On Weierstrass numerical semigroups generated by four elements ¹

神奈川工科大学 · 基礎 · 教養教育センター 米田 二良 Jiryo Komeda Center for Basic Education and Integrated Learning Kanagawa Institute of Technology

Abstract

We study numerical semigroups H generated by four elements. If H is almost symmetric and the minimum odd integer in H is sufficiently large, we show that it is Weierstrass. Otherwise, applying Herzog-Watanabe's result [2] we obtain that almost symmetric numerical semigroups satisfying some property are Weierstrass.

1 Terminologies and introduction

Let \mathbb{N}_0 be the additive monoid of non-negative integers. A submonoid H of \mathbb{N}_0 is called a *numerical semigroup* if its complement $\mathbb{N}_0 \setminus H$ is finite. The cardinality of $\mathbb{N}_0 \setminus H$ is called the *genus* of H, denoted by g(H). In this paper H always stands for a numerical semigroup. We set

$$c(H) = \min\{c \in \mathbb{N}_0 \mid c + \mathbb{N}_0 \subseteq H\},\$$

which is called the *conductor* of *H*. It is well-known that $c(H) \leq 2g(H)$. *H* is said to be *symmetric* if c(H) = 2g(H). *H* is said to be *quasi-symmetric* if c(H) = 2g(H) - 1. We have $(c(H) - 1) + h \in H$ for any $h \in H$ with h > 0. The number c(H) - 1 is called the *Frobenius number* of *H*. An element $f \in \mathbb{N}_0 \setminus H$ is called a *pseudo-Frobenius number* of *H* if $f + h \in H$ for any $h \in H$ with h > 0. We denote by PF(H) the set of pseudo-Frobenius numbers. The cardinality of the set PF(H) is denoted by t(H), which is called the *type* of *H*. It is known that $c(H)+t(H) \leq 2g(H)+1$. *H* is said to be *almost symmetric* if the equality c(H) + t(H) = 2g(H) + 1 holds. A symmetric numerical semigroup and a quasi-symmetric numerical semigroup are almost symmetric. There exists a numerical semigroup *H* with c(H) = 2g(H) - 2 which is not almost symmetric.

A *curve* means a projective non-singular irreducible algebraic curve over an algebraically closed field k of characteristic 0. For a pointed curve (C, P) we set

$$H(P) = \{ \alpha \in \mathbb{N}_0 \mid \exists f \in k(C) \text{ such that } (f)_{\infty} = \alpha P \},\$$

where k(C) is the field of rational functions on *C*. Then H(P) is a numerical semigroup of genus g(C) where g(C) is the genus of *C*. A numerical semigroup *H* is said to be *Weierstrass* if there exists a pointed curve (C, P) with H(P) = H. It is well-known that

¹This paper is an extended abstract and the details will be published (see [4]) This work was supported by JSPS KAKENHI Grant Number18K03228.

every numerical semigroup generated by two elements is Weierstrass. Using [6] we can show that a numerical semigroup generated by three elements is Weierstrass. Moreover, Bresinsky [1] proved that any symmetric numerical semigroup generated by four elements is Weierstrass. Every quasi-symmetric numerical semigroup generated by four elements is also Weierstrass by [3].

A numerical semigroup *H* is said to be of *double covering type*, which is abbreviated to *DC*, if there exists a double covering of curves with a ramification point *P* with H(P) = H. Hence, if a numerical semigroup is DC, then it is Weierstrass. For a numerical semigroup *H* we set

$$d_2(H) = \{h' \in \mathbb{N}_0 \mid 2h' \in H\},\$$

which is a numerical semigroup. Let $\pi : C \longrightarrow C'$ be a double covering of curves with a ramification point *P*. Then we have $d_2(H(P)) = H(\pi(P))$.

2 Almost symmetric numerical semigroups generated by four elements

For a numerical semigroup H we denote by M(H) the minimal set of generators of H. Moscariello [5] gave a characterization of an almost symmetric numerical semigroup H with #M(H) = 4 using the conductor c(H) as follows.

Remark 2.1. Let *H* be an almost symmetric numerical semigroup which is neither symmetric nor quasi-symmetric. Then we have c(H) = 2g(H) - 2.

Let *H* be a numerical semigroup with $M(H) = \{a_1, \ldots, a_n\}$. For $f \in PF(H)$ we define an (n, n) matrix $RF(f) = (\beta_{ij})$ where $\beta_{ii} = -1$ and $\sum_{j=1}^n \beta_{ij}a_j = f$, because $f \in PF(H)$ implies that $f + a_i$ belongs to the monoid generated by $a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n$. We call RF(f) an *RF-matrix* of *f*. We note that an RF-matrix of *f* is not uniquely determined by *f*. Nevertheless, RF(f) will be the notation for one of the possible RF-matrices of *f*.

