x) = {a E CL I a旦x}for every x EL. 

The set of completely prime filters on L is regarded as a poset together with the order 
of set inclusion, for which we denote the set of compact elements by pt* L. Further we 
introduce a topology T(L) on the set pt* L which consists of the open sets of the form 
{ F E pt* L I x E F} for some x E L. We note that this topology is identical with the 
Alexandrov topology on pt* L, as is shown in Corollary 3. Therefore it follows that 
every meet and join in T(L) are given by the intersection and the union of open sets, 
respectively. 

Let L E CDA. Then the topological space〈pt*L, T(L)〉generatedfrom L underlies 
the lattice models introduced in [KF19]. In this framework, we suppose that we have a 
mapping d which associates with every FE pt* La domain d(F)C::: T(L), and a nested 
structure that for every F E pt* L there exists an open neighbourhood U E T(L) of F 
satisfying 

VG EU  d(F)こd(G).

Then we call the triple't'=〈T(L)，こ， d〉aconcrete model of IPC2, in which we 
can interpret every proposition as a member of the topology T(L). More precisely, to 
give an interpretation of the second-order propositions in the concrete model賃 we
set an environment ~ as a mapping from Vars to T(L). Then, for every proposition 
A E Prop2 and environment~'we define the interpretation [A]e E T(L) of A under~ 
in the model't'by induction on the structure of A, as follows: 

［上］E= 0, 

[P]e = ~(p), 

[A I¥ B]e = [A]e n [B]e, 
[AV B]e = [A]e u [B]e, 
[A→B]e = U {U E TL I [Al n uこ[Bl},

5Denoting a member〈L,i:::::〉ofCDA, we often omit to indicate the order relationにwhenno 
confusion can arise. 
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罰p.A]E= LJ {U E T(L) I VF EU ¥IVE d(F) FE [A]E(pv)}, 

［ヨp.A]E= u {U E T(L) I VF EuヨVEd(F) FE [Afop:V)}-

Here we write [(p : V) for the environment (with the value of p updated to V, that 
is, [(p : V)(p) = V and [(p : V)(q)＝的(q)for every q E Vars¥ {p}. We also define 

[I']E = nAEI'[A]E for every set I'of propositions. 
Furthermore, we confine our attention to a specific sort of model structures in which 

every domain contains an approximate interpretation of every proposition. We say 
a concrete model ~ =〈L,(;;;;, d〉isfull if, for every A E Prop2, F E pt* L and 
environment (such that [(FV(A)）i:;;; d(F), we can find U E d(F) and VE  T(L) which 

satisfy FE V and Un V = [A]E n V. Then, we write I'Fcon A if 

FE [I']E⇒ FE [A]E 

holds for every full concrete model ~ =〈T(L)，i:;;;,d〉， F E pt* L and environment ( 
such that [(FV(I', A)）こ d(F).6

Then it is verified in [KF19] that our concrete models are shown to be comparable 
with the Kripke models introduced by Sobolev [Sob77], with respect to which the 
derivation of the formal system IPC2 is complete. 

Theorem 1 ([KF19]). I'トIPC2A if and only if I'巳conA. 

3. ABSTRACT VERSION OF LATTICE MODELS 

In every concrete model considered in the preceding section, an interpretation of 
every proposition is given as a member of a complete Heyting algebra〈T(L)，こ〉 inthe 
form of a topological representation. Here, in case where L E CDA, this representation 
is especially shown to be order isomorphic to the underlying lattice L. This is confirmed 
because of the prime algebraicity of completely distributive algebraic lattice; that is, 

x = LJ CL(x) 

holds for every x EL, as is proved in [Win83, Corollary 8] and [Win09, Corollary 5]. To 
see the isomorphism, we begin by showing that the members of pt* L are characterized 
exactly in terms of the completely prime elements of L. 

Lemma 2. Let LE CDA. Then we have FE  pt* L if and only if F =↑a for some 
a E CL. 

