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Abstract 

A partial automorphism of a combinatorial structure is an isomorphism between its 
two induced substructures. It is a natural generalization of a total automorphism which 
is a classical tool to study symmetries. As all total automorphisms of a combinatorial 
structure form a group, all partial automorphisms form an inverse monoid, called inverse 
monoid of partial automorphisms of a combinatorial structure. This monoid is a richer 
and more complex object that contains more information about the structure than its 
automorphism group used in the classical Group Theory. In our paper, we review the 
results we obtained for the inverse monoids of partial automorphisms of graphs in the 
study of questions a叫 ogousto those concerning automorphism groups of graphs. We 
also address some computational aspects of finding these inverse monoids. 

1 Introduction 

To understand a combinatorial structure C = (V, F), where Vis a (finite) non-empty set of 

vertices and F is a family of subsets of V, called blocks, we often look at symmetries of the 

structure that are represented by automorphisms of C. An automorphism of a combinatorial 

structure C is a permutation of its vertices that preserves the structure, i.e. preserves its 

blocks. All automorphisms form a group, which is called an automorphism group of C 

and is denoted by Aut(C), and is a subgroup of the symmetric group Sym(V) on the set 

of vertices V, Aut(C) ~ Sym(V). The automorphism group of a combinatorial structure 

is a powerful classical tool in the study of the structure, allowing one to make various 

claims about the structure. However, the usefulness of the knowledge of the automorphism 

group of a combinatorial structure is rather limited if its action on the vertices has a large 

number of orbits, with the extreme of automorphism group being trivial. This suggests a 

need for generalization of the classical Group Theory tools. Lately, several works (see for 

instance [10, 1, 7, 11]) with possible generalizations of automorphisms and automorphism 

groups appeared. One possible direction in the generalization is relaxing the conditions on 

permutations of vertices. Instead of using total permutations, so called partial permutations 

are used. This broadens the study of symmetries of structures from the Group Theory into 
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Inverse Semigroup Theory [10]. The inverse semigroups are very natural setting and natural 

generalization of the Group Theory tools thanks to Wagner-Preston Theorem 1.1, which is 

an analogue of Cauley's theorem for groups: 

Theorem 1.1 (Wagner-Preston). Every finite inverse semigroup is isomorphic to an in-

verse subsemigroup of the symmetric inverse semigroup of all partial bijections of some 

finite set V. 

We begin with reviewing the concepts of inverse monoid and the full symmetric inverse 

monoid from Inverse Semigroup Theory in Section 2. 

Even though the results that we will present here, apply to more general combinatorial 

sturctures C = (V, F), for the purposes of this paper we will restrict our attention to 

particular case of simple non-oriented graphs, as the most familiar and widely used examples 

of such structures and also to avoid cumbersome technical details in some arguments. For a 

more general approach see [7]. We will mention some open problems from Graph Theory to 

argue that study of partial symmetries can be very beneficial in the settings of the graphs, 

and it make sense to concentrate on them specifically. As another argument for the need 

to generalize the notion of the classical symmetry in Graph Theory, just recall Erdos's and 

Renyi's (1963) fact (see [5]), that almost all finite graphs are asymmetric, i.e. with the 

trivial automorphism group. 

We will review structural results and characterization of Partial inverse monoids of 

graphs together with pointing out computational aspects of finding these monoids. We will 

end by mentioning our projects where catalogues of Inverse monoids of certain classes of 

graphs were created. 

2 Preliminaries 

All the graphs, groups, inverse semigroups and monoids considered in our paper are finite. 

2.1 Partial automorphisms of graphs 

A graph is an ordered pair r = (V, E), where Vis the finite non-empty set of vertices, and 

Eis the set of (undirected) edges, which is a set of 2-element subsets of V. 

Classically, automorphism group Aut(r)::::; Sym(V) is studied using tools of Group 

Theory to describe graphs and their symmetries. Much attention is given to graphs with 

rich automorphism groups. We have nice result of Frucht [3] 

Theorem 2.1 (Frucht 1938). For any finite group G there exists a graph r such that 

Aut(r)竺 G.

However, the result of Erdos and Renyi (see also [5]) shows that the graphs with no 

non-trivial symmetries are prevalent. A graph r is called asymmetric if it does not have a 

non-trivial automorphism, i.e. its automorphism group is trivial. 

Theorem 2.2 (Erdos, Renyi, 1963). Almost all finite graphs are asymmetric. 

