On Galois polynomials with a cyclic Galois group in skew polynomial rings

Katsunori HONGOU¹, Kanaru IKEGAMI², Satoshi YAMANAKA³

Department of Integrated Science and Technology National Institute of Technology, Tsuyama College

Abstract

K. Kishimoto gave conditions for a polynomial of the form $X^m - a$ (resp. $X^p - X - a$) in skew polynomial rings of automorphism type (resp. derivation type) to be a Galois polynomial. In this paper, we shall give conditions for quadratic polynomials of the form $X^2 - a$ and $X^2 - X - a$ in the general skew polynomial ring to be a Galois polynomial, respectively.

1 Introduction and Preliminaries

Let A/B be a ring extension with common identity, $\operatorname{Aut}(A)$ a ring automorphism group of A, and G a finite subgroup of $\operatorname{Aut}(A)$. We call then A/B a G-Galois extension if $B = A^G$ (the fix ring of G in A) and, for some positive integer n, there exists a finite set $\{u_i; v_i\}_{i=1}^n = \{u_1, u_2, \dots, u_n; v_1, v_2, \dots, v_n\}$ $(u_i, v_i \in A)$ such that $\sum_{i=1}^n u_i \varphi(v_i) = \delta_{1,\varphi}$ (the Kronecker's delta) for any $\varphi \in G$. In this case, we say that G is a Galois group of A/B, and $\{u_i; v_i\}_{i=1}^n$ is a G-Galois coordinate system of A/B.

Throughout this paper, let *B* be an associative ring with identity element 1, ρ an automorphism of *B*, and *D* a ρ -derivation (that is, *D* is an additive endomorphism of *B* such that $D(\alpha\beta) = D(\alpha)\beta + \rho(\alpha)D(\beta)$ for any $\alpha, \beta \in B$). By $B[X; \rho, D]$ we denote the skew polynomial ring in which the multiplication is given by $\alpha X =$ $X\rho(\alpha) + D(\alpha)$ for any $\alpha \in B$. Moreover, by $B[X; \rho, D]_{(0)}$, we denote the set of all monic polynomials *f* in $B[X; \rho, D]$ such that $fB[X; \rho, D] = B[X; \rho, D]f$. We say that $f \in B[X; \rho, D]_{(0)}$ is a *Galois polynomial* in $B[X; \rho, D]$ if the residue ring $B[X; \rho, D]/fB[X; \rho, D]$ is a *G*-Galois extension of *B* for some finite subgroup *G* of Aut $(B[X; \rho, D]/fB[X; \rho, D])$.

We set $B[X; \rho] = B[X; \rho, 0]$, B[X; D] = B[X; 1, D], $B[X; \rho]_{(0)} = B[X; \rho, 0]_{(0)}$, and $B[X; D]_{(0)} = B[X; 1, D]_{(0)}$. In [3] and [4], K. Kishimoto studied Galois polynomials in $B[X; \rho]$ and B[X; D], respectively. In particular, Kishimoto showed the following propositions concerning Galois polynomials.

Proposition 1.1. Let $m \geq 2$ be a positive integer, $f = X^m - a$ $(a \in B)$ in $B[X;\rho]_{(0)}$, $A = B[X;\rho]/fB[X;\rho]$, $x = X + fB[X;\rho]$, and assume that B contains a m-th root ω of unity such that $\rho(\omega) = \omega$, $\alpha\omega = \omega\alpha$ ($\forall \alpha \in B$). Then there exists a B-ring automorphism σ of A defined by $\sigma(x) = x\omega$. In addition, if m and a are invertible in B and $1 - \omega^i$ ($1 \leq i \leq m - 1$) is non-zero divisor in B, then f is a Galois polynomial in $B[X;\rho]$ with a cyclic Galois group of order m. More precisely,

if we let $G = \langle \sigma \rangle$, then A/B is a G-Galois extension whose G-Galois coordinate system is given by

$$\{m^{-1}x^i; x^{m-i}a^{-1}\}_{i=0}^{m-1}.$$
(1.1)

Proposition 1.2. Let p be a prime number, B of characteristic p, $f = X^p - X - a$ $(a \in B)$ in $B[X; D]_{(0)}$, A = B[X; D]/fB[X; D], and x = X + fB[X; D]. Then there exists a B-ring automorphism σ of A defined by $\sigma(x) = x + 1$, and f is a Galois polynomial in B[X; D] with a cyclic Galois group of order p. More precisely, if we let $G = \langle \sigma \rangle$, then A/B is a G-Galois extension whose G-Galois coordinate system is given by

$$\{x^i; z_i\}_{i=0}^{p-1}.$$
 (1.2)

where $z_0 = 1 - x^{p-1}$ and $z_i = (-1)^{i-1} {p-1 \choose i} x^{p-i-1}$ $(1 \le i \le p-1)$.