Proof. For the "if" part, it is immediate from the complete primeness of a that↑ a 

is a completely prime filter on L. Furthermore, let↑ aこU↑凡 fora directed set 
入EA

{F入 I入EA} of completely prime filters. Then we can find入EA such that a E Pふ

and so↑aこF入， fromwhich the compactness of↑a follows. 
For the "only-if" part, we note that there exists a E F n CL(x) for every x E F 

because of the prime algebraicity of L and the complete primeness of F. Thus, when 
a, b E F n CL, we can find a completely prime element c E F n CL(an b) since we have 
a n b E F. This entails that｛↑a E pt* L I a E F n CL} is a directed subset of pt* L, 

for which the equality F = LJ↑｛↑a E pt* L I a E F n CL} is clear. Therefore, by the 

6This property is also refereed to as Sobolev's completeness property. 
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compactness of F, we can find a E F n CL such that F <:;;;↑a, from which F＝↑a is 
immediate. ロ

This lemma allows us to have an order-reversing isomorphism k : CL→pt* L such 
that k(a)＝↑a for every a E CL, the inverse of which is presented by k-1(F) = min F for 
every FE pt* L. This fact makes it easy to see that the Alexandrov topology underlies 
our topological representation of the completely distributive algebraic lattices. 

Corollary 3. Let LE CDA. Then the topology T(L) is identical with the Alexandrov 
topology on pt* L. 

Proof. The upward closedness of every U E T(L) is trivial from the definition. Con-
versely, for every upset U of pt* L, we can take xu = LJ { a E CL I k(a) EU} in L. Now 
let us suppose G E pt* L. Then the definition of completely prime filter implies Xu E G 
if and only if there exists a E G n CL such that k(a) E U. Therefore we can conclude 
U = { G E pt* L I xu E G}． ロ

Turning our attention to the correspondence between Land T(L), we are also allowed 
to have an isomorphism <p : L→T(L) such that r_p(x) ={FE pt*L I k-1(F) E CL（叫｝
for every x E L. This is verified as follows. 

Lemma 4. Let L E CDA. Then the functions <p is an order isomorphism between L 
and T(L), the inverse of which is given by <p―1(U) = LJ{a E CL I k(a) EU} for every 
u E T(L). 

Proof. We first note that r_p(x) is upward closed and so r_p(x) E T(L) by Corollary 3. 
It is clear that both <p and <p―1 are order preserving. Furthermore, in regard to their 
composition, we have 

r_po<p―1(U) = { F E pt* L I k―1(F)こLJ{aE CL I k(a) EU}} 

={FE pt*L IヨaE CL (k (a) E U & k―1(F)こa)}

=U  

for every U E T(L). On the other hand, we have <p―1。r_p(x)= LJ CL(x) = x for every 
x E L because of the prime algebraicity of completely distributive algebraic lattices. ロ

It is clear from this lemma that <p preserves all meets and joins on〈L,ビ〉 andthat 
<p―1 preserves all intersections and unions on〈T(L)，こ〉． Bymeans of these isomor-
phisms, we know that every completely prime element of〈T(L)，こ〉 ischaracterized 
in terms of an element F of pt*L as <po k-1(F) ={GE pt*L IFこG}.So we can 
characterize the relation that a E CL(x) in L E CDA in terms of the topological 
representation〈T(L)，こ〉， asfollows: 

(3.1) k(a) E r_p(x)⇔ r_p(a)こr_p(x)⇔ a旦X.

Taking the inverse translations into account, this is equivalent to the condition that 

(3.2) FE U⇔ r_pok―1(F）こ U⇔ k―l(F)こ中ーl(U).

Based on the observation above, we now give an interpretation of the propositions 
of IPC2 directly as elements of a completely distributive algebraic lattice, which we 
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proceed by analogy with the definition of the interpretation in Section 2. Suppose 
L E CDA. We also suppose that d is a mapping which associate with every a E CL a 
domain d(a) s;;; Land which have a nested structure that for every a E CL there exists 
an element x E↑a satisfying 

Vb E CL(x) d(a) s;;; d(b). 

