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abstract Deletion and insertion are interesting and common operations which often appear 
in text editing. A language L C A* closed under the both operations forms a free submonoid 
of A*. Its base C is called a strong code, that is, L = C*. The language L is regular if and only 
if its base C is regular. Then, we prove in another way that the syntactic monoid of L becomes 
a finite group. This gives us many examples of regular strong codes. We also investigate the 
relation between strong codes and groups. 

1 Preliminaries 

Let A be a finite nonempty set of letters, called an alphabet and let A* be the free monoid 
generated by A under the operation of catenation with the identity called the empty word, de-
noted by 1. We call an element of A* a word over A. The free semigroup A* ¥ { 1} generated 
by A is denoted by A+. The catenation of two words x and y is denoted by xy. The length lw I 

ofa wordw = a氾2...an with a; E A is th e number n of occurrences of letters in w. Clearly, 
I 1 I = 0. For a letter a in A, we let I w I a denote the number of occurrences of a in w. 
A word u E A* is a prejix(resp. suffix) of a word w E A* if there is a word x E A* such 
that w = ux(resp. w = xu). A word u E A* is a factor of a word w E A* if there exist words 
x, y E A* such that w = xuy. Then a prefix (a suffix or a factor) u of w is called proper if 
w-/= u. 
A subset of A* is called a language over A. A nonempty language C which is the set of free 
generators of some submonoid M of A* is called a code over A. Then C is called the base of 

Mand coincides with the minimal set Min(M) = (M ¥ 1) ¥ (M ¥ 1戸ofgenerators of M. A 
nonempty language C is called a prefix (or suffix) code if u, uv E C (resp.u, vu E C) implies 
v = l. C is called a bifix code if C is both a prefix code and a suffix code. The language 
炉＝｛wEA* I lwl = n} with n ~ l is called afull uniform code over A. A nonempty subset 
of An is called a uniform code over A. The symbols c and c;: are used for a subset and a proper 
subset respectively. 
We denote { a E A I xay E L, x, y E A*} by alph(L). A language Lover A is called reflexive 
if uv E L implies vu E L. The conjugacy class cl(w) of a word w is the set { vulw = uv} and 
w'E cl (w) is called a conjugate of w. 
Let N be a submonoid of a monoid M. N is right unitary (in M) if u, uv E N implies v E N. 
Left unitary is defined in a symmetric way. The submonoid N of M is biunitary if it is both left 
and right unitary. Especially when M = A*, a submonoid N of A* is right unitary (resp. left 
unitary, biunitary) if and only if the minimal set Ni。=（N ¥ 1) ¥ (N ¥ 1)2 of generators of N, 
namely the base of N, is a prefix code (resp. a suffix code, a bifix code) ([1] p.46). 

Let L be a subset of a monoid M, the congruence PL = { (u, v) I for all x, y E M, xuy E 
L ⇔ xvy E L} on Mis called the principal congruence(or syntactic congruence) of L. We 
write u三 v(P月insteadof (u, v) E PL. The monoid M / PL is called the syntactic mono id of 
L, denoted by Syn(L). The morphism四 ofM onto Syn(L) is called the syntactic morphism 
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of L.びL(w) is denoted by両． Inparticular when M = A*, a language L c A* is regular if 
and only if Syn(£) is finite([!] p.46). 

2 Strong Codes 

A strong code C is the base of the identity h in the syntactic monoid Syn(L) of some 
language L. Then we state some properties of strong codes. 

2.1 definitions 

At first, we give the definition of strong codes. 

DEFINITION 2.1 [4] A code Cc  A+¥ {0} is called a strong code if 

(i) x, Y1Y2 E C＊ ⇒ Y1XY2 EC* 
(ii) x, Y1勾/2EC＊ ⇒ Y1Y2 EC* 

Here extractable codes and insertable codes are introduced below. 

DEFINITION 2.2 Let Cc  A+¥ {0} be a code. Then, C is called an insertable (or extractable) 
code if C satisfies the condition (i)(or (ii)). 

A strong code C is described as the base of the identity PL -class IL = { w E A* I w三 1(Pり｝
of the syntactic rnonoids Syn(L) of sorne language L. 

PROPOSITION 2.1 [4] Let L CA*. Then C = (h ¥ 1) ¥ (h ¥ 1)2 i is a strong code if it is 
not empty. Conversely, if C C A+ is a strong code, then there exists a language L C A* such 

that h = C*. 

