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Abstract 

A k-regular graph of girth g and minimal order is called a (k,g)-cage. 
The orders of cages are determined for only few sets of parameter pairs 
(k, g), and the general problem of determining these orders and construct-
ing at least one (k, g)-cage for each pair of parameters is called the Cage 
Problem. The voltage lift construction is among the most widely used con-
structions of small (k, g)-graphs, with the orders of the constructed graphs 
depending on the choice of a base graph, a voltage group, and a specific 
voltage assignment. Successful application of the voltage lift construction 
therefore often requires significant computer aided experimentation with 
the three fundamental ingredients. We survey some known results concern-
ing the voltage lift construction, and discuss ways to decrease the orders of 
the smallest known (k,g)-graphs for some specific parameter pairs (k,g). 

1 Introduction 

In extremal graph theory, one looks for graphs that possess specified properties 

or parameters and optimize an additional closely related parameter; such as, for 

example, the order of the graph. Optimal solutions often stem from construe-

tions that rely on connections to various areas of algebra including among others 

group theory, linear algebra, or theory of finite fields, and almost always depend 

on extensive computer searches through a large number of candidate structures, 

e.g., choices of groups to be used together with generating sets or subgroups. 

Determining the best choices requires a thorough understanding of the interplay 

between the building blocks of these constructions and the properties of the de-

sired graphs. Limiting the algebraic objects involved in these constructions to 

those with the most promising properties allows for subsequent efficient use of 

computing machinery. 

*This work was supported by the Research Institute for Mathematical Sciences, an Interna— 
tional Joint Usage/Research Center located in Kyoto University. Both authors also supported 
in part by VEGA 1/0423/20 and APVV-19-0308. 
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The Cage Problem is a computationally demanding optimization problem 

which, for a given pair of graph parameters, degree k and girth g, requires finding 

a graph of the smallest order within the infinite set of graphs all of which have the 

desired parameters, but cannot be efficiently constructed. This makes the brute 

force approach computationally infeasible for all but the smallest parameter pairs. 

More precisely, a (k, g)-cage is a k-regular graph of girth g and smallest pos-

sible order n(k,g), and solving the Cage Problem means finding a (k,g)-cage 

and its corresponding order n(k, g) for all parameter pairs (k, g), 3 ::::; k, g. The 

formulation and first attempts at solving this classical problem go back to Tutte 

[17] in the 1940s. The Cage Problem is generally accepted to be exceedingly com-

plex and has only been solved for limited parameter classes, with constructions 

of specific graphs of orders close to theoretical lower bounds seen as the best way 

to making progress. It is the direction taken by the majority of researchers in the 

area [9]. 

Recent renewed interest in the Cage Problem is partially due to its immediate 

applicability in network design as well as in such areas as Coding Theory where 

cages give rise to classes of Low Density Parity Check Codes [11, 14, 15] whose 

decoding efficiency requires a large girth of the corresponding cage while the order 

of the cage is related to the length of the code and thus to its information rate. 

2 The lift construction 

Part of the renewed appeal of the search for cages also lies in the introduction 

of algebraic construction methods with an extensive computational component. 

One such construction, the main construction discussed in this paper, combines 

ideas from topological graph theory and group theory, and is known under various 

names such as the voltage graph construction or the covering graph construction 

or simply the lift construction [1]. A significant number of record graphs (smallest 

graphs with given parameters (k, g) known to date [9]) has been constructed 

using this construction which can also be viewed as a generalization of one of the 

fundamental concepts of Algebraic Graph Theory, the Cayley graphs [1, 2, 5, 6]. 

Let r be a finite group with a generating set X closed under inverses, X = 
x-1, and not containing the identity, lr (/c X. The Cayley graph C(f,X) is 

the !XI-regular graph on the elements of r via the adjacency g ~ gx, for all 
g E r, and x E X (equivalently, two vertices g, h E r are adjacent if and only 
if g―1h E X). Since X is closed under inverses, the Cayley graph C(r, X) is 

undirected. 

