On Galois polynomials with a cyclic Galois group in skew polynomial rings

Katsunori HONGOU ${ }^{1}$, Kanaru IKEGAMI ${ }^{2}$, Satoshi YAMANAKA ${ }^{3}$
Department of Integrated Science and Technology
National Institute of Technology, Tsuyama College

Abstract

K. Kishimoto gave conditions for a polynomial of the form $X^{m}-a$ (resp. $X^{p}-X-a$) in skew polynomial rings of automorphism type (resp. derivation type) to be a Galois polynomial. In this paper, we shall give conditions for quadratic polynomials of the form $X^{2}-a$ and $X^{2}-X-a$ in the general skew polynomial ring to be a Galois polynomial, respectively.

1 Introduction and Preliminaries

Let A / B be a ring extension with common identity, $\operatorname{Aut}(A)$ a ring automorphism group of A, and G a finite subgroup of $\operatorname{Aut}(A)$. We call then A / B a G-Galois extension if $B=A^{G}$ (the fix ring of G in A) and, for some positive integer n, there exists a finite set $\left\{u_{i} ; v_{i}\right\}_{i=1}^{n}=\left\{u_{1}, u_{2}, \cdots, u_{n} ; v_{1}, v_{2}, \cdots, v_{n}\right\} \quad\left(u_{i}, v_{i} \in A\right)$ such that $\sum_{i=1}^{n} u_{i} \varphi\left(v_{i}\right)=\delta_{1, \varphi}$ (the Kronecker's delta) for any $\varphi \in G$. In this case, we say that G is a Galois group of A / B, and $\left\{u_{i} ; v_{i}\right\}_{i=1}^{n}$ is a G-Galois coordinate system of A / B.

Throughout this paper, let B be an associative ring with identity element $1, \rho$ an automorphism of B, and D a ρ-derivation (that is, D is an additive endomorphism of B such that $D(\alpha \beta)=D(\alpha) \beta+\rho(\alpha) D(\beta)$ for any $\alpha, \beta \in B)$. By $B[X ; \rho, D]$ we denote the skew polynomial ring in which the multiplication is given by $\alpha X=$ $X \rho(\alpha)+D(\alpha)$ for any $\alpha \in B$. Moreover, by $B[X ; \rho, D]_{(0)}$, we denote the set of all monic polynomials f in $B[X ; \rho, D]$ such that $f B[X ; \rho, D]=B[X ; \rho, D] f$. We say that $f \in B[X ; \rho, D]_{(0)}$ is a Galois polynomial in $B[X ; \rho, D]$ if the residue ring $B[X ; \rho, D] / f B[X ; \rho, D]$ is a G-Galois extension of B for some finite subgroup G of $\operatorname{Aut}(B[X ; \rho, D] / f B[X ; \rho, D])$.

We set $B[X ; \rho]=B[X ; \rho, 0], B[X ; D]=B[X ; 1, D], B[X ; \rho]_{(0)}=B[X ; \rho, 0]_{(0)}$, and $B[X ; D]_{(0)}=B[X ; 1, D]_{(0)}$. In [3] and [4], K. Kishimoto studied Galois polynomials in $B[X ; \rho]$ and $B[X ; D]$, respectively. In particular, Kishimoto showed the following propositions concerning Galois polynomials.

Proposition 1.1. Let $m \geq 2$ be a positive integer, $f=X^{m}-a(a \in B)$ in $B[X ; \rho]_{(0)}, A=B[X ; \rho] / f B[X ; \rho], x=X+f B[X ; \rho]$, and assume that B contains a m-th root ω of unity such that $\rho(\omega)=\omega$, $\alpha \omega=\omega \alpha(\forall \alpha \in B)$. Then there exists a B-ring automorphism σ of A defined by $\sigma(x)=x \omega$. In addition, if m and a are invertible in B and $1-\omega^{i}(1 \leq i \leq m-1)$ is non-zero divisor in B, then f is a Galois polynomial in $B[X ; \rho]$ with a cyclic Galois group of order m. More precisely,
if we let $G=<\sigma>$, then A / B is a G-Galois extension whose G-Galois coordinate system is given by

$$
\begin{equation*}
\left\{m^{-1} x^{i} ; x^{m-i} a^{-1}\right\}_{i=0}^{m-1} . \tag{1.1}
\end{equation*}
$$

