
1

The Tarksi Theorems, Extensions to Group Rings and Logical 

Rigidity 

Benjamin Fine 

Department of Mathematics 

Fairfield University 

Fairfield, Connecticut 06430 

United States 

May 26, 2022 

Abstract 

The famous Tarski theorems state that all free groups heve the same elementary theory. 
In 2019 I gave a talk at the Kobe conference explaining the Tarski theorems and the accom-
panying language. Subsequently in [FGRS 1,2,3] and [FGKRS] the relationship between 
the universal and elementary theory of a group ring R[G] and the corresponding universal 
and elementary theory of the associated group G and ring R was examined. These are 
relative to an appropriate logical language Lo, L1, L2 for groups, rings and group rings re-
spectively. Axiom systems for these were provided in [FGRS 1]. In [FGRS 1] it was proved 
that if R[G] is elementarily equivalent to S[H] with respect to L2, then simultaneously the 
group G is elementarily equivalent to the group H with respect to Lo, and the ring R is 
elementarily equivalent to the ring S with respect to L1. We then let F be a rank 2 free 
group and Z be the ring of integers. Examining the universal theory of the free group 
ring Z[F] the hazy conjecture was proved that the universal sentences true in Z[F] are 
precisely the universal sentences true in F modified appropriately for group ring theory 
and the converse that the universal sentences true in F are the universal sentences true in 
Z[F] modified appropriately for group theory. Finally we mention logical group rigidity. 
A group G is logically rigid if being elementary equivalent to G is equivalent to being 
isomorphic to G. In this paper we survey all of these findings. 

Keywords: Group ring, elementary equivalent, universally equivalent, discriminates, ax-

iomatic systems, quasi-identity 

This is from a talk presented at the Kobe Conference 2022 held in Kobe, Japan. I would 

like to thank the organizers for inviting me. 
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1 Introduction 

Around 1945, Alfred Tarski proposed several questions concerning the elementary theory of 

non-abelian free groups. These questions then became well-known conjectures but remained 

open for 60 years. They were proved in the period 1996-2006 independently by 0. Kharlampov-

ich and A. Myasnikov [KhM 1-5] and by Z. Sela [Se 1-5]. The proofs, by both sets of authors, 
were monumental, and involved the development of several new areas of infinite group theory. 

Because of the tremendous amount of material developed and used in the two different proofs, 

the details of the solution are largely unknown, even to the general group theory population. 

The book [FGMRS], presented an introductory guide through the material. In this paper and 

the talk presented we first provide, for a general mathematical audience, an introduction to 

both the Tarksi theorems and the vast new ideas that went into the proof. These ideas straddle 

the line between algebra and mathematical logic and hence most group theorists don't know 

enough logic to fully understand the details while in the other direction most logicians don't 

understand enough infinite group theory. Details and an explanation of the proof can be found 

in the book The Elementa可 Theo可 ofGroups by B.Fine, A. Gaglione, A. Myasnikov, G. 

Rosenberger and D. Spellman. 

In [FGRS 1-2] and [FGKRS] the relationship was studied between the universal and ele-

mentary theory of a group ring R[G] and the corresponding universal and elementary theory 

of the associated group G and ring R where we assume that R is a commutative ring with 

identity 1 cJ 0. These are relative to an appropriate logical language L。,L1,ら forgroups, 

rings and group rings respectively. Axiom systems for these were provided in [FGRS 1]. In 

[FGRS 1-2] it was then proved that if R[G] is elementarily equivalent to S[H] with respect to 
L2 then simultaneously the group G is elementarily equivalent to the group H with respect 

to Lo and the ring R is elementarily equivalent to the ring S with respect to L1. If we let F 

be a rank 2 free group and Z be the ring of integers we call the group ring Z[F] a free group 

ring. It is easy to prove that all free group rings for non-abelian free groups have the same 

universal theory. A Kaplansky group G is a group G where the group ring K[G] with K 

a field has no zero divisors. It was proved in FGR-1] that the class of Kaplansky groups is 

universally axiomatizable. In [BM] Bakulin and Myasnikov establish a set of axioms for the 

universal theory of the Kaplansky Groups 

Myasnikov and Remeslennikov [MR] have given axiom systems for the universal theory of 
non-abelian free groups. In particular they proved that if F is a non-abelian free group then 

the universal theory of F is axiomatized by (see section 2 for relevant definition) the diagram 

of F, the strict universal Horn sentences of Lo[F] true in F and group commutative transitivity 

