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1 Introduction 

The concept of self-similarity is widespread within mathematics. In this article, we will 

look at it from an algebraic perspective in terms of groups and semigroups. While this is 

often done by considering auto-or endomorphisms of infinite regular trees of a certain 

form (see [24] for more background on this), we will choose a different approach b邸 edon 

automaton theory.1 

*The second author is supported by CMUP, which is financed by national funds through FCT-Fundagiio 
para a Ciencia e Tecnologia, LP., under the project with reference UIDB/00144/2020. 
1 We will only give a very brief introduction. They reader may find more details for example in [37], 
which mostly follows the notation used here. 
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Automata and Runs. In this context, an automaton2 is usually a triple T = (Q, I;, 8) 
where Q is a -typically finite -set of states, I; is an alphabet and 8 <;;; Q x I; x I; x Q is 

a set of relations, for which we will use the more graphical notation p ~ q to denote 
a quadruple (p, a, b, q). The intuitive idea is that such a transition of the automaton 

indicates that, if we start in state p and read an input letter a, the automaton outputs the 

letter b and reaches the state q. We may combine multiple transitions, which results in 

the notion of a run of an automaton. A run of the automaton T = (Q, I;, 8) is a sequence 

qo三 q1 三．．•三 qn

with qi-1 ~幽i.. qi E i5 for every 1 ::; i ::; n. It starts in qo, ends in qn and its input is 
a1... an and its output is b1... bn. Note that, with our definition of an automaton, the 

input and output of a run are always of the same length. 

We will be dealing both with finite sequences over ~ and with finite sequences over 

Q. We call the former words and the latter state sequences to make a clearer distinction 

between the two. The set of words (including the empty one) is ~* and the set of state 
sequences is Q*. The empty word and the empty state sequence are both denoted by s. 

An automaton'T = (Qぷ，i5)is deterministic if, for every state p E Q and every letter 
a E ~, there is at most one transition starting in p with input a; i.e. if 

{p三 qE J I b E ~, q E Q}さ1

for all p E Q and a E ~- Complementary, the automaton Tis complete if, for every state 

p E Q and every letter a E ~, there is at least one transition starting in p with input a; 

i.e. if, for all p E Q and a E ~, we have: 

{p三 qE 6 I b E ~, q E Q} I ;:::: 1 

Automaton Semigroups and Automaton Monoids. In a complete and deterministic 

automaton T = (Q, ~, 8), there is exactly one run starting in p with input u for every 
state p E Q and word u E ~*. We may define po u as the output of this run and p ・ u as 
the state it ends in. In this way, every state q E Q induces a function ゞ→~* mapping 
u to po u and the closure under composition of these functions gives naturally rise to a 

semigroup. This is the semigroupダ (T)generated by the automaton and any semigroup 

arising in this way is called a (complete) automaton semigroup. By adding the identity 

function on~* to the semigroup generated by a (complete and deterministic) automaton 
T, we obtain a monoid. This is the monoid.,1/(T) generated by T and (again) every 

monoid rising in this way is called a (complete) automaton monoid. 

To extend the notation p o u with u E ~* to multiple states, we let Pn... P2P1 o u = 
Pn o (... p2 o (P1 o u)) for P1,P2,...,Pn E Q and co u = u for the empty state sequence c 
(which corresponds to adding the identity function in the case of the generated monoid). 

2From an automaton theoretic point of view, it would be better to actually speak of a letter-to-letter 
transducer but the simple term "automaton" is more common in the current context. 
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Automaton Groups. An automaton T = (Q, I:, 8) is invertible if, for every state p E Q 
and every letter b E I:, there is at most one transition starting in p with output b; i.e. if 

{p三 qE 8 I b E I:, q E Q}：：：：： 1 

for all p E Q and b E ~- If the automaton is not only invertible but also complete, the 

above set will contain exactly one element for every state p E Q and (output) letter b E I: 
by reasons of cardinality. From this, it is not difficult to see that the functions induced by 

the states of an invertible, deterministic and complete automaton are bijections I:*→刃＊．

Taking the closure of these functions and their inverses under composition yields a group, 

which is the group <§(T) generated by T and any such group is called an automaton 

group. 

Partial Automata and Inverse Automaton Semigroups. If we drop the requirement 

of being complete and only consider deterministic automata T = (Q, I:, 8), we still obtain 
that, for every state p E Q or every state p E Q and every input u E I:* there is at most one transition 
starting in p with input u. This means that the functions induced by the states are now 

partial functions I:*→I:* (and the same is true for their compositions, of course). We 
may still define the semigroup or monoid generated by such an automaton though, and 

obtain the notion of a partial automaton semigroup or monoid. We will not go into more 

detail about this concept (as it is not widely studied in the literature) but the reader may 

find an introduction in [11]. 