In the Figure 1 we show two examples of small asymmetric graphs. 
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Figure 1: The smallest asymmetric graph and the Frucht graph, one of the five smallest asymmetric 

cubic graphs. 

Theorem 2.2 implies that almost all graphs r have the same (trivial) automorphism 

group Aut(r), which is not revealing much information about the graphs. To overcome 

this shortcomings of total automorphisms groups, we turn to a relaxed concept of a partial 

automorphism. 

Definition 2.3. Let r = (V, E) be a finite graph. A partial automorphism of r = (V, E) is 
an isomorphism between its two induced subgraphs. 

Note that a partial automorphism of a graph r can be an isomorphism between two 

different induces subgraphs r1 and r2 of r or it can be a total automorphism of one induce 

subgraph r1, as is schematically depicted in the Figure 2. 

Figure 2: Two situations for partial automorphism of a graph. 

As we mentioned in the introduction, the graph theory provides one of the motivations 

to study partial automorphisms. As an example, let us mention the long-standing open 

problem called Graph Reconstruction Conjecture. (For the details and overview see [8, 9].) 

Given a finite graph r = ({vi,..., vn}, E) on n vertices, consider all induced subgraphs 

r -Vi (1 ~ iさ n). The multiset of these subgraphs is called deck of r, The Graph 

Reconstruction Conjecture predicts the unique reconstructability of any graph r of order 

at least 3 from its deck. This problem is closely related to partial automorphisms. Namely, 

any two induced subgraphs r-Vi and r-Vj (i =J j) admit at least one partial isomorphism 

cp between (r -V』-Vjand (r -Vj) -Vi-Clearly, if r -Vi and r -Vj admit exactly one 
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partial isomorphism r.p with domain of size n -2, r is reconstructable from r-Vi and r -vが

by identifying v and r.p(v), for each v in the domain of r.p. Two induced subgraphs r-Vi and 

r -Vj of r are said to be pseudo-similar if there is a partial automorphism mapping r -Vi 

tor -Vj that cannot be extended to a full automorphism of r. The Graph Reconstruction 

Conjecture holds for graphs containing no pseudo-similar vertices [9]. 

Similarly as in Group Theory, the set of all partial automorphisms, together with the 

composition and partial inverse of partial maps, forms an inverse monoid. We call this 

inverse monoid the partial automorphism monoid of a finite graph r, and denote it by 

P Aut(r). This object will be the main interest of our study. 

2.2 Inverse semigroups 

Before we continue, we will briefly review relevant concepts from Inverse Semigroup Theory. 

A non-empty set together with an associative operation is called a semigroup, and a 

semigroup admitting an identity (neutral) element is called a monoid. A monoid M is an 

inverse monoid if for every a E M, there exists a unique element a―1 E M, called the 

inverse of a, such that aa―1a = a and a―1aa―1 = a―1 hold. Note that the operation of 

taking inverse has the properties that (a―1)-1 = a and (ab)-1 = b―la―1 for any a, b E M. 

An element e of an inverse monoid M is called an idempotent, if e2 = e. The set of all 

idempotents of M is denoted E(M), and Va EM, aa―1'a―1a E E(M) and are generally 

different. In inverse monoids idempotents commute and form a subsemilattice. The partial 

order induced by this semilattice extends naturally to the whole inverse mono迅： s ：：：：： t ⇔ヨ
an idempotent e such that s = te. This is called the natural partial order. 

2.3 PSym(X) 

The archetypal inverse monoid is the symmetric inverse monoid on a set X, denoted 

PSym(X), and defined as follows: The underlying set of PSym(X) is the set of all bi-

jections between subsets of X, including the empty set. The elements of PSym(X) are 

called partial permutations of X. If <p: Y→Z E PSym(X) then Y and Z are the domain 

and range of <p denoted dom<p and ran<p, respectively. The common size ldom叫＝ Iran叫
of the sets dom<p and ra叩 iscalled the rank of <p. The cycle notation of classical per-

mutations generalizes by the addition of a notion called a path, which (unlike a cycle) 

ends when it reaches the "undefined" element: dom(x1, x2…x叶＝ ｛x1,x2,…,Xk-1} and 

ran(x1, x2…x叶＝ ｛x2,xふ…，XK}．
The operation on PSym(X) is the usual composition of partial maps defined for a 

pair of partial permutations <p1 : Y1→Z1 and <p2: Y2→Z2 to be the partial permutation 

誓 1：酎（Z1nY2)→四(Z1nY2)where (<p2<p1)(x) =四（<p1(x))for any x Eご (Z1nY2). 