Then we call the triple d =〈L,こ， d〉anabstract model of IPC2. We set an environ-
ment c; on d as a mapping from Vars to L. Then, for every proposition A E Prop2 
and environment c;, we define the interpretation [A]e E L by induction on the structure 
of A, as follows: 

［上k＝上，

厨E= c;(p), 

[A I¥ B]e = [A]e n [B]も

[AV B]E = [A]e LJ [B]e, 

[A→B]e = LJ{ x E L I [A]e n xこ[B]d,

[¥:/p.A]e = LJ{x EL I Va E CL(x) ¥:/y E d(a) aに[A]e(p:y)},

［ヨp.A]e= LJ{x EL I Va E CL(x)ヨyE d(a) a~ [Afop,y)}-

We also define [I']e = nAEI'[A]e for every set I'of propositions. We say that an 
abstract modelダ isfull if, for every A E Prop2, a E CL and environment c; such that 
c;(FV(A)）s;;; d(a), we can find x E d(a) and y E↑a satisfying x n y = [Al n y. A 
judgement I'f---ipc2 A is said to be valid with respect to a full abstract model 121 if 

a ~ [I']E⇒aに[A]E

holds for the model 121. Then we write I'巳absA if the judgement I'f---ipc2 A is valid 
with respect to every full abstract model. 

Now we show the validity based on the definition above is equivalent to that based 
on the concrete models defined in Section 2, which entails the completeness of IPC2 
with respect to the abstract models. 

Let L E CDA, which is endowed with isomorphisms k : CL→pt* L and t.p : L→ 
T(L) by itself. Then, with an abstract model 121 =〈L,こ， d〉whered assigns a subset 
of L to every element of CL, we associate a triple〈T(L)，s;;;,t.podok-1〉anddenote it 
by公 Onthe other hand, with a concrete model Cef'=〈T(L)，s;;;,d〉whered assigns a 
subset of T(L) to every element of pt* L, we associate a triple〈L,~'t.p—1odok>and
denote it by Cef'*. We first verify that the results of these two translations also satisfy 
the requirement to be the models of IPC2. 

Lemma 5. (1) For every abstract model 121, the structure,Qi,. is a concrete model. 
(2) For every concrete model Cef', the structure Cef'* is an abstract model. 

Proof. (l) It suffices to verify the condition of nested domain for t.p o do k-1. Suppose 
FE pt* L. Then we have k-1(F) E CL, which together with the assumption concerning 
d implies the existence of an element x E↑ k―1(F) such that do k-1(F)こd(b)holds 
for every b E CL(x). So we can take t.p(x) E T(L) as an open neighbourhood of F since 



212

FEcpok―l(F)こcp(x)is clear. Then for every GE cp(x), we have k―1(G) E CL(x). 
Thus we obtain do k-1(F) ~ do k-1(G) b y means of the assumption concerning d, and 
so cp O d O k-1(F)こcpo do k-1(G) holds. 

(2) It can be verified analogously based on a dual aspect of the translations. ロ

Besides the structure of nested domain, the property of fullness is also shown to be 
preserved under the translations for models. This is a straightforward consequence of 
the fact that the interpretations of a proposition are interchangeable for every abstract 
model and its corresponding concrete model. It is demonstrated in the following, in 
which we specify the lattice model in the expression of interpretation and denote by 
[A]f the interpretation of A in a lattice modelダ．

Lemma 6. Suppose d =〈L,旦d〉isan abstract model. 

(1) We have cp([A]『） ＝ ［A]::。Efor every A E Prop2 and l : Vars→L. 
(2) If dis full, then so is the concrete model叫

Proof. (1) We verify the statement by induction on the structure of A. Here we focus 
on the case where A三 Vp.B.Proofs for the other cases are similar or easier, which we 
omit. 

For the proof of this case, it suffices to verify the equivalence of the following two 
conditions on x E L: 

(3.3) Va E CL(x) Vy E d(a) aこ[B]嘉Y)'

(3.4) VF E cp(x) VV E cpodo k―1(F) FE [B]t oE)(p:V)・

To see that (3.3) implies (3.4), we let F E cp(x) and V E cp o do k―1(F) for F E 
pt*L and VE  T(L). Then we can take k―1(F) E CL, for which k―l(F)こxholds 
since x E F. Furthermore, taking cp―1(V) E do k-1(F), we are allowed to have 

k-1(F)[;;;; [B]≪(p戸 (V))by (3.3). This implies [B]≪(p戸 (V)) E F, from which F E 

cp([B]嘉'P―1wn)= [B]t O E)(p:V) follows by the induction hypothesis. 