The advantage of this approach is (not only that it is arguably more natural in the 

setting of semigroups but also) that it allows to consider deterministic, invertible but 

possibly non-complete automata. The functions induced by their states are partial 

injections, which are closely related to inverse semigroups.3 This leads to the notion of 

an inverse automaton semigroup. There are some subtle points to consider here,4 for 

which refer the reader again to [11]. 

Automaton Structures and Their Self-Similar Nature. In order to keep our terminol-

ogy lightweight, we will use the term automaton structures to refer to the various concepts 

defined above (automaton semigroups, monoids, groups, inverse semigroups; complete 

and partial;...). An overview of these and the properties required in the generating 

automaton may be found in Table 1. 

The way we have defined them, automaton structures consist of length-preserving, 

prefix-compatible functions. The latter means that po uv = u'v'implies po u = u'for all 
state sequences p and words u, u', v, v'where u and u'are of the same length. Thus, p 

and u uniquely yield a function I:*→I:* mapping v to (p • u) o v = v'which is determined 
by po uv = u'v'. We say that this is the function induced by p shifted by u. In an 
automaton structure, this shifted function is again given by a state sequence, which meas 

that it is itself contained in the automaton structure. This is the motivation for saying 

that automaton structures are self-similar: the shifted functions are contained in the 

structure and, thus, similar to the non-shifted functions. 

3We will not elaborate on inverse semigroup but refer the reader to the standard literature, e.g. [28, 20]. 
4In particular, there is a priori a difference between automaton semigroups which happen to be inverse 
and the semigroups generated by invertible, deterministic automata. 
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partial automaton 
✓ ✓ ✓ ✓ 

［ 
semigroup /monoid 

(complete) automaton 
✓ ✓ X X 

semigroup /monoid 

inverse automaton 
✓ x ✓ X 

ト semigroup /monoid 

automaton group ✓ X x x 

Table 1: The various algebraic structures generated by different kinds of automata. 

In fact, the state sequences inducing the function belonging to a state sequence 

Pn.. ・Pl (with Pl,...,Pn E Q) shifted by u can be defined inductively by Pn.. -P2P1 ・ u = 
(Pn... p2 ・ (p1 o u)) (p1 ・ u) (where the definition of p ・ u for a single state is the one 

stated above). The reader may verify that this definition indeed satisfies p o uv = 
(po u) ((p • u) o v) for state sequences p. 

(General) Self-Similar Structures. In an automaton structure, if we shift the function 

induced by a state, the resulting function will again be induced by a state (of which we 

only have finitely many). In general, however, self-similarity only means that the shifted 

version of a semigroup (monoid, group) element is again in the semigroup (monoid, group). 

To cover this case, we can simply drop the requirement for our automata to only contain 

finitely many states. Then, we may have a state for every semigroup (monoid, group) 

element. The structures generated by such infinite-state automata are called self-similar 

and we obtain a self-similar version for each of the automaton structures listed in Table 1: 

self-similar semigroups/monoids, self-similar inverse semigroups/monoids, their partial 

counter-parts and self-similar groups. 

2 The History of Free Structures and Self-Similarity 

There is a long history on the problem of presenting free groups and semigroups in a 

self-similar way. The first construction for presenting a free, non-abelian group5 in a 

self-similar way or even as an automaton groups seems to be the Aleshin automaton [2]. 
However, it was only proved to generate a free group of rank three much later by Vorobets 

and Vorobets [34]. Prior to that result, Brunner and Sidki presented the general linear 
group GLn(Z) (and, thus, also free groups of finite or countable rank) as a subgroup 

of an automaton group [6]. Shortly after, free groups were presented as subgroups of 
an automaton group over a binary alphabet by Oliinyk and Sushchansky [26]. The first 
proof for an automaton to generate a free group was given by Glasner and Mozes [17]. 
However, in contrast to Aleshin's automaton, the rank of the generated group is not the 