(see sections 3 and 4 for relevant definitons). In [FGKRS] we extended this to axiom systems 

for free group rings and prove that the universal theory of a free group ring Z[F] is axiomatized 

by the diagram of Z[F], the strict universal Horn sentences of L叶Z[F]]true in Z[F] and ring 

commutative transitivity when the models are restricted to group rings. Hence if R[G] satisfies 

the diagram of Z[F] and the strict universal Horn sentences true in Z[F] and ring commutative 
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transitivity then R[G] is universally equivalent to Z[F]. 
In the next section we give the necessary preliminaries on group theory, logic and axiom 

systems. In section 3 we go over the Tarski theorems. In section 4 we look at the extensions 

to group rings while in section 5 we look axiom systems for free group rings. Finally in section 

6 we briefly discuss what is called logical rigidity. 

2 Basic Preliminaries 

For a general algebraic structure, for example a group, a ring, a field or an algebra, A, its 

elementary theory is the set of all first-order sentences in a logical language appropriate for 

that structure, true in A. Hence if F is a given free group, its elementary theory consists of 

all first-order sentences in a language appropriate for group theory that are true in F. Two 
algebraic structures are elementary equivalent or elementarily equivalent if they have 

the same elementary theory. The Tarski theorems proved by Kharlampovich and Myasnikov 

and independently by Sela (see [FGMRS]) say that all non-abelian free groups satisfy the same 

elementary theory. Kharlampovich and Myasnikov also showed that the elementary theory of 

free groups is decidable, that is, there is an algorithm to decide if any elementary sentence is 

true in all free groups or not. For a group ring they have proved that the first-order theory 

(in the language of ring theory) is not decidable and have studied equations over group rings 

especially for torsion-free hyperbolic groups. 

The set of universal sentences in an algebraic structure A that are true in A is its universal 

theory while two structures are universally equivalent if they have the same universal 

theory. It is straightforward to show that all non-abelian free groups have the same universal 
theory (see [FGMRS]). As part of the general solution to the Tarski theorems it was shown 

that a finitely generated non-abelian group is universally free (that is has the same universal 

theory as a non-abelian free group) if and only if it is a limit group (see [FGMRS). 

We start with a first-order language appropriate for group theory. This language, which we 

denote by L。,isthe first-order language with equality containing a binary operation symbol •, 
a unary operation symbol―1 and a constant symbol 1. A universal sentence of L。isone of 

the form Vx｛の（x)}where x is a tuple of distinct variables, ¢（x) is a formula of L。containing
no quantifiers and containing at most the variables of歪． Similarlyan existential sentence 

is one of the formヨx{¢（x)}where x and ¢（x) are as above. 
If G is a group then the universal theory of G consists of the set of all universal sentences 

of Lo true in G. We denote the universal theory of a group G by Thv(G). Since any universal 

sentence is equivalent to the negation of an existential sentence it follows that two groups have 

the same universal theory if and only if they have the same existential theory. The set of 

all sentences of Lo true in G is called the first-order theory or the elementary theory of 

G. We denote this by Th(G). We note that being first-order or elementary means that in 

the intended interpretation of any formula or sentence all of the variables (free or bound) are 
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assumed to take on as values only individual group elements -never, for example, subsets of, 

nor functions on, the group in which they are interpreted. 

We say that two groups G and H are elementarily equivalent (symbolically G三 H)if 

they have the same first-order theory, that is Th(G) = Th(H). 

3 The Tarski Problems and Elementary Free Groups 

Alfred Tarski in 1940 made three well-known conjectures concerning nonabelian free groups. 

We call these the Tarski Problems or Tarski Conjectures and they asked, among other 

things, whether all nonabelian free groups satisfy the same first-order or elementary theory. 

