On Weierstrass numerical semigroups generated by four elements ${ }^{1}$

神奈川工科大学•基礎•教養教育センター 米田 ニ良
Jiryo Komeda
Center for Basic Education and Integrated Learning
Kanagawa Institute of Technology

Abstract

We study numerical semigroups H generated by four elements．If H is almost symmetric and the minimum odd integer in H is sufficiently large，we show that it is Weierstrass．Oth－ erwise，applying Herzog－Watanabe＇s result［2］we obtain that almost symmetric numerical semigroups satisfying some property are Weierstrass．

1 Terminologies and introduction

Let \mathbb{N}_{0} be the additive monoid of non－negative integers．A submonoid H of \mathbb{N}_{0} is called a numerical semigroup if its complement $\mathbb{N}_{0} \backslash H$ is finite．The cardinality of $\mathbb{N}_{0} \backslash H$ is called the genus of H ，denoted by $g(H)$ ．In this paper H always stands for a numerical semigroup． We set

$$
c(H)=\min \left\{c \in \mathbb{N}_{0} \mid c+\mathbb{N}_{0} \cong H\right\}
$$

which is called the conductor of H ．It is well－known that $c(H) \leqq 2 g(H)$ ．H is said to be symmetric if $c(H)=2 g(H)$ ．H is said to be quasi－symmetric if $c(H)=2 g(H)-1$ ．We have $(c(H)-1)+h \in H$ for any $h \in H$ with $h>0$ ．The number $c(H)-1$ is called the Frobenius number of H ．An element $f \in \mathbb{N}_{0} \backslash H$ is called a pseudo－Frobenius number of H if $f+h \in H$ for any $h \in H$ with $h>0$ ．We denote by $P F(H)$ the set of pseudo－Frobenius numbers．The cardinality of the set $P F(H)$ is denoted by $t(H)$ ，which is called the type of H ．It is known that $c(H)+t(H) \leqq 2 g(H)+1$ ．H is said to be almost symmetric if the equality $c(H)+t(H)=2 g(H)+1$ holds．A symmetric numerical semigroup and a quasi－symmeric numerical semigroup are almost symmetric．There exists a numerical semigroup H with $c(H)=2 g(H)-2$ which is not almost symmetric．

A curve means a projective non－singular irreducible algebraic curve over an alge－ braically closed field k of characteristic 0 ．For a pointed curve (C, P) we set

$$
H(P)=\left\{\alpha \in \mathbb{N}_{0} \mid \exists f \in k(C) \text { such that }(f)_{\infty}=\alpha P\right\}
$$

where $k(C)$ is the field of rational functions on C ．Then $H(P)$ is a numerical semigroup of genus $g(C)$ where $g(C)$ is the genus of C ．A numerical semigroup H is said to be Weierstrass if there exists a pointed curve (C, P) with $H(P)=H$ ．It is well－known that

[^0]every numerical semigroup generated by two elements is Weierstrass. Using [6] we can show that a numerical semigroup generated by three elements is Weierstrass. Moreover, Bresinsky [1] proved that any symmetric numerical semigroup generated by four elements is Weierstrass. Every quasi-symmetric numerical semigroup generated by four elements is also Weierstrass by [3].

A numerical semigroup H is said to be of double covering type , which is abbreviated to $D C$, if there exists a double covering of curves with a ramification point P with $H(P)=H$. Hence, if a numerical semigroup is DC, then it is Weierstrass. For a numerical semigroup H we set

$$
d_{2}(H)=\left\{h^{\prime} \in \mathbb{N}_{0} \mid 2 h^{\prime} \in H\right\},
$$

which is a numerical semigroup. Let $\pi: C \longrightarrow C^{\prime}$ be a double covering of curves with a ramification point P. Then we have $d_{2}(H(P))=H(\pi(P))$.

2 Almost symmetric numerical semigroups generated by four elements

For a numerical semigroup H we denote by $M(H)$ the minimal set of generators of H. Moscariello [5] gave a characterization of an almost symmetric numerical semigroup H with $\sharp M(H)=4$ using the conductor $c(H)$ as follows.

Remark 2.1. Let H be an almost symmetric numerical semigroup which is neither symmetric nor quasi-symmetric. Then we have $c(H)=2 g(H)-2$.