Unlike the above definition, the ingredients of the lift construction are of two 

different kinds. Namely, the lift construction requires both a finite (multi)graph G 

(possibly admitting multiple edges and multiple loops) called the base graph, and 

a finite group r, called the voltage group. If one lets D(G) denote the set of darts 
of G obtained by replacing each edge or loop e of G by a pair of opposing (oriented) 

darts e,，戸 thevoltage assignment on G is any mapping a : D(G)→r which 
satisfies the requirement a（因） ＝ （a(筍）ー1,for allぞED(G) (no other algebraic 
properties are required). Given a pair G, r together with a voltage assignment 

a: D(G)→r, the derived regular cover or the lift of G with respect to a is 
denoted by ca, and has the vertex set V (G) x r = { u9 I u E V (G), g E r}皿 d
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adjacency between two vertices u9 and v1 E G" if and only if e = (u, v) E D(G) 
and f = g ・ a（筍． Inthis sense, Cayley graphs are lifts of one-vertex bouquets 
of cycles and semi-edges, and thus the lift construction is a generalization of the 

Cayley graph construction. 

We illustrate the lift construction with two notorious examples which give 

rise to cages. The first example demonstrates the construction of the Petersen 

graph, which is well-known to be the (3, 5)-cage, from the dumbbell graph using 

voltages from Z5. The second example is the (3, 6)-cage known under the name 
of the Heawood graph which is the lift of the 0-graph via voltages from Z7 [9]. 

介
1Q-S--02 三

Figure 1: Petersen graph as a lift by恥皿dHeawood graph as a lift by Z7 

The above examples amply demonstrate the key ingredients behind the ef-

ficacy of the lift construction. Both components involved in the construction 

are relatively small when compared to the order of the resulting lift graph, 

IV(G"')I = IV(G)I ・ Ir!-At the same time, all graph properties of G"'are de-
termined by the choice of G, r and a, and thus understanding the impact of 
these choices on the properties of the resulting G"'allows for constructions of 

large graphs with desired properties from small building blocks. Since we are 

specifically interested in k-regular graphs of prescribed girth g, it is important to 

observe that the set of vertices {u9lg Er}, where u is a fixed vertex of G, called 
the fibre of u in G尺consistsof vertices whose degrees are eq叫 tothe degree of 
u in G, and thus, in particular, a lift of a k-regular graph is necessarily k-regular. 

It follows from this observation that all the base graphs we will be interested in 
our paper will be regular. The girth of the lift G"'as a function of G, r, and a, is 
a bit more complicated, and we will devote our next section to determining the 

girth of the lift graph. 

3 The girth of a lift graph 

The most important observation about the girth of a liftぴ isthat it is deter-

mined by the properties of the base graph G and the specific voltage assignments 
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to its edges. Thus, determining the girth of G" does not necessarily require con-

structing G" and determining its girth by inspecting its cycle structure which 

is a computational task polynomial in the order of G". Consequently, one can 

search for large girth lifts of a base graph G without having to construct the lift 

for each considered voltage assignment and subsequently determining the girth 

of the much larger derived graphs. 

The key to this observation lies in the concept of a projection p from G" onto 

G, which is a graph homomorphism mapping the vertices of each fibre { u9lg Er}, 
u E V(G), onto the vertex u. This means, in particular, that each vertex u of 

G has Ir! pre-images u9, p(u9) = u, g E r, and each dartもwithinitial vertex 
u and terminal vertex v is the image of I rj different darts in G叉eachstarting 
from a different vertex u9 and terminating at a different vertex u9.a（eJ ・ It is also 

easy to see that each n-cycle u1,9,1, u2,9,2,..., Un,g,n = u1,9,1 inか projectsonto 
a closed walk u1, u2,..., Un= u1 in G of length n having the additional property 

that it traverses no edge of G'back and forth'in an immediate sequence, i.e., it 

does not contain any pair of consecutive darts瓦戸． Wecall such closed walks 
non-reversing. 

In view of the above, let us now consider a non-reversing closed walk W of 

length n in the base graph G starting off (and returning to) a vertex u E V(G). 