Herzog-Watanabe [2] showed the following:

Theorem 2.2. Let *H* be an almost symmetric numerical semigroup with $M(H) = \{a_1, a_2, a_3, a_4\}$. Assume that for some $f \in PF^*(H) := PF(H) \setminus \{c(H) - 1\}$ a matrix RF(f) has only one positive entry in each row, which is called the *RF condition*. For any $i \in \{1, 2, 3, 4\}$ we set $\alpha_i = \min\{\alpha > 0 \mid \alpha a_i \in \langle a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_4 \rangle\}$. Then renumbering a_1, a_2, a_3 and a_4 , we have $\alpha_1 a_1 = (\alpha_2 - 1)a_2 + a_4$, $\alpha_2 a_2 = a_1 + (\alpha_2 - 1)a_3$, $\alpha_3 a_3 = a_2 + (\alpha_4 - 1)a_4$, $\alpha_4 a_4 = (\alpha_1 - 1)a_1 + a_3$ and

$$a_4 = \begin{vmatrix} \alpha_1 & -(\alpha_2 - 1) & 0 \\ -1 & \alpha_2 & -(\alpha_3 - 1) \\ 0 & -1 & \alpha_3 \end{vmatrix}.$$

Let *H* be a numerical semigroup with $M(H) = \{a_1, a_2, a_3, a_4\}$. Let α_i be as in Theorem 2.3. We set $\alpha_i a_i = \sum_{j=1, j \neq i}^4 \alpha_{ij} a_j$. *H* is said to be *1-neat* if the following three conditions are satisfied by renumbering a_1, a_2, a_3 and a_4 :

(1)
$$0 \leq \alpha_{ij} < \alpha_j$$
 for any *i* and *j*.

(2)
$$\alpha_i = \sum_{k \neq i} \alpha_{ki}$$
 for any *i*.
(3) $a_4 = \begin{vmatrix} \alpha_1 & -\alpha_{12} & -\alpha_{13} \\ -\alpha_{21} & \alpha_2 & -\alpha_{23} \\ -\alpha_{31} & -\alpha_{32} & \alpha_3 \end{vmatrix}$

Theorem 4.11 in [3] proved the following:

Theorem 2.3. Let *H* be a numerical semigroup with #M(H) = 4. If *H* is 1-neat, then it is Weierstrass.

Combining Theorem 2.2 with Theorem 2.3 we see the main result in this section as follows.

Corollary 2.4. Let *H* be an almost symmetric numerical semigroup with #M(H) = 4. Assume that *H* satisfies the RF condition. Then it is Weierstrss.

3 Weierstrss numerical semigroups generated by four elements

To describe a numerical semigroup we use the following notations: For any non-negative integers a_1, a_2, \dots, a_n we denote by $\langle a_1, a_2, \dots, a_n \rangle$ the additive monoid generated by a_1, a_2, \dots, a_n . For a numerical semigroup H the minimum positive integer in H is denoted by m(H), which is called the *multiplicity* of H. We set $s_i = \min\{h \in H \mid h \equiv i \mod m(H)\}$ for $i = 1, \dots, m(H) - 1$. The set $S(H) = \{m(H), s_1, \dots, s_{m(H)-1}\}$ is called the *standard basis* for H. We set

$$n(H) = \min\{h \in H \mid h \text{ is odd}\}.$$

From now on we always assume that $\sharp M(H) = 4$. In a forthcoming article [4] we are going to give the proofs of the results in this section.

Lemma 3.1. Assume that $n(H) \ge c(d_2(H)) + m(d_2(H))$. Then we obtain $\sharp M(d_2(H)) = 2$ or 3.

Theorem 3.2. Assume that $\sharp M(d_2(H)) = 3$ and $n(H) \ge c(d_2(H)) + m(d_2(H)) - 1$. We have the following:

(1) $H = 2d_2(H) + n(H)\mathbb{N}_0$.

(2)
$$g(H) = 2g(d_2(H)) + \frac{n(H) - 1}{2}$$
.

(3) We set $c(d_2(H)) = 2g(d_2(H)) - r$ with $r \ge 0$. Then c(H) = 2g(H) - 2r.

- (4) If c(H) = 2g(H) 2, then *H* is not almost symmetric.
- (5) *H* is DC, hence it is Weierstrass.

Theorem 3.3. Let *a* and *b* be positive integers with $2 \le a < b$ satisfying (a, b) = 1. Let *n* be an odd integer with $n \ge (a - 1)(b - 1) + a - 1$. We set $H = 2\langle a, b \rangle + \langle n, n + 2(b - ar) \rangle$. where *r* is a positive integer with b - ar > 0. Then we have the following:

(1) $d_2(H) = \langle a, b \rangle$.

(2)
$$g(H) = 2g(\langle a, b \rangle) + \frac{n-1}{2} - (a-1)r.$$

(3)
$$c(H) = 2g(H) - 2r$$
.

(4) If $n \ge (a-1)(b-1) + 2r(a-1) + 1$, then *H* is DC, hence it is Weierstrass.