In this paper, we shall extend Proposition 1.1 (resp. Proposition 1.2) to the case of general skew polynomial rings $B[X; \rho, D]$ when m = 2 (resp. p = 2). In section 2, we shall give conditions for $f = X^2 - a$ ($a \in B$) in $B[X; \rho, D]$ to be a Galois polynomial with a (cyclic) Galois group of order 2. In section 3, assume that B is of characteristic 2, and we shall give conditions for $f = X^2 - X - a$ ($a \in B$) in $B[X; \rho, D]$ to be a Galois polynomial with a (cyclic) Galois group of order 2.

2 Conditions for $X^2 - a$ to be a Galois polynomial

Thoroughout this section, let $R = B[X; \rho, D]$, $R_{(0)} = B[X; \rho, D]_{(0)}$, $f = X^2 - a \in R_{(0)}$ $(a \in B)$, A = R/fR, and $x = X + fR \in A$. Note that, by [2, Lemma 1.3], $f = X^2 - a$ is in $R_{(0)}$ if and only if

$$\begin{cases} \rho(a) = a, \ D(a) = 0, \ \rho D + D\rho = 0, \\ D^2(\alpha) = \alpha a - a\rho^2(\alpha) \ (\forall \alpha \in B). \end{cases}$$

Let ω be in B such that

$$\begin{cases} \rho(\omega) = \omega, \ D(\omega) = 0, \ \alpha \omega = \omega \alpha \ (\forall \alpha \in B), \\ \omega \text{ is a square root of unity in } B. \end{cases}$$
(2.1)

Moreover, assume that there exists $b \in B$ such that

$$\begin{cases} \rho(b) = -b, \quad D(b) = -b^2 \omega(\omega - 1), \\ D(\alpha)\omega + \alpha b(\omega - 1) = b(\omega - 1)\rho(\alpha) + D(\alpha) \quad (\forall \alpha \in B). \end{cases}$$
(2.2)

For any $\alpha \in B$, it follows from (2.2) that

$$\alpha \left(X\omega + b(\omega - 1) \right) = \alpha X\omega + \alpha b(\omega - 1)$$

$$= X\rho(\alpha)\omega + D(\alpha)\omega + \alpha b(\omega - 1)$$

= $X\omega\rho(\alpha) + b(\omega - 1)\rho(\alpha) + D(\alpha)$
= $(X\omega + b(\omega - 1))\rho(\alpha) + D(\alpha).$

Hence, by [1, Lemma 2.1], there exists an *B*-ring endomorphism σ^* of *R* defined by $\sigma^*(X) = X\omega + b(\omega - 1)$. It is easy to see that $\sigma^{*2}(X) = X$. This implies that σ^* is a *B*-ring automorphism of *R* such that $\sigma^{*2} = 1$. Moreover, since (2.1) and (2.2), we have

$$\begin{split} \sigma^*(f) &= \sigma^*(X^2 - a) \\ &= (X\omega + b(\omega - 1)) \left(X\omega + b(\omega - 1) \right) - a \\ &= X\omega X\omega + X\omega b(\omega - 1) + b(\omega - 1) X\omega + b^2(\omega - 1)^2 - a \\ &= X^2 \omega^2 + X\omega b(\omega - 1) + (X\rho(b)(\omega - 1) + D(b)(\omega - 1)) \omega + b^2(\omega - 1)^2 - a \\ &= X^2 + X\omega(\omega - 1) \left(b + \rho(b) \right) + (\omega - 1) \left(D(b)\omega + b^2(\omega - 1) \right) - a \\ &= X^2 + X\omega(\omega - 1)(b - b) + (\omega - 1) \left(-b^2 \omega^2(\omega - 1) + b^2(\omega - 1) \right) - a \\ &= X^2 - a \\ &= f. \end{split}$$

This implies that $\sigma^*(fR) \subset fR$, and hence there exists an automorphism of A defined by $\sigma(x) = x\omega + b(\omega - 1)$ which is naturally induced by σ^* . It is obvious that $\sigma^2 = 1$.

So we shall state the following theorem which is the first main results in this paper.

Theorem 2.1. Assume that there exist ω and b in B such which satisfy (2.1) and (2.2), respectively. Then there exists an automorphism σ of A defined by $\sigma(x) = x\omega + b(\omega - 1)$ such that $\sigma^2 = 1$.