It is again easy to see that ca contains Ir! different walks of length n, each 
starting at a different vertex u9 and each projecting onto W. Note that, since 

W is assumed to be closed, the end points of all these n-walks projecting onto 

W also belong to the fibre of u. It is therefore meaningful to ask whether the 

lifted walks are closed or not. The answer to this question, i.e., the answer to the 

question whether the initial vertex ・u9 of any such a lift is equal to its terminal 

vertex u9,, depends on the so-called net voltage of W. Namely, if W consists of 

the sequence of darts 蔚，忍，．．．，召~ (with the initial vertex of蔚andthe terminal 
vertex ofもnequal to the vertex u), the net voltage a(W) of W is the product 

a（名）a（西）．．．a（盃） inr. Starting of釘andtraversing W one edge at a time 
yields that u9, = ug・a(W), and thus a lift of W starting at u9 (and also all the 

other lifts) forms a closed walk if and only if g = g ・ a(W), which is equivalent to 

g-a(W) = lr. In summary, the pre-images of the closed walk Ware closed walks 

if and only if the net voltage of W in r is eq叫 tolr, and are cycles if and only 
if W contains no proper closed sub-walk of net voltage lr. These observations 

yield the following lemma. 

Lemma 3.1 ([10]). Let G be a finite graph and a : G→r be a voltage assignment 
of G. The girth of the voltage graph lift G" is equal to the length of a shortest 

closed non-reversing walk W in G of net voltage lr. 

Let us point out again that the above lemma provides us with a justification 

of the main computational advantage of the use of the lift construction. Namely, 

even though the lift G" contains many more cycles than G, they all project onto 

non-reversing closed walks in G of net voltage lr, and hence the girth of ca can 

be determined via considering all closed non-reversing walks in G and their net 

voltages. To conclude this section we include one more observation concerning 

the lifts of closed non-reversing walks in G. 

Lemma 3.2. Let G be a finite graph, let a : G→r be a voltage assignment of 
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G, and let W be a closed non-reversing walk in G of length n and net voltage 

a(W) of order r in r. Let us also assume that W starts from u. The lift graph 
G" contains lfl/r different closed walks of length nr starting in the fibre of u and 

projecting onto W. Moreover, if W does not contain a proper closed sub-walk of 

net voltage 1, all the lifts of W are (nr)-cycles in Gり

The argument used in the proof of the above lemma should now be relatively 

clear: When tracing simultaneously the sequence of darts in W starting in u and 

the (connected) sequence of the lifts of these darts in G" starting in a specific 

vertex u9, reaching the end-point u of Win G means reaching the vertex u9.a(W) 

in G". If a(W)ヂlr,the walk starting in u9 and projecting on W is not closed 
and can therefore be concatenated with the walk starting in Ug,a(W) and also 

projecting onto W. Repeating the process of attaching a number of connected 

non-closed walks in G" will only result in a completed closed walk at the point 

when u9 = u9.(a(W))", or equivalently, when (a(W)Y = lr. Thus, each of the 
different copies of the closed walks starting in the fibre of u and projecting onto W 

contains different r vertices from the fibre, u9, u9.(a(W)),..., Ug,(a(W))"-1, and the 

fibre, which consists of If! vertices, splits into lfl/r disjoint groups belonging to 
|「|／rdifferent closed walks of length nr starting from the fibre of u and projecting 

onto W. 

Let us revisit the construction of the Petersen graph via the voltage assignment 

described in Figure 1 in view of the above observations. The dumbbell graph 

contains two non-reversing closed walks of length 1, the loops, and neither one 

of them has net voltage 0. It contains two closed non-reversing walks of length 2 

of non-zero net voltage consisting of one of the loops travelled twice in the same 

direction. It contains four closed non-reversing walks of length 3 containing the 

handle and one of the loops and also four visiting the same loop in the same 

direction three times, none of which are of net voltage 0. As it also contains no 

closed non-reversing walks of length 4 of non-zero net voltage, the girth of the 

lift is necessarily larger than 4 (and is in fact 5). 

