On Regularity and Roots of Strong Codes

Yoshiyuki Kunimochi Shizuoka Institute of Science and Technology

abstract Deletion and insertion are interesting and common operations which often appear in text editing. A language $L \subset A^*$ closed under the both operations forms a free submonoid of A^* . Its base C is called a strong code, that is, $L = C^*$. The language L is regular if and only if its base C is regular. Then, we prove in another way that the syntactic monoid of L becomes a finite group. This gives us many examples of regular strong codes. We also investigate the relation between strong codes and groups.

1 Preliminaries

Let A be a finite nonempty set of *letters*, called an *alphabet* and let A^* be the free monoid generated by A under the operation of catenation with the identity called the *empty word*, denoted by 1. We call an element of A^* a word over A. The free semigroup $A^* \setminus \{1\}$ generated by A is denoted by A^+ . The catenation of two words x and y is denoted by xy. The *length* |w|of a word $w = a_1 a_2 \dots a_n$ with $a_i \in A$ is the number n of occurrences of letters in w. Clearly, |1| = 0. For a letter a in A, we let $|w|_a$ denote the number of occurrences of a in w.

A word $u \in A^*$ is a *prefix*(resp. *suffix*) of a word $w \in A^*$ if there is a word $x \in A^*$ such that w = ux(resp. w = xu). A word $u \in A^*$ is a *factor* of a word $w \in A^*$ if there exist words $x, y \in A^*$ such that w = xuy. Then a prefix (a suffix or a factor) u of w is called *proper* if $w \neq u$.

A subset of A^* is called a *language* over A. A nonempty language C which is the set of free generators of some submonoid M of A^* is called a *code* over A. Then C is called the *base* of M and coincides with the minimal set $Min(M) = (M \setminus 1) \setminus (M \setminus 1)^2$ of generators of M. A nonempty language C is called a *prefix* (or *suffix*) code if $u, uv \in C$ (resp. $u, vu \in C$) implies v = 1. C is called a *bifix* code if C is both a prefix code and a suffix code. The language $A^n = \{w \in A^* \mid |w| = n\}$ with $n \ge 1$ is called a *full uniform* code over A. A nonempty subset of A^n is called a *uniform* code over A. The symbols \subset and \subsetneq are used for a subset and a proper subset respectively.

We denote $\{a \in A \mid xay \in L, x, y \in A^*\}$ by alph(L). A language L over A is called reflexive if $uv \in L$ implies $vu \in L$. The conjugacy class cl(w) of a word w is the set $\{vu|w = uv\}$ and $w' \in cl(w)$ is called a conjugate of w.

Let N be a submonoid of a monoid M. N is right unitary (in M) if $u, uv \in N$ implies $v \in N$. Left unitary is defined in a symmetric way. The submonoid N of M is biunitary if it is both left and right unitary. Especially when $M = A^*$, a submonoid N of A^* is right unitary (resp. left unitary, biunitary) if and only if the minimal set $N_0 = (N \setminus 1) \setminus (N \setminus 1)^2$ of generators of N, namely the base of N, is a prefix code (resp. a suffix code, a bifix code) ([1] p.46).

Let L be a subset of a monoid M, the congruence $P_L = \{(u, v) | \text{ for all } x, y \in M, xuy \in L \iff xvy \in L\}$ on M is called the *principal congruence*(or *syntactic congruence*) of L. We write $u \equiv v$ (P_L) instead of $(u, v) \in P_L$. The monoid M/P_L is called the *syntactic monoid* of L, denoted by Syn(L). The morphism σ_L of M onto Syn(L) is called the *syntactic morphism*

of L. $\sigma_L(w)$ is denoted by \overline{w}_L . In particular when $M = A^*$, a language $L \subset A^*$ is regular if and only if Syn(L) is finite([1] p.46).

2 Strong Codes

A strong code C is the base of the identity $\overline{1}_L$ in the syntactic monoid Syn(L) of some language L. Then we state some properties of strong codes.

2.1 definitions

At first, we give the definition of strong codes.

DEFINITION 2.1 [4] A code $C \subset A^+ \setminus \{\emptyset\}$ is called a *strong* code if

(i) $x, y_1y_2 \in C^* \implies y_1xy_2 \in C^*$ (ii) $x, y_1xy_2 \in C^* \implies y_1y_2 \in C^*$

Here extractable codes and insertable codes are introduced below.

DEFINITION 2.2 Let $C \subset A^+ \setminus \{\emptyset\}$ be a code. Then, C is called an insertable (or extractable) code if C satisfies the condition (i)(or (ii)).

A strong code C is described as the base of the identity P_L -class $\overline{1}_L = \{w \in A^* \mid w \equiv 1(P_L)\}$ of the syntactic monoids Syn(L) of some language L.