5The free group in one generator is generated by the adding machine; see, e.g. [37, Example 0.2.1.4]. 
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same as the number of states (there are twice as many states). Automata generating free 

groups of odd rank (starting at rank three) where the rank coincides with the number 

of states were constructed from the Aleshin automaton by Vorobets and Vorobets [35, 
Theorem 1.3]. These automata can also be combined to obtain (disconnected) automata 
for free groups of arbitrary rank (except some small numbers) [35, Theorem 1.4]. Together 
with Steinberg, Vorobets and Vorobets later also derived a family of connected automata 

generating free groups of even rank (where the rank is at least four and coincides with 

the number of states) [32]. 
Compared to free groups, the situation for free semigroups is much simpler: the free 

semigroup of rank one is not an automaton semigroup [7, Proposition 4.3] but free 
semigroups of higher rank are [7, Proposition 4.1]. In fact, the construction used to 
generate these free semigroups is surprisingly simple. On the other side, the argument 

used to show that the free semigroup of rank one is not an automaton semigroup has 

various generalisations (see [4, Theorem 15], [11, Theorem 19] and [37, Theorem 1.2.1.41). 
However, a generalisation for showing that the semigroup is not self-similar is not obvious 

and results in this direction do not appear to exist. In the case of monoids, the free 

monoid of rank one is indeed an automaton monoid (it is generated by the adding machine, 

just like the free group of rank one) and free monoids of higher rank can be generated 

in the same way as the corresponding free semigroups. Finally, for inverse semigroups 

and monoids, there does not seem to exist much research. Based on a presentation of the 

monogenic free inverse semigroup as a subsemigroup of an inverse automaton semigroup by 

Oliynyk, Sushchansky and Slupik [27, Theorem 25], D'Angeli and authors presented this 
semigroup as an inverse automaton semigroups [8, Example 2] (see also [11, Example 231). 
Related to the question on how to present free groups and semigroups in a self-similar 

way, there is another line of research on presenting free products of groups or semigroups 

self-similarly. The free product of two groups or semigroups X =〈PIR〉andY=〈QIS〉
is the group or semigroup X * Y =〈PUQIRUS〉.Dependingon whether we want to take 
the free product in the category of groups or in the category of semigroups, we understand 

this as group or semigroup presentation. Note that this distinction is of importance since 

the free product of two groups in the category of semigroups is in general not a group 

(since there is no neutral element)! Similarly to the Aleshin automaton above, there is the 

Bellaterra automaton, which generates the free product of three groups of order two [24, 
Theorem 1.10.2] -a result due to Muntyan and Savchuk. This group had previously been 

presented as a subgroup of an automaton group [26, p. 323]. Note, however, that every 
free product of finitely many finite groups is a subgroup of an automaton group.6 In 

fact, this is also true for amalgamated products and HNN extensions.7 This follows from 

the fact that such products are virtually free.8 Since the free group in two generators 

(and, thus, every free group of countable rank) is a subgroup of SL2(Z) (by a well-known 

embedding), virtually free groups are, in particular, subgroups of GLn(Z) (which can 

be seen from their induced representation). Therefore, by Brunner and Sidki's result 

6The authors would like to th皿 kArmin Weil& for pointing this out! 
7More on amalgamated products and HNN extension can be found, for example, in [23]. 
8They are fundamental groups of finite graphs of finite groups, see [13] for an introduction. 
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[6], they are subgroups of an automaton groups. However, there are also explicit (often 

much simpler) constructions to obtain such groups as subgroups of automaton groups. 

For example, Gupta, Gupta and Oliynyk gave a construction for free products of finite 

groups [19] and there are further constructions for free products of finite cyclic groups 
with amalgamation over a common cyclic subgroup [29, 25]. In addition, there are also 
results for amalgamated products and HNN extensions of non-finite groups. For example, 

Lavrenyuk, Mazorchuk, Oliynyk and Sushchansky presented free products of two infinite 

cyclic groups with amalgamation over an infinite cyclic subgroup as a subgroup of an 

automaton group [22] and Prokhorchuk considered HNN extensions of certain free abelian 
groups [30]. With regard to self-similar presentations, Vorobets and Vorobets generalized 
the Bellaterra automaton to present any free product of an odd number of groups of order 

two as an automaton group [35, Theorem 1.7 (i)]; as with the Aleshin automaton, these 
automata can be combined to also cover (sufficiently large) even numbers of copies of the 

group of order two [35, Theorem 1.7 (ii)]. This was extended to an arbitrary number of 
copies by Savchuk and Vorobets [31, Theorem 0.2] (see also [32]). 
More fundamentally, Fedorova and Oliynyk showed that the free product of finitely 

many subgroups of an automaton group is again a subgroup of an automaton group 

[14]. However, there do not seem to be results on presenting arbitrary free products of 

self-similar groups in a self-similar way. For semigroups, on the other hand, such results 

exist. Probably the first results in this direction were given by Brough and Cain: first they 

showed that the free product of two automaton semigroups both containing a left identity 

is again an automaton semigroup [3, Theorem 2] and, second, they showed that, if S and 

Tare automaton semigroups, then the semigroup (S*T)1, which arises by taking the free 

product of S and T and adjoining a neutral element, is again an automaton semigroup [3, 

Theorem 3]. Note, however, that there is again a subtle difference between semigroups 

and monoids here: if S and T are monoids their free product of monoids is different 

in general to their free product as semigroups with an additional identity (compare to 

[3, Corollary 4])! They could later extend this to show that the free product of two 

automaton semigroups that either both contain an idempotent or are both homogeneous 

(with respect to their automaton presentation)9 is an automaton semigroup [4, Theorem 4]. 