In the following sections we consider examples which unlike the construction 
of the Petersen graph from the dumbbell graph yield record graphs which have 

not yet been shown to be minimal with regard to their parameters (k, g), and 

therefore it may be the case that they are not the smallest possible. In each case, 

we discuss potential approaches to improving these constructions. 

4 The record (3, 14)-graph 

The smallest known trivalent graph of girth 14 is of order 384 and was constructed 

by Exoo [7]. It is a lift of the trivalent multigraph G8 of order 8 shown in Figure 
2. The voltage group used in its construction is a semidirect product of the cyclic 

group of order 3 by the generalized quaternion group of order 16, more specifically, 

the Smal1Group(48,18) in the Small Group Library of GAP [12] generated by the 

following two permutations: 

X = (1, 2, 5, 9) (3, 18, 12, 32) (4, 21, 14, 8) (6, 24, 16, 38) 

(7, 25, 19, 11)(10, 31, 23, 17)(13, 44, 27, 48)(15, 46, 29, 37) 

(20, 47, 34, 40)(22, 30, 36, 42)(26, 35, 39, 45)(28, 33, 41, 43) 
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ゆ＝ （1, 28, 16, 12, 17, 13, 5, 41, 6, 3, 31, 27) 
(2, 35, 23, 19, 24, 20, 9, 45, 10, 7, 38, 34) 

(4, 47, 29, 11, 30, 39, 14, 40, 15, 25, 42, 26) 

(8, 48, 36, 18, 37, 43, 21, 44, 22, 32, 46, 33) 

p
 

,V6 

V4 I 
,V5 

Figure 2: Base graph G8 

As we already explained in the previous sections, in order to construct a 

(3, 14)-graph of order smaller than 384 using the lift construction, we need to 

decrease the order of the base graph and/or the order of the voltage group. In 

view of the fact that the base graph used in Exoo's construction consists of only 

8 vertices, we have decided to keep this graph as the base graph and experiment 

with groups of order smaller than 48. This means that in order to answer the 

question whether there exists a smaller lift of G8 of gi仕h14 than that of order 384, 

one can consider all groups of orders larger than 33 =厚」（as258 is a known 
8 

lower bound on the order of a (3, 14)-graph [9]) and smaller than 48. For each such 

group r, 33 :S If! < 48, one can consider all possible voltage assignments from 
r onto the 12 edges of G8, and for each of these voltage assignments construct 
the corresponding lift graph and determine its order. If none of the constructions 

produced a graph of girth 14 (or bigger), the conclusion would be that there is 

no lift of G8 smaller than 384. If, on the other hand, one was lucky enough 
to find a graph of girth at least 14, it would constitute a new record. Thus, 

determining the existence of a lift of伍 ofgirth 14 and order smaller than 384 is 

a computational task proportional to the number of groups r of orders between 
33 and 4 7 multiplied by the number of possible voltage assignments for the edges 

of伍 whichis eq叫 to12lri. Without further restrictions on the possible voltage 

assignments, such exhaustive search is still computationally infeasible. In the 
forthcoming paragraphs we will outline some basic improvements to such search. 

Probably the most significant improvement is based on the fact that without 

loss of generality one may choose a spanning tree T of G8 and assign the identity 
1 r of the voltage group r to all edges of T (every voltage lift is isomorphic to a 
lift in which the edges of a spanning tree of the base graph have all been assigned 

the identity voltage [13, p. 91]). This limits the number of voltage assignments 

that need to be considered for a specific r to (12 -7)1rl = 5!rl, where 5 is the 
number of non-tree edges in Gs; sometimes also called the Betti number of Gs. 

The second most significant improvement is based on our arguments presented 

in Section 3 concerning the girths of the lift graphs, where we argued that in order 

to determine whether a specific voltage gives rise to a graph of girth greater than 

14, one only needs to consider the net voltages of closed non-reversing walks of 
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length less than 14 and to determine whether any of these closed walks has the net 

voltage lr. To take advantage of this insight, we used a DFS algorithm to find all 

non-reversing closed walks of lengths between 7 and 13 (any shorter walk of net 

voltage lr doubles into a closed walk consisting of a concatenation of such a walk 

with itself and also having the net voltage lr, and so it will not be overlooked). 