In addition, if 2 and a are invertible in B, $1 - \omega$ is a non-zero divisor in B, and $b^2 = 0$, then A is a G-Galois extension of B (namely, $f = X^2 - a$ is a Galois polynomial in R), where $G = \langle \sigma \rangle$. In fact, a G-Galois coordinate system of A/Bis given by

$$\left\{\frac{1}{2}, \ \frac{1}{2}(x+b) \ ; \ (x+b)^2 a^{-1}, \ (x+b)a^{-1}\right\}$$
(2.3)

Proof. Assume that there exist ω and b in B which satisfy (2.1) and (2.2). We have already proved that there exists a B-ring automorphism σ of A defined by $\sigma(x) = x\omega + b(\omega - 1)$ such that $\sigma^2 = 1$. Let $G = \langle \sigma \rangle = \{1, \sigma\}$.

Assume that 2 and a are invertible in B, $1 - \omega$ is a non-zero divisor in B, and $b^2 = 0$. Then we see that ω is a primitive square root of unity, and D(b) = 0 since (2.2).

First, we shall show $A^G = B$. It is clear that $B \subset A^G$. Let $z = xc_1 + c_0$ $(c_1, c_0 \in B)$ be in A^G . Since $z = \sigma(z)$, we obtain

$$xc_1 + c_0 = \sigma(xc_1 + c_0)$$

$$= (x\omega + b)c_1 + c_0$$
$$= x\omega c_1 + bc_1 + c_0.$$

Comparing coefficients of both sides, we have $(1 - \omega)c_1 = 0$. So, since $1 - \omega$ is a non-zero divisor in B, we obtain $c_1 = 0$. Therefore we see that $z = c_0 \in B$, namely, $A^G \subset B$.

Next, we shall show that (2.3) is a *G*-Galois coordinate system of A/B. Since $1 - \omega$ is a non-zero dibisor in *B*, we see that $1 + \omega = 0$. Let *k* be a integer such that $0 \le k \le 1$. It is easy to see that $\sigma^k(x+b) = x\omega^k + b\omega^k = \omega^k(x+b)$. Noting that $x^2 = a$, we obtain

$$(x+b)^{2} = (x^{2} + xb + bx + b^{2})$$

= (a + xb + xp(b))
= (a + xb - xb)
= a.

We have then

$$\frac{1}{2}\sigma^{k}\left((x+b)^{2}a^{-1}\right) + \frac{1}{2}(x+b)\sigma^{k}\left((x+b)a^{-1}\right) = \frac{1}{2}\left(\sigma^{k}(aa^{-1}) + (x+b)\omega^{k}(x+b)a^{-1}\right)$$
$$= \frac{1}{2}\left(1+\omega^{k}(x+b)^{2}a^{-1}\right)$$
$$= \frac{1}{2}\left(1+\omega^{k}aa^{-1}\right)$$
$$= \frac{1}{2}\left(1+\omega^{k}\right)$$
$$= \delta_{0,k}.$$

Thus, (2.3) is a G-Galois coordinate system of A/B.

Remark 1. In Theorem 2.1, assumet that b = 0. So, it follows from (2.2) that D = 0, and hence $B[X; \rho, D] = B[X; \rho]$. Moreover, a *G*-Galois coordinate system (2.3) is equal to (1.1) in the case m = 2 in Proposition 1.1.

3 Conditions for $X^2 - X - a$ to a Galois polynomial

Thoroughout this section, let B be of characteristic 2, $R = B[X; \rho, D]$, $R_{(0)} = B[X; \rho, D]_{(0)}$, $f = X^2 - X - a \in R_{(0)}$ $(a \in B)$, A = R/fR, and $x = X + fR \in A$. Note that, by [2, Corollary 1.7], $f = X^2 - X - a$ is in $R_{(0)}$ if and only if

$$\begin{cases} \rho(a) = a, \ D(a) = 0, \\ \rho D(\alpha) + D\rho(\alpha) = \rho(\alpha) - \rho^2(\alpha), \quad (\forall \alpha \in B) \\ D^2(\alpha) - D(\alpha) = \alpha a - a\rho^2(\alpha). \end{cases}$$

Let ω be in B such that

$$\alpha\omega = \omega\rho(\alpha) \ (\forall \alpha \in B), \ \rho(\omega) = -\omega, \ D(\omega) = \omega - \omega^2.$$
(3.1)

So, for any $\alpha \in B$, we see that

$$\alpha(X + \omega) = \alpha X + \alpha \omega$$

= $X\rho(\alpha) + D(\alpha) + \omega\rho(\alpha)$
= $(X + \omega)\rho(\alpha) + D(\alpha).$

Hence, by [1, Lemma 2.1], there exists a *B*-ring endomorphism σ^* of *R* defined by $\sigma^*(X) = X + \omega$. It is easy to see that $\sigma^{*2}(X) = X$. This implies that σ^* is a *B*-ring automorphism of *R* such that $\sigma^{*2} = 1$. Moreover, since (3.1), we obtain

$$\sigma^*(f) = \sigma^*(X^2 - X - a)$$

= $(X + \omega)^2 - (X + \omega) - a$
= $X^2 + X\omega + X\rho(\omega) + D(\omega) + \omega^2 - X - \omega - a$
= $X^2 + X\omega - X\omega + \omega - \omega^2 + \omega^2 - X - \omega - a$
= $X^2 - X - a$
= $f.$

This implies that $\sigma^*(fR) \subset fR$, and hence there exists a *B*-ring automorphism of *A* defined by $\sigma(x) = x + \omega$ which is naturally induced by σ^* . Obviously, $\sigma^2 = 1$.