For every <p E PSym(X), the inverse in PSym(X) is just the usual inverse <p―1 of the 

bijection <p: domゃ→ ran<p.The identity element of PSym(X) is the identity map idx on 

X, and PSym(X) also has a zero element, the empty map id0, Other noteworthy elements 

of P Aut(r) are so called local identities id A, for A c X. Local identities are idempotents of 

P Aut(r) and the natural partial order is defined by restriction of domains. It is clear that if 

r is a graph then P Aut(r) is an inverse submonoid of P Sym(V (r)), P Aut(r)::::; PSym(V). 
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It is clear that all restrictions of a total automorphism of a graph are partial automorphisms. 

But not all partial automorphisms extend to a total automorphism. For further details on 

Inverse Monoids see [10]. 

3 Inverse monoids of partial graph automorphisms 

We have characterization of those inverse monoids that appear as Partial Automorphism 

Mono ids of graphs [7]. In this section we review these results. For related concepts and 

details of proofs see [7]. 

In our study, we address the question of structure of such monoids as well as computa— 

tional aspects of finding them and two closely related classification problems: 

1. Classify finite inverse monoids that are isomoryhic to inverse monoids of partial auto-

morphisms of a graph 

2. For a specific class of representations of finite inverse semigroups (e.g., those given 

by Wagner-Preston theorem) classify finite inverse semigroups that admit a graph for 

which the inverse semigroup of partial automorphisms is equal to the partial bijections 

from the representation. 

The first classification question is an analogue of Frucht's Theorem (Theorem 2.1) for 

groups. Here the situation is very different, as no finite graph on at least two vertices admits 

a trivial inverse monoid of partial automorphisms. Indeed, partial identical maps are always 

partial automorphisms, and these already account for exponentially more elements than the 

number of vertices of the graph. In addition, as we will see, there are usually many more 

partial automorphisms. It turns out that the class of finite inverse monoids arising as partial 

automorphism monoids of graphs is quite restrictive. This is in contrast to the result of 

Frucht (Theorem 2.1). There were several attempts to establish Frucht type of results in 

the setting of inverse semigroups, by further restricting partial automorphisms of graphs, 

see for instance [13, 14]. 

The second classification question is an analogous to the more specialized problem from 

the group theory of the classification of the finite groups that admit so called a Graphical 

Regular Representation (GRR) -see for instance [16, 6]. The Graphical Regular Represen-

tation Problem (the GRR problem) asks for the classification of finite groups G that admit 

the existence of an edge set E with the property that the full automorphism group of the 

graph (G, E) acts regularly on G. Such groups are said to admit a G RR and include almost 

all finite groups with the exception of abelian groups of exponent at least 3, generalized 

dicyclic groups, and thirteen sporadic groups. 

To address the structural questions for P Aut(r), for a graph r(V, E), recall that in 

PSym(X) idempotents are the partial identical maps on subsets of X and the natural 

partial order is defined by restriction of domains. Moreover, P Aut(r) of a graph r is a full 

(i.e. contains all idempotents) submonoid of PSym(V). 

To study structure of inverse monoids, in general, five (the two of which coincide in 

the finite case we work with) equivalence relations, called Green's relations are crucial. For 

s, t EM, we define£ and R: 
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s.Ct⇔ヨ x,y E M s.t. xs = t & yt = s, 

s'R, t⇔ヨ x,y E M s.t. sx = t & ty = s. 

In PSym(X) these translate to pleasant and easy to understand relations on domains 

and ranges of partial permutations: 

や1£四⇔ dom切1= domcp2, 

切1'R,四⇔ ran切＝ ra叩 2・

The next Green's relation is 1{ ='R, n.C, which in a symmetric inverse monoid PSym(X) 

translates toや11{四 ifand only if domcp1 = domcp2 and ra叩 1= rancp2. Each'R-

class and each £-class contain precisely one idempotent, and the 1i-classes containing these 

idempotents are the maximal subgroups of the inverse monoid. 

The last relation is V ='R, o.C =.C o'R, in a symmetric inverse monoid means that 

切1V四 ifand only切1and四 havethe same rank. 

However, for a inverse monoid of partial automorphisms of a graph even finer distinction 

is needed ([7]): 

p roposition 3.1. For any graph r, the V-classes of P Aut(r) co汀 espondto the isomor-

phism classes of induced subgraphs of r, that is, two elements are V-related if and only if 

the subgraphs induced by their respective domains are isomorphic. 