Theorem 3.4. Assume that $\sharp M(d_2(H)) = 2$, $n(H) \ge c(d_2(H)) + m(d_2(H))$ and c(H) = 2g(H) - 2. Then we have

(1)
$$H = 2\langle a, b \rangle + \langle n(H), n(H) + 2(b-a) \rangle$$
, where we set $d_2(H) = \langle a, b \rangle$ with $2 \leq a < b$.

(2)
$$g(H) = 2g(d_2(H)) + \frac{n(H) - 1}{2} - (a - 1)$$

- (3) H is almost symmetric.
- (4) If $n(H) \ge (a-1)(b-1) + 2a 1$, then *H* is DC, hence it is Weierstrass.
- (5) If $n(H) \ge (a-1)(b-1) + 2a$, then for any $f \in PF^*(H)$ a matrix RF(f) has at least two positive entries in some row, i.e., the RF condition is not satisfied.
- (6) If n(H) = (a 1)(b 1) + 2a 1, then the matrix RF(n 2a) has only one positive entry in each row, i.e., the RF condition is satisfied.

Main Theorem 3.5. Le *H* be an almost symmetric numerical semigroup with #M(H) = 4 which is neither symmetric nor quasi-symmetric. Then we have the following:

- (1) If $n(H) \ge c(d_2(H)) + 2m(d_2(H)) 1$, then it is DC, hence Weierstrass.
- (2) If *H* satisfies the RF condition, then it is Weierstrass.

34

Example 3.6. Let *H* be a numerical semigroup with $M(H) = \{10, 14, 35, 39\}$. Hence, $d_2(H) = \langle 5, 7 \rangle$, $m(d_2(H)) = 5$, $g(d_2(H)) = 12$ and $c(d_2(H)) = 24$. Then we obtain

 $S(H) = \{10, 14, 28, 35, 39, 42, 53, 56, 67, 81\}.$

We have g(H) = 37 and c(H) = 81 - 10 + 1 = 72 = 2g(H) - 2. Moreover, we obtain $PF(H) = \{35 - 10, 56 - 10, 81 - 10\} = \{25, 46, 71\}$. Hence, we get t(H) = 3, which implies that *H* is almost symmetric. An RF-matrix of 25 is

$$RF(25) = \begin{pmatrix} -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 6 & 0 & -1 & 0 \\ 5 & 1 & 0 & -1 \end{pmatrix}.$$

An RF-matrix of 46 is

$$RF(46) = \begin{pmatrix} -1 & 4 & 0 & 0\\ 6 & -1 & 0 & 0\\ 0 & 3 & -1 & 1\\ 5 & 0 & 1 & -1 \end{pmatrix}.$$

Thus, *H* does not satisfy the RF condition. But we have

$$n(H) = 35 > c(d_2(H)) + 2m(d_2(H)) = 24 + 10 = 34.$$

Hence, H is DC, which implies that it is Weierstrass.

Example 3.7. Let *H* be a numerical semigroup with $M(H) = \{7, 8, 17, 26\}$. Then $S(H) = \{7, 8, 17, 26, 16, 25, 34\}$. We have g(H) = 15 and c(H) = 34 - 7 + 1 = 28 = 2g(H) - 2. Moreover, we obtain $PF(H) = \{16 - 7, 25 - 7, 34 - 7\} = \{9, 18, 27\}$. Hence, we get t(H) = 3, which implies that *H* is almost symmetric. On the other hand, we have $d_2(H) = \langle 4, 7, 13 \rangle$, $g(d_2(H)) = 7$ and $c(d_2(H)) = 14 - 4 + 1 = 11$. Hence, we obtain

$$n(H) = 7 < c(d_2(H)) + 2m(d_2(H)) - 2 = 11 + 8 - 2 = 17.$$

But an RF-matrix of 9 is

$$RF(9) = \begin{pmatrix} -1 & 2 & 0 & 0\\ 0 & -1 & 1 & 0\\ 0 & 0 & -1 & 1\\ 5 & 0 & 0 & -1 \end{pmatrix}.$$

Hence, H satisfies the RF condition, which implies that it is Weierstrass.

References

[1] H. Bresinsky, *Symmetric semigroups of integers generated by 4 elements*, Manuscripta Math. **17** (1975), 205–219.

- [2] J. Herzog and K. Watanabe, Almost symmetric numerical semigroups, Semigroup Forum 98 (2019), 589–630.
- [3] J. Komeda, On the existence of Weierstrass points with a certain semigroup generated by 4 elements, Tsukuba J. Math. **6** (1982), 237–270.
- [4] J. Komeda, *On Weierstrass numerical semigroups generated by 4 elements*, in preparation.
- [5] A. Moscariello, On the type of an almost Gorenstein monomial curve, J. of Algebra, 456 (2016), 266 – 277.
- [6] R. Waldi, Deformation von Gorenstein-Singularitäten der Kodimension 3, Math. Ann. 242 (1979), 201–208.