For each voltage assignment for the non-tree edges of伍 oneneeds to check all 

the walks on this precalculated list to see whether any of them received the net 

voltage lr. Finding the first such voltage assignment terminates the search as 

the existence of such a walk means that the girth of the lift graph is smaller than 

14. Since Exoo in [7] does not list the voltages used in his construction, we first 

applied our algorithm to voltages from Smal1Group(48,18). We found that 192 

different voltage assignments produced graphs of girth at least 14. After a closer 

inspection we determined that the 192 voltage lift graphs are all isomorphic, and 

the girth of all of them is equal to 14. 

One possible voltage assignment to the non-tree edges ofら isas follows: 

a=  (1, 7, 14, 32, 5, 19, 4, 18)(2, 12, 21, 11, 9, 3, 8, 25) 

(6, 35, 29, 48, 16, 45, 15, 44) (10, 41, 36, 40, 23, 28, 22, 47) 

(13, 37, 39, 24, 27, 46, 26, 38)(17, 20, 42, 43, 31, 34, 30, 33) 

(3 ＝ （1, 38, 5, 24)(2, 17, 9, 31)(3, 48, 12, 44)(4, 37, 14, 46) 
(6, 23, 16, 10)(7, 40, 19, 47)(8, 42, 21, 30)(11, 45, 25, 35) 

(13, 43, 27, 33) (15, 22, 29, 36) (18, 28, 32, 41) (20, 26, 34, 39) 

1 = (1, 34, 14, 33, 5, 20, 4, 43)(2, 13, 21, 39, 9, 27, 8, 26) 
(3, 36, 25, 23, 12, 22, 11, 10) (6, 19, 29, 18, 16, 7, 15, 32) 

(17, 45, 42, 44, 31, 35, 30, 48)(24, 28, 46, 47, 38, 41, 37, 40) 

5 = (1, 47, 16, 11, 17, 39, 5, 40, 6, 25, 31, 26) 
(2, 48, 23,18,24, 43, 9, 44, 10, 32, 38, 33) 

(3, 30, 27, 14, 28, 15, 12, 42, 13, 4, 41, 29) 

(7, 37, 34, 21, 35, 22, 19, 46, 20, 8, 45, 36) 

p = (1, 27, 31, 3, 6, 41, 5, 13, 17, 12, 16, 28) 

(2, 34, 38, 7, 10, 45, 9, 20, 24, 19, 23, 35) 

(4, 26, 42, 25, 15, 40, 14, 39, 30, 11, 29, 47) 

(8, 33, 46, 32, 22, 44, 21, 43, 37, 18, 36, 48) 

To conclude this section, let us mention one more limitation on the considered 

voltages. Since we were specifically looking for lifts of girth at least 14, the order 

of the voltage assignment a cannot be selected to be smaller than 14/2 = 7 (being 
a part of a closed walk of length 2, a voltage assignment of order smaller than 7 

would yield a cycle in the lift of length smaller than 14). Similar limitations on 

the orders of the voltages of the non-tree edges of G8 are listed in the following 

table. Regardless of the choice of the voltage group, these limitations can be used 

to further limit the possible voltage choices that need to be considered. 

non-reversing closed walk of length l l desirable condition 

ひ和3V2 2 lal 2 14/2 = 1 
V1V2V;和4VgV1 5 |(3| ：：：：： 14/5 = 2.8 
V4V5V7VsV4 4 111 2'. 14/ 4 = 3.5 
V5紐和7V5 3 151 ~ 14/3 = 4.6 
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5 The record (3, 30)-graph 

The last example we include in our paper is a lift of the 0-graph of order 1143408 

using voltages from the group SL(2, 83) that appeared in [10]. It was a record 

holder for more than ten years, and was only recently replaced by a graph con-

structed by another computer aided group based construction. 