Proposition 1.2. Let p be a prime number, B of characteristic $p, f=X^{p}-X-a$ $(a \in B)$ in $B[X ; D]_{(0)}, A=B[X ; D] / f B[X ; D]$, and $x=X+f B[X ; D]$. Then there exists a B-ring automorphism σ of A defined by $\sigma(x)=x+1$, and f is a Galois polynomial in $B[X ; D]$ with a cyclic Galois group of order p. More precisely, if we let $G=\langle\sigma\rangle$, then A / B is a G-Galois extension whose G-Galois coordinate system is given by

$$
\begin{equation*}
\left\{x^{i} ; z_{i}\right\}_{i=0}^{p-1} \tag{1.2}
\end{equation*}
$$

where $z_{0}=1-x^{p-1}$ and $z_{i}=(-1)^{i-1}\binom{p-1}{i} x^{p-i-1}(1 \leq i \leq p-1)$.
In this paper, we shall extend Proposition 1.1 (resp. Proposition 1.2) to the case of general skew polynomial rings $B[X ; \rho, D]$ when $m=2$ (resp. $p=2$). In section 2, we shall give conditions for $f=X^{2}-a(a \in B)$ in $B[X ; \rho, D]$ to be a Galois polynomial with a (cyclic) Galois group of order 2. In section 3, assume that B is of characteristic 2, and we shall give conditions for $f=X^{2}-X-a(a \in B)$ in $B[X ; \rho, D]$ to be a Galois polynomial with a (cyclic) Galois group of order 2.

2 Conditions for $X^{2}-a$ to be a Galois polynomial

Thoroughout this section, let $R=B[X ; \rho, D], R_{(0)}=B[X ; \rho, D]_{(0)}, f=X^{2}-a \in$ $R_{(0)}(a \in B), A=R / f R$, and $x=X+f R \in A$. Note that, by [2, Lemma 1.3], $f=X^{2}-a$ is in $R_{(0)}$ if and only if

$$
\left\{\begin{array}{c}
\rho(a)=a, D(a)=0, \quad \rho D+D \rho=0 \\
D^{2}(\alpha)=\alpha a-a \rho^{2}(\alpha)(\forall \alpha \in B)
\end{array}\right.
$$

Let ω be in B such that

$$
\left\{\begin{array}{l}
\rho(\omega)=\omega, D(\omega)=0, \alpha \omega=\omega \alpha(\forall \alpha \in B) \tag{2.1}\\
\omega \text { is a square root of unity in } B
\end{array}\right.
$$

Moreover, assume that there exists $b \in B$ such that

$$
\left\{\begin{array}{l}
\rho(b)=-b, \quad D(b)=-b^{2} \omega(\omega-1) \tag{2.2}\\
D(\alpha) \omega+\alpha b(\omega-1)=b(\omega-1) \rho(\alpha)+D(\alpha) \quad(\forall \alpha \in B)
\end{array}\right.
$$

For any $\alpha \in B$, it follows from (2.2) that

$$
\alpha(X \omega+b(\omega-1))=\alpha X \omega+\alpha b(\omega-1)
$$

$$
\begin{aligned}
& =X \rho(\alpha) \omega+D(\alpha) \omega+\alpha b(\omega-1) \\
& =X \omega \rho(\alpha)+b(\omega-1) \rho(\alpha)+D(\alpha) \\
& =(X \omega+b(\omega-1)) \rho(\alpha)+D(\alpha)
\end{aligned}
$$