Let H be a numerical semigroup with $M(H)=\left\{a_{1}, \ldots, a_{n}\right\}$. For $f \in P F(H)$ we define an (n, n) matrix $R F(f)=\left(\beta_{i j}\right)$ where $\beta_{i i}=-1$ and $\sum_{j=1}^{n} \beta_{i j} a_{j}=f$, because $f \in P F(H)$ implies that $f+a_{i}$ belongs to the monoid generated by $a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n}$. We call $R F(f)$ an RF-matrix of f. We note that an RF-matrix of f is not uniquely determined by f. Nevertheless, $R F(f)$ will be the notation for one of the possible RF-matrices of f.
Herzog-Watanabe [2] showed the following:
Theorem 2.2. Let H be an almost symmetric numerical semigroup with $M(H)=$ $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. Assume that for some $f \in P F^{*}(H):=P F(H) \backslash\{c(H)-1\}$ a matrix $R F(f)$ has only one positive entry in each row, which is called the RF condition. For any $i \in\{1,2,3,4\}$ we set $\alpha_{i}=\min \left\{\alpha>0 \mid \alpha a_{i} \in\left\langle a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{4}\right\rangle\right\}$. Then renumbering a_{1}, a_{2}, a_{3} and a_{4}, we have $\alpha_{1} a_{1}=\left(\alpha_{2}-1\right) a_{2}+a_{4}, \alpha_{2} a_{2}=a_{1}+\left(\alpha_{2}-1\right) a_{3}, \alpha_{3} a_{3}=a_{2}+\left(\alpha_{4}-1\right) a_{4}$, $\alpha_{4} a_{4}=\left(\alpha_{1}-1\right) a_{1}+a_{3}$ and

$$
a_{4}=\left|\begin{array}{rrr}
\alpha_{1} & -\left(\alpha_{2}-1\right) & 0 \\
-1 & \alpha_{2} & -\left(\alpha_{3}-1\right) \\
0 & -1 & \alpha_{3}
\end{array}\right| .
$$

Let H be a numerical semigroup with $M(H)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. Let α_{i} be as in Theorem 2.3. We set $\alpha_{i} a_{i}=\sum_{j=1, j \neq i}^{4} \alpha_{i j} a_{j}$. H is said to be 1 -neat if the following three conditions are satisfied by renumbering a_{1}, a_{2}, a_{3} and a_{4} :
(1) $0 \leqq \alpha_{i j}<\alpha_{j}$ for any i and j.
(2) $\alpha_{i}=\sum_{k \neq i} \alpha_{k i}$ for any i.
(3) $a_{4}=\left|\begin{array}{rrr}\alpha_{1} & -\alpha_{12} & -\alpha_{13} \\ -\alpha_{21} & \alpha_{2} & -\alpha_{23} \\ -\alpha_{31} & -\alpha_{32} & \alpha_{3}\end{array}\right|$.

Theorem 4.11 in [3] proved the following:

Theorem 2.3. Let H be a numerical semigroup with $\sharp M(H)=4$. If H is 1 -neat, then it is Weierstrass.

Combining Theorem 2.2 with Theorem 2.3 we see the main result in this section as follows.

Corollary 2.4. Let H be an almost symmetric numerical semigroup with $\sharp M(H)=4$. Assume that H satisfies the RF condition. Then it is Weierstrss.

3 Weierstrss numerical semigroups generated by four elements

To describe a numerical semigroup we use the following notations: For any non-negative integers $a_{1}, a_{2}, \cdots, a_{n}$ we denote by $\left\langle a_{1}, a_{2}, \cdots, a_{n}\right\rangle$ the additive monoid generated by $a_{1}, a_{2}, \cdots, a_{n}$. For a numerical semigroup H the minimum positive integer in H is denoted by $m(H)$, which is called the multiplicity of H. We set $s_{i}=\min \{h \in H \mid h \equiv i \bmod m(H)\}$ for $i=1, \ldots, m(H)-1$. The set $S(H)=\left\{m(H), s_{1}, \ldots, s_{m(H)-1}\right\}$ is called the standard basis for H. We set

$$
n(H)=\min \{h \in H \mid h \text { is odd }\} .
$$

From now on we always assume that $\sharp M(H)=4$. In a forthcoming article [4] we are going to give the proofs of the results in this section.

Lemma 3.1. Assume that $n(H) \geqq c\left(d_{2}(H)\right)+m\left(d_{2}(H)\right)$. Then we obtain $\sharp M\left(d_{2}(H)\right)=2$ or 3.

Theorem 3.2. Assume that $\sharp M\left(d_{2}(H)\right)=3$ and $n(H) \geqq c\left(d_{2}(H)\right)+m\left(d_{2}(H)\right)-1$. We have the following:
(1) $H=2 d_{2}(H)+n(H) \mathbb{N}_{0}$.
(2) $g(H)=2 g\left(d_{2}(H)\right)+\frac{n(H)-1}{2}$.
(3) We set $c\left(d_{2}(H)\right)=2 g\left(d_{2}(H)\right)-r$ with $r \geqq 0$. Then $c(H)=2 g(H)-2 r$.
(4) If $c(H)=2 g(H)-2$, then H is not almost symmetric.
(5) H is DC, hence it is Weierstrass.

Theorem 3.3. Let a and b be positive integers with $2 \leqq a<b$ satisfying (a, b) $=1$. Let n be an odd integer with $n \geqq(a-1)(b-1)+a-1$. We set $H=2\langle a, b\rangle+\langle n, n+2(b-a r)\rangle$. where r is a positive integer with $b-a r>0$. Then we have the following:
(1) $d_{2}(H)=\langle a, b\rangle$.
(2) $g(H)=2 g(\langle a, b\rangle)+\frac{n-1}{2}-(a-1) r$.
(3) $c(H)=2 g(H)-2 r$.
(4) If $n \geqq(a-1)(b-1)+2 r(a-1)+1$, then H is DC , hence it is Weierstrass.