Since the 0-graph is the smallest truly trivalent graph, lifts of the 0-graph are 

in some sense the closest to Cayley graphs (which are lifts of the single vertex 

bouquet of cycles and semiedges). Any lift of the 0-graph is necessarily bipartite 

and contains exclusively cycles of even length. Moreover, all closed non-reversing 

walks in the 0-graph are of even length and are particularly easy to obtain. 

u : V 

Figure 3: The 0-graph 

Without loss of generality, we may assume the voltage assignment pictured 

in Figure 3 (with the top edge constituting our selected spanning tree). All 

closed walks in the 0-graph contain both of its vertices, and thus it is sufficient to 

consider closed walks that start with either vertex of the two. If we select for the 
starting vertex the left vertex u in Figure 3, all closed walks start with one of the 

three left-to-right darts and can be associated with their voltages, lr, a, b. Each of 

the starting darts can only be followed by two of the opposing darts, namely the 

dart lr can only be followed by the darts a―1, b―1, the dart a can only be followed 

by the darts lr,b-1, and the dart b can only be followed by the darts lr,a-1. 

It follows that all non-reversing closed walks starting in u can be constructed 

recursively from the six closed walks lra-1, lrb―1, alr, ab-1, blr, ba-1 composed 

according to the above exclusion rules. This yields the immediate observation 

that the number of closed non-reversing walks of length 2n in the 0-graph that 

start from u is bounded from above by the product 3 ・ 22n-1, and is very easy to 

obtain recursively. 

Observe further that selecting a voltage assignment using a finite group r sim-
ply means choosing the elements a, b E r. Since cages are necessarily connected, 
we may assume that〈a,b〉=r.In addition, we may also assume regular permu-
tation representation of r on the set {1, 2,..., !fl}, in which case the vertices of 
the lift graph can be labeled as ui, Vj, i, j E {1, 2,..., If!}, and all the darts are of 
the form (u;, Vx(i)), x E {lr, a, b }, or of the form (vj, Uy(j)), y E {lr, a―1，い｝． The
elements a and b (as permutations) consist of cycles of length lal and lbl, respec-

tively, and any product x;, X;2 ・ ・ ・ Xi2n, of elements from {lr, a, b, a-1,炉｝ isequal 
to lr if only if the image of the element 1 under the permutation xれXi2'''Xi2n
is equal to 1. Thus, determining the girth of the lift of the 0-graph with volt-

ages a, b E r is equivalent to determining the shortest closed walk constructed 
recursively in the previous paragraph which represents a permutation fixing the 

element 1 (and all the other elements as well). 

The process of determining the length of the shortest such walk can be 

sped up further by observing that the net voltages corresponding to the six 2-
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walks, lra-1, 1位―1,alr, ab-1, blr, ba―1, are the products a―1, b-1, a, ab-1, b, ba―19 

respectively. It follows that the net voltage of any non-reversing closed walk 
of length 2n starting in u is equal to a product of n elements from the list 

a―1, b―1, a, ab―1,b,ba―1 subject to the condition that the product cannot contain 

an element immediately followed by its inverse (such products are called reduced). 

In analogy to the concluding remark of the previous section, we note that in order 
for the lift graph to be of girth at least 30, the net voltages a-1, b―1, a, ab―1,b,ba―1 

of the closed 2-walks in the 0-graph must all be of order at least撃＝ 15.
In summary, finding a lift of the 0-graph of girth at least 30 and of order 

smaller than the graph constructed in [10], one needs to consider groups r of 

orders smaller than the order of SL(2, 83). When considering a specific group 

and a specific voltage assignment a, b Er, determining the girth of the lift graph 

requires checking for all the products described in the above paragraph whether 

they are equal to lr; starting from products of length 1 and grad叫 lyincreasing 

the length of the considered products up to the length 14. Finding any product 

equal to lr (or equivalently, mapping 1 to 1) immediately terminates the process 

as the girth of the resulting lift is necessarily smaller than 2 x 14 = 28. Not 
finding any product equal to lr of length smaller than 15 for a specific group r 

and a pair of its elements a, b would yield a cubic graph of girth at least 15 and 

order smaller than 1143408; possibly a new record graph. 
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