PROPOSITION 2.1 [4] Let $L \subset A^*$. Then $C = (\overline{1}_L \setminus 1) \setminus (\overline{1}_L \setminus 1)^2$ is a strong code if it is not empty. Conversely, if $C \subset A^+$ is a strong code, then there exists a language $L \subset A^*$ such that $\overline{1}_L = C^*$.

Moreover if a strong code C is finite, the following proposition holds.

PROPOSITION 2.2 [4] Let C be a finite strong code over A and B = alph(C). Then, $C = B^n$ for some positive integer n, that is, C is a full uniform code over B.

EXAMPLE 2.1 (1) A singleton $\{w\}$ with $w \in \{a\}^+$ is a strong code. $\{w\}$ with $w \in A^+ \setminus \bigcup_{a \in A} \{a\}^+$ is not a strong code but it is an extractable code. Therefore there exist finite extractable codes which are not full uniform codes.

- (2) The conjugacy class cl(ab) of ab is an extractable code but not a strong code.
- (3) $\{a^n b^n \mid n \text{ is an integer}\}\$ is an (context-free) extractable code but not a strong code.
- (4) a^*b and ba^* are (regular) insertable codes but not strong codes.

Note that when C satisfies the condition (ii), we can easily check that C^* is biunitary(and thus free). Indeed, $uv = 1uv, u \in C^*$ implies $v = 1v \in C^*$ and $uv = uv1, v \in C^*$ implies $u = 1u \in C^*$. Then the minimal set $C = (C^* \setminus 1) \setminus (C^* \setminus 1)^2$ of generators of C^* becomes a bifix code. Therefore both strong codes and extractable codes are necessarily bifix codes.

Remark that an insertable submonoid M of A^* , the minimal set of generators of M is not necessarily a code. For example, If $C = \{a^2, a^3\}$, then the submonoid C^* is insertable but its minimal set C of generators is not necessarily a code.

PROPOSITION 2.3 [18] Let C be a code over A. Then the following conditions are equivalent:

- (1) C^* is reflexive;
- (2) C is a maximal strong code over A;

(3) C^* is a P_{C^*} -class, $Syn(C^*)$ is a group.

Note that the condition (2) is equivalent to the following condition (2'):

(2') C is a strong code over A and alph(C) = A.

Indeed, if $a \in A \setminus alph(C)$, then $C \cup \{a\}$ is a code. This contradicts to the condition (2). Hence alph(C) = A. Conversely, suppose the condition (2'), that is A = alph(C). We show that $C \cup \{w\}$ with any $w = a_1a_2 \dots a_k \notin C(a_i \in A, 1 \le i \le k)$ cannot be a code. For any $a_i \in A, a_iy_i \in C$ for some $y_i \in A^*$ because C is reflexive. Therefore $w(y_k \dots y_2y_1) = a_1a_2 \dots a_ky_k \dots y_2y_1 = c_1c_2 \dots c_m \in C^*$ for some $c_j \in C(1 \le j \le m)$. Since C^* is reflexive again, $(y_k \dots y_2y_1)w = c'_1c'_2 \dots c'_n \in C^*$ for some $c'_j \in C(1 \le j \le n)$. Therefore $c_1c_2 \dots c_m w = wc'_1c'_2 \dots c'_n \in C^*$. This proves that $C \cup \{w\}$ is not a code.

2.2 Insertion and Deletion

Let L be a language over A. A language L is called ins-closed if $u = u_1u_2 \in L$ and $v \in L$ imply $u_1vu_2 \in L$. A language L is called del-closed if $u = u_1vu_2 \in L$ and $v \in L$ imply $u_1u_2 \in L$ [6].

Let L be a del-closed language. Then, Since L is biunitary, the minimal set C = min(L) of generators of L is a bifix code and $L = C^*$.

Let L be an ins-closed language. Then, $1 \in L$ and $L^2 \subset L$ implies Since L is a submonoid of A^* .

PROPOSITION 2.4 Let $L \neq \emptyset$ be an ins-closed and del-closed language over A. Then $L = C^*$ for some strong code C.

Proof) As we stated above, L is a submonoid of A^* and its minimal set C of generators is a (bifix) code. C satisfies the conditions of a strong code.

2.3 Roots of Strong Codes

Let L be a strong code over A. We define a relation ρ on the free submonoid C^* of A^* as follows:

 $u\rho v$ if and only if there exist $m \in C^+$ $x_1, x_2 \in A^*$ such that $u = x_1 x_2$ and $v = x_1 m x_2$.

Let $\overline{\rho}$ the reflexive and transitive closure of ρ .