Now we shall state the following theorem which is the second main results in this paper.

Theorem 3.1. Assume that there exists ω in B which satisfies (3.1). Then there exists an automorphism σ of A defined by $\sigma(x) = x + \omega$ such that $\sigma^2 = 1$.

In addition, if ω is invertible in B, then A is a G-Galois extension of B (namely, $f = X^2 - X - a$ is a Galois polynomial in R), where $G = \langle \sigma \rangle$. In fact, a G-Galois coordinate system of A/B is given by the following :

$$\{1, x; 1 - x\omega^{-1}, \omega^{-1}\}$$
(3.2)

Proof. Assume that there exists ω in B which satisfies (3.1). We have already showed that there exists a B-ring automorphism σ of A defined by $\sigma(x) = x + \omega$ such that $\sigma^2 = 1$. Let $G = \langle \sigma \rangle = \{1, \sigma\}$.

Assume that ω is invertible in B. First, we shall show $A^G = B$. It is obvious that $B \subset A^G$. Let $z = xc_1 + c_0$ $(c_1, c_0 \in B)$ be in A^G . Since $z = \sigma(z)$, we obtain

$$xc_1 + c_0 = \sigma(xc_1 + c_0)$$
$$= (x + \omega)c_1 + c_0$$
$$= xc_1 + \omega c_1 + c_0$$

Comparing coefficients of both sides, we have $\omega c_1 = 0$, and hence $c_1 = 0$ because ω is invertible in B. Therefore, we see that $z = c_0 \in B$, namely, $A^G \subset B$.

Next, we shall show that (3.2) is a G-Galois coordinate system of A/B. Let k be a integer such taht $0 \le k \le 1$. It is easy to see that $\sigma^k(x) = x + k\omega$. We have then

$$\sigma^{k}(1 - x\omega^{-1}) + x\sigma^{k}(\omega^{-1}) = 1 - (x + k\omega)\omega^{-1} + x\omega^{-1}$$
$$= 1 - x\omega^{k} + k\omega\omega^{-1} + x\omega^{-1}$$
$$= 1 + k$$
$$= \delta_{0,k}.$$

Therefore, (3.2) is a G-Galois coordinate system of A/B.

Remark 2. In Theorem 3.1, assumet that $\omega = 1$. So, it follows from (3.1) that $\rho = 1$, and hence $B[X; \rho, D] = B[X; D]$. Moreover, a *G*-Galois coordinate system (3.2) is equal to (1.2) in the case of p = 2 in Proposition 1.2.

ACKNOWLEDGEMENTS. This work was supported by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University.

References

- [1] K. Ikegami and S. Yamanaka, Note on Galois polynomials with a cyclic Galois group in skew polynomial rings, submitted to Southeast Asian Bull. Math.
- [2] S. Ikehata, On separable polynomials and Frobenius polynomials in skew polynomial rings, Math. J. Okayama Univ., 22 (1980), 115–129.
- [3] K. Kishimoto, On abelian extensions of rings. I, Math. J. Okayama Univ., 14 1970, 159–174.
- [4] K. Kishimoto, On abelian extensions of rings. II, Math. J. Okayama Univ., 15 (1971), 57–70.
- [5] Y. Miyashita, On a skew polynomial ring, J. Math. Soc. Japan, **31** (1979), no.2, 317–330.
- [6] T. Nagahara, On separable polynomials of degree 2 in skew polynomial rings, Math. J. Okayama Univ., 19 (1976), 65–95.
- [7] K. Sugano, Note on cyclic Galois extensions, Proc. Japan Acad., 57, Ser. A 1981, 60–63.

- [8] S. Yamanaka and S. Ikehata, On Galois polynomials of degree p in skew polynomial rings of derivation type, Southeast Asian Bull. Math., **37** 2013, 625–634.
- [9] S. Yamanaka, On weakly separable polynomials in skew polynomial rings, Math.J. Okayama Univ., 64 (2022), 47–61.

Department of Integrated Science and Technology National Institute of Technology, Tsuyama College 624-1 Numa, Tsuyama city, Okayama, 708-8509, Japan ¹E-mail address: d-hk3215@tsuyama.kosen-ac.jp ²E-mail address: kanaru0510@icloud.com ³E-mail address: yamanaka@tsuyama.kosen-ac.jp