Theorem 3.4. Assume that $\sharp M\left(d_{2}(H)\right)=2, n(H) \geqq c\left(d_{2}(H)\right)+m\left(d_{2}(H)\right)$ and $c(H)=$ $2 g(H)-2$. Then we have
(1) $H=2\langle a, b\rangle+\langle n(H), n(H)+2(b-a)\rangle$, where we set $d_{2}(H)=\langle a, b\rangle$ with $2 \leqq a<b$.
(2) $g(H)=2 g\left(d_{2}(H)\right)+\frac{n(H)-1}{2}-(a-1)$.
(3) H is almost symmetric.
(4) If $n(H) \geqq(a-1)(b-1)+2 a-1$, then H is DC, hence it is Weierstrass.
(5) If $n(H) \geqq(a-1)(b-1)+2 a$, then for any $f \in P F^{*}(H)$ a matrix $R F(f)$ has at least two positive entries in some row, i.e., the RF condition is not satisfied.
(6) If $n(H)=(a-1)(b-1)+2 a-1$, then the matrix $R F(n-2 a)$ has only one positive entry in each row, i.e., the RF condition is satisfied.

Main Theorem 3.5. Le H be an almost symmetric numerical semigroup with $\sharp M(H)=4$ which is neither symmetric nor quasi-symmetric. Then we have the following:
(1) If $n(H) \geqq c\left(d_{2}(H)\right)+2 m\left(d_{2}(H)\right)-1$, then it is DC , hence Weierstrass.
(2) If H satisfies the RF condition, then it is Weierstrass.

Example 3.6. Let H be a numerical semigroup with $M(H)=\{10,14,35,39\}$. Hence, $d_{2}(H)=\langle 5,7\rangle, m\left(d_{2}(H)\right)=5, g\left(d_{2}(H)\right)=12$ and $c\left(d_{2}(H)\right)=24$. Then we obtain

$$
S(H)=\{10,14,28,35,39,42,53,56,67,81\}
$$

We have $g(H)=37$ and $c(H)=81-10+1=72=2 g(H)-2$. Moreover, we obtain $P F(H)=\{35-10,56-10,81-10\}=\{25,46,71\}$. Hence, we get $t(H)=3$, which implies that H is almost symmetric. An RF-matrix of 25 is

$$
R F(25)=\left(\begin{array}{rrrr}
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1 \\
6 & 0 & -1 & 0 \\
5 & 1 & 0 & -1
\end{array}\right)
$$

An RF-matrix of 46 is

$$
R F(46)=\left(\begin{array}{rrrr}
-1 & 4 & 0 & 0 \\
6 & -1 & 0 & 0 \\
0 & 3 & -1 & 1 \\
5 & 0 & 1 & -1
\end{array}\right)
$$

Thus, H does not satisfy the RF condition. But we have

$$
n(H)=35>c\left(d_{2}(H)\right)+2 m\left(d_{2}(H)\right)=24+10=34
$$

Hence, H is DC, which implies that it is Weierstrass.
Example 3.7. Let H be a numerical semigroup with $M(H)=\{7,8,17,26\}$. Then $S(H)=$ $\{7,8,17,26,16,25,34\}$. We have $g(H)=15$ and $c(H)=34-7+1=28=2 g(H)-2$. Moreover, we obtain $P F(H)=\{16-7,25-7,34-7\}=\{9,18,27\}$. Hence, we get $t(H)=3$, which implies that H is almost symmetric. On the other hand, we have $d_{2}(H)=\langle 4,7,13\rangle$, $g\left(d_{2}(H)\right)=7$ and $c\left(d_{2}(H)\right)=14-4+1=11$. Hence, we obtain

$$
n(H)=7<c\left(d_{2}(H)\right)+2 m\left(d_{2}(H)\right)-2=11+8-2=17 .
$$

But an RF-matrix of 9 is

$$
R F(9)=\left(\begin{array}{rrrr}
-1 & 2 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1 \\
5 & 0 & 0 & -1
\end{array}\right)
$$

Hence, H satisfies the RF condition, which implies that it is Weierstrass.

References

[1] H. Bresinsky, Symmetric semigroups of integers generated by 4 elements, Manuscripta Math. 17 (1975), 205-219.
[2] J. Herzog and K. Watanabe, Almost symmetric numerical semigroups, Semigroup Forum 98 (2019), 589-630.
[3] J. Komeda, On the existence of Weierstrass points with a certain semigroup generated by 4 elements, Tsukuba J. Math. 6 (1982), 237-270.
[4] J. Komeda, On Weierstrass numerical semigroups generated by 4 elements, in preparation.
[5] A. Moscariello, On the type of an almost Gorenstein monomial curve, J. of Algebra, 456 (2016), 266 - 277.
[6] R. Waldi, Deformation von Gorenstein-Singularitäten der Kodimension 3, Math. Ann. 242 (1979), 201-208.

[^0]: ${ }^{1}$ This paper is an extended abstract and the details will be published（see［4］） This work was supported by JSPS KAKENHI Grant Number18K03228．