DEFINITION 2.3 [18] Let C be a strong code over A. The root of C is the set:

$$R(C) = \{ c \in C^+ | \forall c_1 \in C^+(c_1 \bar{\rho} c) \to c_1 = c \}.$$

PROPOSITION 2.5 [18] Let C be a strong code over A. Then the following conditions are equivalent:

- (1) C is a maximal strong code;
- (2) R(C) is reflexive;
- (3) $R(C) = \{w \in C | \text{ every conjugate } w' \text{ of } w \text{ is in } C \}.$

PROPOSITION 2.6 [18] Let C be a strong code over A. If the root R(C) is finite, the there exist a Dyck language $D_k \subset (A_1)^*$ and a homomorphism $f : (A_1)^* \to A^*$ such that $C^* = f(D_k)$

The following corollary and proposition give a necessary condition and a sufficient condition that a strong code has a finite root, respectively.

COROLLARY 2.1 [18] Let C be a strong code over A. If the root R(C) is finite, then C^* is context-free.

PROPOSITION 2.7 [18] Let C be a strong code over A. If C is regular, then the root R(C) is finite.

Zhang conjectured that a strong code has a finite root if and only if it is a simple language. Whereas Harging-Smith[3] proved the following theorem in 1973. In the theorem, Let $\pi = \langle A; R \rangle$ be a finitely generated presentation of a group G, and $\Sigma = A \cup A^{-1}$ be the set of generators and their inverses. The word problem $WP(\pi)$ of π is the set of all words on Σ which are equal to the identity. The reduced word problem $WP_0(\pi)$ of π is the set $WP(\pi) \setminus WP(\pi)\Sigma^+$. The set $W(\pi)$ of irreducible words is the set $WP(\pi) \setminus \Sigma^+WP(\pi)\Sigma^+$

DEFINITION 2.4 A context-free grammar $G = (V, \Sigma, P, S)$ in Greibach normal form is said to be a simple grammar if for all $A \in N$, $a \in \Sigma$, and $\alpha, \beta \in V^*$,

 $A \to a\alpha$, and $A \to a\beta$ imply $\alpha = \beta$.

A simple language is a language generated by a simple grammar.

THEOREM 2.1 [3] The reduced word problem $WP_0(\pi)$ of a finitely generated group presentation π is a simple language if and only if the set of irreducible words $W(\pi)$ is finite.

To prove the conjecture, It remains to check that for any finitely generated presentation $\pi = \langle A; R \rangle$ of a group G with $WP(\pi) \neq \emptyset$,

 \cdot The correspondence between strong codes and reduced word problems.

- $\cdot WP_0(\pi)$ is a strong codes and $W(\pi)$ is its root.
- $\cdot WP_0(\pi) \cap A^*$ is a strong codes and $W(\pi) \cap A^*$ is its root.

EXAMPLE 2.2 Let Σ be an alphabet and let $\overline{\Sigma}$ be its copy. The Dyck language D_{Σ}^* over Σ is generated by the context-free grammar $(\{S, T\}, \Sigma \cup \overline{\Sigma}, P, S)$, where

$$S \to \varepsilon, S \to TS, T \to aS\overline{a} \ (a \in \Sigma).$$

 D_{Σ}^* is a free submonoid of $(\Sigma \cup \overline{\Sigma})^*$ and its base D_{Σ} is a strong code over $\Sigma \cup \overline{\Sigma}$. If $|\Sigma| = n$, then D_{Σ} is often denoted by D_n .

 D_n is not a regular language. The root of D_n is the set $R(D_n) = \{a\overline{a} \mid a \in \Sigma\}$

EXAMPLE 2.3 The language $L = \{w \mid |w|_a = |w|_b\}$ over $A = \{a, b\}$ is ins-closed and delclosed. L is a free submonoid of A^* . Its base C = min(L) is a maximal strong code of even length over A. The root R(C) of C is the set $R(C) = \{ab, ba\}$

3 regular strong codes

We show that regular strong code is a maximal bifix code by another approach.

THEOREM 3.1 Let *L* be a regular ins-closed and del-closed language and C = min(L) be the minimal set of generators of *L*. *N* be the number of states in a minimal automaton recognizing *L*. Then the following statements hold.

(1) For any $x \in alph(L)^*$, $x^n \in L$ for some positive integer $n \leq N$.

(2) Let $m \in M = Syn(L)$, $m^n = 1$ for some n that is M is a finite group.

LEMMA 3.1 Let L, C = min(L) and N are the same as those in the theorem. $uv \in L$ implies $u^m \in L$ for some $0 < m \leq N$

Proof) Let $A = (Q, \Sigma, \delta, s_0, F)$ be a minimal automaton recognizing L. $\delta(s_0, u^s) = \delta(s_0, u^t)$ for some $s, t \ (0 \le s < t \le N)$ since |Q| = N. $u^s v^s \in L$ because L is ins-closed and del-closed. Setting $0 < i = t - s \le N$, $u^{s+i}v^s = u^i(u^sv^s) \in L$. Again since L is ins-closed and del-closed, $u^i \in L$.