To see the reverse direction, we let a E CL(x) and y E d(a) for a E CL and y E L. 
Then we can take k(a) E pt* L, for which k(a) E cp(x) holds since a[;;;; x. Furthermore, 

taking cp(y) E cp o do k-1(k(a)), we are allowed to have k(a) E [B后。E)(p:'P（y)) = 
cp([B]い） by(3.4) and the induction hypothesis. This implies [B]1c(p：y) E k(a), from 

which a に [B]名~:y) follows. 

(2) Assume that we have A E Prop2, l : Vars→T(L) and F E pt* L which satisfy 
l(FV(A)）こ cpodok-1(F).Then it is clear that k-1(F) E CL and cp―1。l:Vars→ L 
satisfy cp―1。l(FV(A)）こ dok―1(F). So, because of the fullness of the model叫 we
can find x E d o k―1(F) and y E↑k-1(F) such that x n y = [A]:-1。Eny. Hence, 

cp(x) E cp o do k-1(F) and cp(y) E T(L) ensure the fullness of叫 Indeed,we have 
FE cp(y) since y E F, and 

ゃ(x)nゃ(y)= cp(x n y) = cp([A]:-1。Eny) = cp([A]:-1。E)n cp(y) = [A](・ n cp(y) 

by (1) of this lemma. 口
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Lemma 7. Suppose~= 〈T(L) ，已 d 〉 is a concrete model. 

(1) We have <p―l([A]『） ＝ ［A]：二。efor every A E Prop2 and<;: Vars→T(L). 

(2) If~ is full, then so is the abstract model ~•. 

Proof. To show (1) in the case where A三 ¥/p.B,we only need to ensure the equivalence 

of the following two conditions on U E T(L): 

VF EU  ¥/VE d(F) FE  [B]嘉v),

Va E CL（戸（U))Vy E <p―1odok(a) a~[B]ご—1 。 €)(p:y)·

We can give a proof by analogy with the proof of Lemma 6 based on a dual aspect of 

the translations between abstract and concrete models. ロ

By the lemmas above, the notion of validity with respect to the concrete models is 

shown to be equivalent to that with respect to the abstract models. Consequently, the 
completeness theorem with respect to the abstract models is obtained. 

Lemma 8. I'Fcon A if and only if I'Fahs A. 

Proof. To show the "if" part, suppose ~ =〈T(L)，已 d〉isa full concrete model in 
which F E pt* L and an environment,; : Vars→T(L) satisfy,;(FV(I', A))~ d(F). Let 
us also suppose F E [I']『． Thenwe can take k-1(F) E CL and <p―1。,;: Vars→ L 

in the full abstract model ~• which satisfy <p―1。,;(FV(I',A)）こ¢―lO d O k(k-1(F)). 

Then we obtain k―l(F)こ¢―1(［「］『） ＝ ［I];:1 。€ by (3.2) and Lemma 7 (1), from 

which い(F)~ [A];:1 。~=戸([A]『） follows by the assumption and Lemma 7 (1). 

Therefore, we obtain FE  [A]『by(3.2). 
The "only-if" part is shown analogously for the reverse translation. Suppose d = 

〈L,旦d〉isa full abstract model, in which a E CL and an environment,; : Vars→ 
L satisfy 印 (FV(I',A)）~ d(a). Let us also suppose aこ[I']'(. Then we can take 

k(a) E pt* L and <p。,;: Vars→T(L) in the full concrete model d. which satisfy 
<po,;(FV(I', A)）こ <podok-1(k(a)).Then we obtain k(a) E <p([I']'() = [I']::。~ by (3.1) 

and Lemma 6 (1), from which k(a) E [A]:~€ = <p([A]『） followsby the assumption 

and Lemma 6 (1). Therefore, we obtain aこ[A]'(by(3.1)．ロ

Theorem 9. I'トIPC2A if and only if I'Fahs A. 

Proof. It is immediate from Theorem 1 and Lemma 8. 
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