This means, that the partial order for V-classes corresponds to induced subgraph rela-

tion. This fact is used havily when finding inverse monoids of partial automorphisms for 

particular graphs. It also indicates that computationally this problem is hard, as we have 

to go through all induced subgraphs of a given graph. 

We are now ready to answer questions from the beginning of this section. The The-

orem 3.2 answer the question (analouge of GRR) when is an inverse monoid of partial 

permutations the partial automorphism monoid of a graph. For details and proof see[7] 

Theorem 3.2. Given an inverse submonoid S :S PSym(X), where X is a finite set, there 

exists a graph with vertex set X whose partial automoryhism monoid is S if and only if the 

following conditions hold: 

1. S is a full inverse submonoid of PSym(X), 

2. for any compatible subset A ~ S of rank 1 partial permutations, if S contains the join 

of any two elements of A, then S contains the join of the set A, 

3. the rank 2 elements of S form at most two D-classes, 

4. the 1i-classes of rank 2 elements are nontrivial. 

In Theorem 3.3 we give the classification of those (abstract) inverse monoids that are 

isomoryhic to the partial automorphism monoids of a finite graph. The transition between 

the partial permutation representation case and the abstract case is provided by a slightly 

altered version of the Munn representation for inverse monoids. 

Theorem 3.3. Given a finite inverse monoid S, there exists a finite graph whose partial 

automorphism monoid is isomoryhic to S if and only if the following conditions hold: 
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1. S is Boolean 

2. S is fundamental, 

3. for any subset A <;;;; S of compatible 0-minimal elements, if all 2-element subsets of A 

have a join in S, then the set A has a join in S, 

4. the 0-minimal elements of S are T>-equivalent, 

5. S has at most two T>-classes of height 2, 

6. the'H-classes of the height 2 T>-classes of S are nontrivial. 

The above presented results are of theoretical nature, and therefore it is interesting to 

ask how difficult it is to find or compute P Aut(r) for a given graph r. Or how difficult it is 

to decide when is a given abstract monoid isomorphic to the partial automorphism monoids 

of some graph. We do not have definite answers, but have some preliminary results based 

on experiments we were running as a part of our project. 

To answer the last question for a given abstract monoid, one must check, if all the 

conditions of the Theorem 3.3 hold. Here it is important how the monoid is presented or 

given. It is not clear whether there is an effective algorithm to verify these conditions for a 

fixed presentation or even if all the conditions are decidable. 

If the'D-structure of a inverse monoid satisfying conditions of Theorem3.3 is known, 

constructing a graph (up to complements) is easily done from'D-classes of height 2, corre-

sponding to edges and non-edges of the graph. 

We know that P Aut(r) of a graph r is a rich and complex structure, much more complex 

then classical automorphism group Aut(r). As we mentioned above just number of local 

identities in P Aut(r) is exponential to order of the graph. We now have catalogues of 

explicitly described monoids for certain (easy) classes of graphs, like cycles, trees, etc. and 

for many small graphs [12]. Note that computing P Aut(r) for a graph r entails computing 

automorphism groups repeatedly in several stages. As a final top V-class the classical 

Aut(「） mustbe found, as well as automorphism groups of all induced subgraphs. We know 

that, in general, constructing the automorphism group is at least as difficult as solving the 

graph isomorphism problem. Of course, for many classes of graphs it can be done eザectively.

Just comparing the number of elements in P Aut(r), we can use some results about 

PSym(V), [4]. We consider an upper bound, but we know that some graphs, namely 

complete or empty graphs on n vertices have P Aut(r) = PSym({1, 2,... n}), and there are 
IPSym({l,2,... n})I＝立o(：げi!elements in P Aut(r). 

Another very interesting family of graphs for which we do have the catalogue [2] of inverse 

monoids of partial automorphisms is the family of minimal asymmetric graphs (Figure 3). 

This family of graphs was just quite recently completely characterized by P. Schweitzer 

and P. Schweitzer in [15]. The graphs are asymmetric, so their Aut(r) are trivial and 

classical group theory approach using automorphism groups does not distinguish among 

them, but their P Aut(r) are very interesting and suprisingly rich. This graphs are minimal 

with respect to asymmetry, i.e. non of their induced subgraphs on at least two vertices is 

asymmetric, which gives their P Aut(r) interesting structure. 
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Figure 3: Minimal asymmetric graphs 
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