We say that two groups G and H are elementarily equivalent (symbolically G三 H)if 

they have the same first-order theory, that is Th(G) = Th(H). 
Group monomorphisms which preserve the truth of first-order formulas are called elemen-

tary embeddings. Specifically, if H and G are groups and 

f:H→G 

is a monomorphism then f is an elementary embedding provided wheneverの(xo,...,xn) is 
a formula of Lo containing free at most the distinct variables xo,…，Xn and (ho,…,hn) E Hn +1 

then rp(h。,,…,hn)is true in H if and only if 

cp(f(ho),,…,f(hn)) 

is true in G. If H is a subgroup of G and the inclusion map i : H →G is an elementary 

embedding then we say that G is an elementary extension of H. 

Two very important concepts in the elementary theory of groups, are completeness and 

decidability. Given a nonempty class of groups X closed under isomorphism we say that its 
first-order theory is complete if given a sentence ¢ of Lo either ¢ is true in every group in X 
or ¢ is false in every group in X. The first-order theory of X is decidable if there exists a 

recursive algorithm which, given a sentence ¢ of Lo decides whether or not ¢ is true in every 
group inぷ

The positive solution to the Tarski Problems, given by Kharlampovich and Myasnikov (see 

[KhM 1-9] and independently by Sela (see [Se 1-6]) is given in the next three theorems: 

Theorem 3.1 (Tarski 1) Any two nonabelian free groups are elementarily equivalent. That is 

any two nonabelian free groups satisfy exactly the same first-order theory. 

Theorem 3.2 (Tarski 2) If the nonabelian free group H is a free factor in the free group G 

then the inclusion map H→G is an elementary embedding. 
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In addition to the completeness of the theory of the nonabelian free groups the question 

of its decidability also arises. The decidability of the theory of nonabelian free groups 

means the question of whether there exists a recursive algorithm which, given a sentenceの
of Lo, decides whether or not ¢ is true in every nonabelian free group. Kharlampovich and 
Myasnikov, in addition to proving the two above Tarski conjectures also proved the following. 

Theorem 3.3 (Tarski 3) The elementary theory of the nonabelian free groups is decidable. 

Prior to the solution of the Tarski problems it was asked whether there exist non-free 

elementary free groups, that is whether there exists non-free groups that have exactly the 

same first-order theory as the class of nonabelian free groups. The answer was yes, and both the 

Kharlampovich-Myasnikov solution and the Sela solution provide a complete characterization 

of the finitely generated elementary free groups. In the Kharlampovich-Myasnikov formulation 
these are given as a special class of what are termed NTQ groups (see [KhM 1-9]) The primary 
examples of non-free elementary free groups are the orientable surface groups of genus g 2: 2 

and the nonorientable surface groups of genus gミ4. Recall that a surface group is the 

fundamental group of a compact surface. If the surface is orientable it is an orientable surface 

group otherwise a nonorientable surface group. 

If S9 denotes the orientable surface group of genus g then S9 has a one-relator presentation 

with a quadratic relator. 

Sg =〈a1,b1,..., a9, b9; [a1, b1]…[a9, b9] = 1〉.

Groups with presentations similar to this play a major role in the structure theory of fully 

residually free groups and NTQ groups (see [KhM 1-6]). 
Further if Ng denotes the nonorientable surface group of genus g then Ng has a one-relator 

presentation with a quadratic relator. 

Ng=〈a1,…,ag;aI ···a~= 1〉.

We note that the solution to the Tarski Problems implies that any first-order theorem 

holding in the class of nonabelian free groups must also hold in most surface groups. In many 

cases proving these results directly is very nontrivial. 

Theorem 3.4 (see (KhM 1-9} Sela (1-6}) An orientable surface group of genus g 2'. 2 is el-

ementa可 free,that is has the same elementary theo内 asthe class of nonabelian free groups. 

Further the nonorientable surface groups N9 for g 2'. 4 are also elementary free. 

We need several other concepts. Let X be a class of groups. Then a group G is residually 

X if given any nontrivial element g E G there is a homomorphism ¢ : G→H where His 

a group in X such that ¢(g) =J 1. A group G is fully residually X if given finitely many 
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nontrivial elements g1,…，9n in G there is a homomorphism cp : G→H, where H is a group in 

ふ suchthat cp(gi) =/ 1 for all i = 1,..., n. Fully residually free groups have played a crucial role 

in the study of equations and first-order formulas over free groups. In Sela's solution to the 

Tarski problems finitely generated fully resiudally free groups are called limit groups. The 

universal theory of a group G consists of all universal sentences true in G. All nonabelian 

free groups share the same universal theory and a group G is called universally free if it 

shares the same universal theory as the class of nonabelian free groups. 