Hence, by [1, Lemma 2.1], there exists an B-ring endomorphism σ^{*} of R defined by $\sigma^{*}(X)=X \omega+b(\omega-1)$. It is easy to see that $\sigma^{* 2}(X)=X$. This implies that σ^{*} is a B-ring automorphism of R such that $\sigma^{* 2}=1$. Moreover, since (2.1) and (2.2), we have

$$
\begin{aligned}
\sigma^{*}(f) & =\sigma^{*}\left(X^{2}-a\right) \\
& =(X \omega+b(\omega-1))(X \omega+b(\omega-1))-a \\
& =X \omega X \omega+X \omega b(\omega-1)+b(\omega-1) X \omega+b^{2}(\omega-1)^{2}-a \\
& =X^{2} \omega^{2}+X \omega b(\omega-1)+(X \rho(b)(\omega-1)+D(b)(\omega-1)) \omega+b^{2}(\omega-1)^{2}-a \\
& =X^{2}+X \omega(\omega-1)(b+\rho(b))+(\omega-1)\left(D(b) \omega+b^{2}(\omega-1)\right)-a \\
& =X^{2}+X \omega(\omega-1)(b-b)+(\omega-1)\left(-b^{2} \omega^{2}(\omega-1)+b^{2}(\omega-1)\right)-a \\
& =X^{2}-a \\
& =f
\end{aligned}
$$

This implies that $\sigma^{*}(f R) \subset f R$, and hence there exists an automorphism of A defined by $\sigma(x)=x \omega+b(\omega-1)$ which is naturally induced by σ^{*}. It is obvious that $\sigma^{2}=1$.

So we shall state the following theorem which is the first main results in this paper.

Theorem 2.1. Assume that there exist ω and b in B such which satisfy (2.1) and (2.2), respectively. Then there exists an automorphism σ of A defined by $\sigma(x)=$ $x \omega+b(\omega-1)$ such taht $\sigma^{2}=1$.

In addition, if 2 and a are invertible in $B, 1-\omega$ is a non-zero divisor in B, and $b^{2}=0$, then A is a G-Galois extension of B (namely, $f=X^{2}-a$ is a Galois polynomial in R), where $G=<\sigma>$. In fact, a G-Galois coordinate system of A / B is given by

$$
\begin{equation*}
\left\{\frac{1}{2}, \frac{1}{2}(x+b) ;(x+b)^{2} a^{-1},(x+b) a^{-1}\right\} \tag{2.3}
\end{equation*}
$$

Proof. Assume that there exist ω and b in B which satisfy (2.1) and (2.2). We have already proved that there exists a B-ring automorphism σ of A defined by $\sigma(x)=x \omega+b(\omega-1)$ such that $\sigma^{2}=1$. Let $G=<\sigma>=\{1, \sigma\}$.

Assume that 2 and a are invertible in $B, 1-\omega$ is a non-zero divisor in B, and $b^{2}=0$. Then we see that ω is a primitive square root of unity, and $D(b)=0$ since (2.2).

First, we shall show $A^{G}=B$. It is clear that $B \subset A^{G}$. Let $z=x c_{1}+c_{0}$ $\left(c_{1}, c_{0} \in B\right)$ be in A^{G}. Since $z=\sigma(z)$, we obtain

$$
x c_{1}+c_{0}=\sigma\left(x c_{1}+c_{0}\right)
$$

$$
\begin{aligned}
& =(x \omega+b) c_{1}+c_{0} \\
& =x \omega c_{1}+b c_{1}+c_{0} .
\end{aligned}
$$

Comparing coefficients of both sides, we have $(1-\omega) c_{1}=0$. So, since $1-\omega$ is a non-zero divisor in B, we obtain $c_{1}=0$. Therefore we see that $z=c_{0} \in B$, namely, $A^{G} \subset B$.

Next, we shall show that (2.3) is a G-Galois coordinate system of A / B. Since $1-\omega$ is a non-zero dibisor in B, we see that $1+\omega=0$. Let k be a integer such taht $0 \leq k \leq 1$. It is easy to see that $\sigma^{k}(x+b)=x \omega^{k}+b \omega^{k}=\omega^{k}(x+b)$. Noting that $x^{2}=a$, we obtain

$$
\begin{aligned}
(x+b)^{2} & =\left(x^{2}+x b+b x+b^{2}\right) \\
& =(a+x b+x \rho(b)) \\
& =(a+x b-x b) \\
& =a .
\end{aligned}
$$