The construction from this proof was later adapted in Welker's Bachelor thesis [36] to 

relax the hypothesis further. Using a modified construction, one can even show that the 

free product of any two automaton semigroups such that there is a homomorphism from 

one to the other is again an automaton semigroup [5]. 

3 Computational Aspects 

The field of algebraic decision problems goes back to a seminal paper by Max Dehn from 

1911 [12]. In this paper, he formulated three problems, which have become known as 
the three fundamental problems of algorithmic group theory. The first one is the word 

problem, which asks whether a given word over the generators of a group is the neutral 

9 An automaton semigroup is homogeneous with respect to its automaton presentation if two state 
sequences can only induce the same function if they are of the same length. 
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element.10 The second one is the conjugacy problem: given two group elements, decide 

whether they are conjugated.11 The third one, the isomorphism problem, however, is 

of a slightly different nature: it asks whether two given groups are isomorphic. The 

fundamental difference is that, for this problem, the groups are part of the input, which 

requires them to be provided in a suitable, finite (or at least recursively enumerable) 

presentation. Typically, this is done by providing a finite set of generators and a finite set 

of relations. The Adian-Rabin theorem states that most "reasonable" properties of thus 

provided groups are undecidable (see, e.g. [23]). 

Alternatively, we may also use complete, deterministic and invertible automata to 

provide groups to algorithms and it turns out that not much is known on algorithmic 

problems for this kind of presentation. While the isomorphism problem for automaton 

groups is known to be undecidable (which follows from [33]), the decidability of very 

similar problems such as the finiteness problem ("is a given group finite?") remain open 

[18, 7.2.(b)], moving a more general result such as an analogue of the Adian-Rabin 
theorem into even further distance. Typically, these kinds of problems have natural 

generalization to (possibly inverse) semigroup and monoids where some conditions on 

the generating automaton are relaxed. This usually facilitates the encoding of Turing 

machines, which makes obtaining results easier. For example, the finiteness problem 

for automaton semigroups is undecidable [15]. While interesting in its own right, the 
generalization to semigroups is often done in the hope to later extend results to groups.12 

A problem of particular interest in our current context is the freeness problem for 

automaton groups: 

Input: a complete, invertible and determinstic automaton T 
Question: is t;1⑦ free? 

Just like with the finiteness problem, the decidability of this problem is still open [1, 
section 2, 2.(g)] [18, 7.2.(b)]. However, there are some partial results also with regard to 
the very similar problem whether the state set of a given automaton forms a free basis in 

the generated group: 

Input: a complete, invertible, deterministic automaton with states Q 

Question: is t;1⑦ free with a basis induced by Q? 

It also makes sense to consider a slight variation of this problem where one dedicated 

state of the automaton induces the identity function and we exclude this state as an 

element of the basis. 

Clearly, Q yields a basis of the generated group if no (non-empty) sequence of states 

and their inverses induces the identity (and, thus, the neutral element of the group), i.e. 

if we have no group relation over Q. Together with D'Angeli, the current authors have 

shown a result which is related to this view: it is not possible to decide whether a given 

complete, invertible and determinstic automaton admits a (non-empty) sequence over 

10For a discussion of the word problem with respect to automaton structures see [10, 38]. 
11There is an automaton group with an undecidable conjugacy problem [33]. 
12For example, the order problem -which we will not discuss further -was first known to be undecidable 
for automaton semigroups [15] and could later be proved to be also undecidable for automaton groups 
[16]. 



18

the states (but not their inverses) which induces the identity function [8, Theorem 3.7]. 

This has some interesting consequences as it implies that it is undecidable whether a 

given automaton semigroup contains a neutral element (see [37, Subsection 2.2.2] for a 

di iscussion). 

This result already seems very close to showing that the freeness problem for automaton 

semigroups 

a complete, determinstic automaton T Input: a compl 

Question: isダ (T)free? 

is undecidable. However, the situation is more complex and this particular approach does 

not seem to yield the desired result [9]. On the other hand, it is known that the problem 

whether certain invertible, complete and deterministic automata with only two states 

generate a free semigroup is decidable [21]. 

In general, algebaric decision problems on freeness seem to be closely related to the 

classical Post Correspondence Problem. For example, the above mention result on finding 

a sequence of (positive) states inducing the identity is obtained by using a reduction from 

some variation of this problem. 
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