A group G is commutative transitive or CT if commutativity is transitive on the set of 

nontrivial elements of G. That is if [x, y] = 1 and [y, z] = 1 for nontrivial elements x, y, z E G 

then [x, z] = 1. A subgroup H of a group G is malnormal if x―1HxnH={l}ifxej._H. 

A group G is CSA if maximal abelian subgroups are malnormal. CSA implies commutative 

transitivity but there exist CT groups that are not CSA. For example it can be shown that a 

noncyclic one-relator group G with torsion is CT but not CSA if G has elements of order 2 

(see [FMgrRR]). Another example of a CT group that is not CSA is the infinite dihedral group 

G =〈a,b; a2 = b2 = 1〉． Itis straightforward that free products of abelian groups are CT and 

hence G is CT. On the other hand the commutator subgroup G'is the cyclic subgroup of G 

generated by ab. A nonabelian CSA group cannot have a nontrivial abelian normal subgroup 

and hence G is not CSA. 

Remeslennikov [Re] and independently Gaglione and Spellman [GS 1] proved the following 

remarkable theorem which became one of the cornerstones in the proof of the Tarski problems 

(see [Kh l]and [Se l].) 

Theorem 3.5 Suppose G is nonabelian and residually free. Then the following are equivalent: 

(1) G is fully residually free, 

is commutative transitive (2) G i 

(3) G is universally free. 

Therefore the class of nonabelian fully residually free groups coincides with the class of 

residually free universally free groups. The equivalence of (1) and (2) in the theorem above 
was proved originally by Benjamin Baumslag ([BB]), where he introduced the concept of fully 

residually free. Any finitely generated elementary free group being universally free must satisfy 

this theorem and hence be fully residually free. 

In [FGRS 3] a study was done on elementary free groups. It was shown that such grous have 

a wide array of properties many of which are non-first order. For example they are hyperbolci 

and stably hyperbolic and satisfy Turner's retraction theorem. We summarie some of these 

Theorem 3.6 Let G be a finitely generated elementa内 freegroup then 

(l)G satisfies Magnus'theorem: If R, SE F then if N(R) = N(S),it follows that R is 

conjugate to either S or s-1. 

(2) G has cyclic centralizers 
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{3) G is hyperbolic and stably hyperbolic 

(4) G satisfies Turner's Retract theorem classifying the test words in G 

(5) The automorphism group of G is tame 

{6) G admits a faithful representation into PSL(2, C) 

4 Extensions to Group Rings 

In order to extend some of these results to group rings we introduced two additional first-
order languages L1 and L2 whose models are rings and group rings respectively. Formal axiom 

systems for Lo, L -1 and L2 can be found in [FG RS 1]. 

With regard to these languages we attempt to extend the Tarski results to group rings, 

in particular to group rings of free groups. We start by considering the universal theory of 

a group ring R[G] where R is a commutative ring with an identity. Let F be a nonabelian 

finitely generated free group and Z the integers. If F1 is any other nonabelian countable free 
group then we have the same snake eating its tail situation Fi :S: F :S F1 as before. Since every 

subring of Z with an identity is Z itself the same argument as for groups shows that for any 

language we use 

ThvZ[F] c ThvZ[F1] c ThvZ[F]. 

It follows as for groups that all integral group rings of finitely generated nonabelian free groups 
are universally equivalent. Here we will use the universal theory with the axioms T2 and 

language L2 for group rings. 

Theorem 4.1 All integral group rings for nonabelian countable free groups are universally 

equivalent. 

In this context we call any group ring universally equivalent to Z[F] for a nonabelian 

countable free group a universally free group ring. We now consider the question of 

classifying the universally free group rings in a manner similar to the Gaglione-Spellman-

Remeslennikov theorem. 

In [FGRS 1-2] the following more general results were proved answering this. 

Theorem 4.2 Let R be a commutative ring with identity I -/c O and let G and H be groups. 

If G and H are universally equivalent with respect to L。,thenR[G] and R[H] are universally 

equivalent with respect to L1・

Theorem 4.3 Let R and S be commutative rings with identity 1 -/c O ad let G be a group. 