Proof of theorem 3.1) (1) Let $x \in alph(L)^*$ be an arbitrary word. Let $a \in alph(L)$, that is $uav \in L$. By Lemma 1, $u^n \in L$ for some n. Since L is ins-closed and del-closed, $u^n(av)^n \in L$. $a(vav \cdots av) \in L$ holds. We get $a^i \in L(0 < i \leq N)$ again by Lemma 1.

$$a_1 a_2 \cdots a_r (a_r)^{i_r - 1} a_{r-1}^{i_{r-1} - 1} \cdots a_1^{i_1 - 1} \in L.$$

By Lemma 1, $x^n \in L$ for $0 < n \leq N$.

(2) Let M = Syn(L) the syntactic monoid of L and $\phi : A^* \to Syn(L), u \mapsto \overline{u}$ the syntactic morphism. Since L is regular, M is finite. For any $m \in Syn(L)$, there exists $x \in alph(L)^*$ such that $\phi(x) = \overline{x} = m$. By (1), $x^n \in L$. $\overline{x}^n = \overline{1}$. Therefore \overline{x} has an inverse element \overline{x}^{n-1} . Hence M is a finite group.

COROLLARY 3.1 Suppose that L, C = min(L) and N are the same as those in the theorem. Then, C is a strong code.

Proof) We show C is a maximal prefix code. C is a bifix code because L is biunitary. Let $x \in alph(L)^*, xx^{n-1} \in L = C^*$ for some n. This means maximality

References

- [1] J. Berstel and D. Perrin. Theory of Codes. Pure and Applied Mathematics. Academic Press, 1985.
- [2] A. de Luca and S. Varricchio. *Finiteness and Regularity in Semigroups and Formal Languages*. Monographs on Theoretical Computer Science • An EATCS Series. Springer, July 1999.
- [3] G. H. Haring-Smith. Groups and simple languages, volume 239. 9 1983.
- [4] H.J.Shyr. Strong codes. Soochow J. of Math. and Nat. Sciences, 3:9–16, 1977.

- [5] H.J.Shyr. *Free monoids and Languages*. Lecture Notes. Hon Min book Company, Taichung, Taiwan, 1991.
- [6] M. Ito, L. Kari, and G. Thierrin. Insertion and deletion closure of languages. *Theoretical Computer Science*, 183:3–19, 1997.
- [7] J.M.Howie. Fundamentals of Semigroup Theory. London Mathematical Society Monographs New Series 12. Oxford University Press, 1995.
- [8] Y. Kunimochi. Some properties of extractable codes and insertable codes. *International Journal of Foundations of Computer Science*, 27(3):327–342, 2016.
- [9] G. Lallement. Semigroups and combinatorial applications. John Wiley & Sons, Inc., 1979.
- [10] D. Long. On the structure of some group codes. 45:38–44, 1992.
- [11] M. Lothaire. Combinatorics on Words, volume 17 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1983.
- [12] T. Moriya and I. Kataoka. Syntactic congruences of codes. *IEICE TRANSACTIONS on Information and Systems*, E84-D(3):415–418, 2001.
- [13] M.Petrich and G.Thierrin. The syntactic monoid of an infix code. Proceedings of the American Mathematical Society, 109(4):865–873, 1990.
- [14] G. Rozenberg and A. Salomaa. Handbook of Formal Languages, Vol.1 WORD, LANGUAGE, GRAMMAR. Springer, 1997.
- [15] G. Tanaka, Y. Kunimochi, and M. Katsura. Remarks on extractable submonoids. *Technical Report kokyuroku, RIMS, Kyoto University*, 1655:106–110, 6 2009.
- [16] S. Yu. A characterization of intercodes. *International Journal of Computer Mathematics*, 36(1-2):39–45, 1990.
- [17] S.-S. Yu. Languages and Codes. Tsang Hai Book Publishing Company, Taiwan, 2005.
- [18] L. Zhang. Rational strong codes and structure of rational group languages. 35(1):181–193, 1987.
- [19] L. Zhang and W. Qiu. Decompositions of recognizable strong maximal codes. 108:173–183, 1993.
- [20] L. Zhang and W. Qiu. On group codes. 163:259–267, 1996.

Yoshiyuki Kunimochi

Shizuoka Institute of Science and Technology

Toyosawa 2200-2, Fukuroi-shi, Shizuoka 437-8555,

JAPAN

Email: kunimochi.yoshiyuki@sist.ac.jp