We have then

$$
\begin{aligned}
\frac{1}{2} \sigma^{k}\left((x+b)^{2} a^{-1}\right)+\frac{1}{2}(x+b) \sigma^{k}\left((x+b) a^{-1}\right) & =\frac{1}{2}\left(\sigma^{k}\left(a a^{-1}\right)+(x+b) \omega^{k}(x+b) a^{-1}\right) \\
& =\frac{1}{2}\left(1+\omega^{k}(x+b)^{2} a^{-1}\right) \\
& =\frac{1}{2}\left(1+\omega^{k} a a^{-1}\right) \\
& =\frac{1}{2}\left(1+\omega^{k}\right) \\
& =\delta_{0, k}
\end{aligned}
$$

Thus, (2.3) is a G-Galois coordinate system of A / B.
Remark 1. In Theorem 2.1, assumet that $b=0$. So, it follows from (2.2) that $D=0$, and hence $B[X ; \rho, D]=B[X ; \rho]$. Moreover, a G-Galois coordinate system (2.3) is equal to (1.1) in the case $m=2$ in Proposition 1.1.

3 Conditions for $X^{2}-X-a$ to a Galois polynomial

Thoroughout this section, let B be of characteristic $2, R=B[X ; \rho, D], R_{(0)}=$ $B[X ; \rho, D]_{(0)}, f=X^{2}-X-a \in R_{(0)}(a \in B), A=R / f R$, and $x=X+f R \in A$. Note that, by [2, Corollary 1.7], $f=X^{2}-X-a$ is in $R_{(0)}$ if and only if

$$
\left\{\begin{array}{l}
\rho(a)=a, D(a)=0 \\
\rho D(\alpha)+D \rho(\alpha)=\rho(\alpha)-\rho^{2}(\alpha), \quad(\forall \alpha \in B) \\
D^{2}(\alpha)-D(\alpha)=\alpha a-a \rho^{2}(\alpha) .
\end{array}\right.
$$

Let ω be in B such that

$$
\begin{equation*}
\alpha \omega=\omega \rho(\alpha)(\forall \alpha \in B), \rho(\omega)=-\omega, D(\omega)=\omega-\omega^{2} \tag{3.1}
\end{equation*}
$$

So, for any $\alpha \in B$, we see that

$$
\begin{aligned}
\alpha(X+\omega) & =\alpha X+\alpha \omega \\
& =X \rho(\alpha)+D(\alpha)+\omega \rho(\alpha) \\
& =(X+\omega) \rho(\alpha)+D(\alpha) .
\end{aligned}
$$

Hence, by [1, Lemma 2.1], there exists a B-ring endomorphism σ^{*} of R defined by $\sigma^{*}(X)=X+\omega$. It is easy to see that $\sigma^{* 2}(X)=X$. This implies that σ^{*} is a B-ring automorphism of R such that $\sigma^{* 2}=1$. Moreover, since (3.1), we obtain

$$
\begin{aligned}
\sigma^{*}(f) & =\sigma^{*}\left(X^{2}-X-a\right) \\
& =(X+\omega)^{2}-(X+\omega)-a \\
& =X^{2}+X \omega+X \rho(\omega)+D(\omega)+\omega^{2}-X-\omega-a \\
& =X^{2}+X \omega-X \omega+\omega-\omega^{2}+\omega^{2}-X-\omega-a \\
& =X^{2}-X-a \\
& =f .
\end{aligned}
$$

This implies that $\sigma^{*}(f R) \subset f R$, and hence there exists a B-ring automorphism of A defined by $\sigma(x)=x+\omega$ which is naturally induced by σ^{*}. Obviously, $\sigma^{2}=1$.

Now we shall state the following theorem which is the second main results in this paper.

Theorem 3.1. Assume that there exists ω in B which satisfies (3.1). Then there exists an automorphism σ of A defined by $\sigma(x)=x+\omega$ such that $\sigma^{2}=1$.