If R and S are universally equivalent with respect to L1, then R[G] and S[G] are universally 

equivalent with respect to L1・
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Combining these two theorems and using the transitivity of universal equivalence with 

respect to L1, we immediately deduce 

Theorem 4.4 Let G and H be groups and let R and S be commutative rings with identity 

1 cJ 0. If G and H are universally equivalent with respect to L。andR and S are universally 

equivalent with respect to L1, then R[G] and S[H] are universally equivalent with respect to L1・

We now examine the elementary equivalence of group rings. We need the following propo-

sition that can be found in the book of Chang and Keisler ([CK]). 

(Keisler-Shelah [S]) Let L be a first order language with equality and A and B be L-

structures. If A司 B,then there is a nonempty set I and an ultrafilter D in I such that the 

ultrapowers * A = AI/ D and * B = BI/ D are isomorphic. 

This proposition was first proven by Keisler using the Generalized Continuum Hypothesis 

and subsequently reproven by Shelah without need of that assumption. 

Using this we get the following which says that if two group rings are elementary equivalent 

with respect to L2 then the groups are elementary equivalent with respect to Lo and the rings 

are elementary equivalent with respect to L1・

Theorem 4.5 Let G and H be groups and R and S be commutative rings with I cJ 0. View 

the group rings R[G] and S[H] as standard models of T2, A and B respectively. If A三 L2B, 

then G = L。H andR弓 1s. 

The converse is not true in general, that is whether or not G可。 HandR三ぃ Simply

that R[G]三 L2S[H]. 

5 Axiomatics for the Universal Theory of Free Group Rings 

Myasnikov and Remeslennikov [MR] proved the following. A group is CSA or conjugately 

separated abelian if maximal abelian subgroups are malnormal. A subgroup M of a group G 

is malnormal if g―1 Mg n M cJ {1} implies that g EM. The CSA property implies CT. 

Theorem 5.1 Let G be a non-abelian CSA group which is equationally Noetherian. Then the 

universal theo可 ofG with respect to Lo[G] is axiomatizbale by the set Q of quasi-identities of 
Lo[G] true in G together with CT when the models are restricted to be G-groups. 

It was subsequently shown by Fine, Gaglione and Spellman [FGS] that the equationally 
Noetherian condition is not necessary and hence we have the following. 

Theorem 5.2 Let F be a non-abelian free group. Then any F -group H which is a model of 

the set Q of quasi-identities of Lo [F] true in F together with CT is al化 adya model of the 

universal theo内 ofF with respect to Lo [F]. 
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It is known that that the elementary theory of a CT group G is axiomatized by the set H (G) 

of Horn sentences true in G together with CT (see [MR] for terminology)). Further Myasnikov 

and Remeslennikov have proved [MR] the universal theory of a CSA group G is given by 

the diagram of G, the strict universal Horn sentences of Lo[G] true in G and commutative 

transitivity. Myasnikov and Remeslennikov required G to be equationally Noetherian but it 

was shown in [FGS] that equationally Noetherian is superfluous. In light of this result and 

the examples of universal sentences in free group rings the hazy conjecture was made that 

the universal theory of a free group rings consisted of the universal theory of free groups 

appropriately modified to group ring theory and vice versa. The main result in [FGKRS] is 

the following which shows this to be true in terms of axiom systems. We obtain a result similar 

to the theorem on elementary theory. 

Theorem 5.3 Let G be a group and suppose that the group ring R[G] satisfies the diagram of 

the free group ring Z[F], the strict universal Horn sentences ofら[Z[F]]true in Z[F] and ring 

commutative transitivity. Then R[G] =v Z[F] with respect toら[Z[F]].

6 Logical Rigidity 

If G i a group then any group isomorphic to G must be elementarily equivalent to G. If 

the converse is true, that is being elementarily equivalent to G implies isomorphic to G then 

G is called logically rigid. The survey by I. Kazachkov [K] describes some examples and 

properties of logically rigid groups. It is difficult to come up with examples of such groups but 

it is known that a free solvable group is logically rigid. Relative to group rings the following 

can be shown. 

Theorem 6.1 Let G be a logically rigid group and Z the integers. Then the group ring Z[G] 

is logically rigid. 
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