In addition, if ω is invertible in B, then A is a G-Galois extension of B (namely, $f=X^{2}-X-a$ is a Galois polynomial in R), where $G=<\sigma>$. In fact, a G-Galois coordinate system of A / B is given by the following :

$$
\begin{equation*}
\left\{1, x ; 1-x \omega^{-1}, \omega^{-1}\right\} \tag{3.2}
\end{equation*}
$$

Proof. Assume that there exists ω in B which satisfies (3.1). We have already showed that there exists a B-ring automorphism σ of A defined by $\sigma(x)=x+\omega$ such that $\sigma^{2}=1$. Let $G=\langle\sigma\rangle=\{1, \sigma\}$.

Assume that ω is invertible in B. First, we shall show $A^{G}=B$. It is obvious that $B \subset A^{G}$. Let $z=x c_{1}+c_{0}\left(c_{1}, c_{0} \in B\right)$ be in A^{G}. Since $z=\sigma(z)$, we obtain

$$
\begin{aligned}
x c_{1}+c_{0} & =\sigma\left(x c_{1}+c_{0}\right) \\
& =(x+\omega) c_{1}+c_{0} \\
& =x c_{1}+\omega c_{1}+c_{0}
\end{aligned}
$$

Comparing coefficients of both sides, we have $\omega c_{1}=0$, and hence $c_{1}=0$ because ω is invertible in B. Therefore, we see that $z=c_{0} \in B$, namely, $A^{G} \subset B$.

Next, we shall show that (3.2) is a G-Galois coordinate system of A / B. Let k be a integer such taht $0 \leq k \leq 1$. It is easy to see that $\sigma^{k}(x)=x+k \omega$. We have then

$$
\begin{aligned}
\sigma^{k}\left(1-x \omega^{-1}\right)+x \sigma^{k}\left(\omega^{-1}\right) & =1-(x+k \omega) \omega^{-1}+x \omega^{-1} \\
& =1-x \omega^{k}+k \omega \omega^{-1}+x \omega^{-1} \\
& =1+k \\
& =\delta_{0, k} .
\end{aligned}
$$

Therefore, (3.2) is a G-Galois coordinate system of A / B.
Remark 2. In Theorem 3.1, assumet that $\omega=1$. So, it follows from (3.1) that $\rho=1$, and hence $B[X ; \rho, D]=B[X ; D]$. Moreover, a G-Galois coordinate system (3.2) is equal to (1.2) in the case of $p=2$ in Proposition 1.2.

ACKNOWLEDGEMENTS. This work was supported by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University.

References

[1] K. Ikegami and S. Yamanaka, Note on Galois polynomials with a cyclic Galois group in skew polynomial rings, submitted to Southeast Asian Bull. Math.
[2] S. Ikehata, On separable polynomials and Frobenius polynomials in skew polynomial rings, Math. J. Okayama Univ., 22 (1980), 115-129.
[3] K. Kishimoto, On abelian extensions of rings. I, Math. J. Okayama Univ., 14 1970, 159-174.
[4] K. Kishimoto, On abelian extensions of rings. II, Math. J. Okayama Univ., 15 (1971), 57-70.
[5] Y. Miyashita, On a skew polynomial ring, J. Math. Soc. Japan, 31 (1979), no.2, 317-330.
[6] T. Nagahara, On separable polynomials of degree 2 in skew polynomial rings, Math. J. Okayama Univ., 19 (1976), 65-95.
[7] K. Sugano, Note on cyclic Galois extensions, Proc. Japan Acad., 57, Ser. A 1981, 60-63.
[8] S. Yamanaka and S. Ikehata, On Galois polynomials of degree p in skew polynomial rings of derivation type, Southeast Asian Bull. Math., 37 2013, 625-634.
[9] S. Yamanaka, On weakly separable polynomials in skew polynomial rings, Math.J. Okayama Univ., 64 (2022), 47-61.

Department of Integrated Science and Technology
National Institute of Technology, Tsuyama College
624-1 Numa, Tsuyama city, Okayama, 708-8509, Japan
${ }^{1}$ E-mail address: d-hk3215@tsuyama.kosen-ac.jp
${ }^{2}$ E-mail address: kanaru0510@icloud.com
${ }^{3}$ E-mail address: yamanaka@tsuyama.kosen-ac.jp