Moreover if a strong code C is finite, the following proposition holds. 

PROPOSITION 2.2 [4] Let C be a finite strong code over A and B = alph(C). Then, 
C=籾 forsorne positive integer n, that is, C is a full uniform code over B. 

EXAMPLE 2.1 (1) A singleton { w} with w E {a}+ is a strong code. { w} with w E 

A+¥ UnccA{a}+ i aEA 
a}+ is not a strong code but it is an extractable code. Therefore there exist fi-

nite extractable codes which are not full uniform codes. 
(2) The conjugacy class cl(ab) of ab is an extractable code but not a strong code. 
(3) ｛砂bnI n is an integer} is an (context-free) extractable code but not a strong code. 
(4) a*b and ba* are (regular) insertable codes but not strong codes. 

Note that when C satisfies the condition (ii), we can easily check that C* is biunitary(and 
thus free). Indeed, uv = luv, u E C* implies v = lv E C* and uv = uvl, v E C* implies 
u = 1 u E C*. Then the minimal set C = (C* ¥ 1) ¥ (C* ¥ 1) 2 of generators of C* becomes a 
bifix code. Therefore both strong codes and extractable codes are necessarily bifix codes. 
Remark that an insertable submonoid M of A*, the minimal set of generators of M is not 
necessarily a code. For example, If C = { a叫砂｝，thenthe submonoid C* is insertable but its 
minimal set C of generators is not necessarily a code. 
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PROPOSITION 2.3 [18] Let C be a code over A. Then the following conditions are equiv-
alent: 
(1) C* is reflexive; 

(2) C is a maximal strong code over A; 

(3) C* is a Pc.-class, Syn(C*) is a group. 

Note that the condition (2) is equivalent to the following condition (2'): 

(2') C is a strong code over A and alph(C) = A. 

Indeed, if a E A ¥alph(C), then CU{ a} is a code. This contradicts to the condition (2). Hence 

alph(C) = A. Conversely, suppose the condition (2'), that is A = alph(C). We show that CU 
{w} with any w = a1a2... ak rf_ C(ai EA, 1 ~ i ~ k) cannot be a code. For any ai EA, aiYi E 
C for some Yi EA* because C is reflexive. Therefore w(yk... y2め） ＝ a氾2・ ・ ・ akyk ・ ・ ・ Y幽＝
叩 2...cm E C* for some ci E C(l ~ j ~ m). Since C* i ~ j ~ m). Since C* is reflexive again, (Yk... Y2Y1)w = 
c~ c~... c~ E C* for some d; E C (1 ~ j ~ n). Therefore c1 c2... Cm w = wc~ c~... c~ E C*. 
This proves that C U { w} is not a code. 

2.2 Insertion and Deletion 

Let L be a language over A. A language L is called ins-closed if u = u四2EL and v EL 
imply u1 vu2 E L. A language L is called del-closed if u = u1 vu2 E L and v E L imply 
U凶 2EL [6]. 
Let L be a del-closed language. Then, Since L is biunitary, the minimal set C = min(L) of 
generators of L is a bifix code and L = Cベ
Let L be an ins-closed language. Then, 1 E L and L2 c L implies Since L is a submonoid 
of A*. 

PROPOSITION 2.4 Let L -/-0 be an ins-closed and del-closed language over A. Then 
L = C* for some strong code C. 

Proof) As we stated above, L is a submonoid of A* and its minimal set C of generators is a 

(bifix) code. C satisfies the conditions of a strong code. 1 

2.3 Roots of Strong Codes 

Let L be a strong code over A. We define a relation p on the free submonoid C* of A* as 
follows: 

upv if and only if there exist m E c+ x1, x2 E A* such that u = x1 x2 and v = x1 mx2. 

Let p the reflexive and transitive closure of p. 

DEFINITION 2.3 [18] Let C be a strong code over A. The root of C is the set: 

R(C) = {c EC甘¥:/c1E c+(c1pc)→釘＝ c}.
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PROPOSITION 2.5 [18] Let C be a strong code over A. Then the following conditions are 
equivalent: 
(1) C is a maximal strong code; 
(2) R(C) is reflexive; 

(3) R(C) = { w E Cl every conjugate w'of w is in C}. 

PROPOSITION 2.6 [18] Let C be a strong code over A. If the root R(C) is finite, the 
there exist a Dyck language Dk C (A1)* and a homomorphism f :（ふ）＊ →A* such that 
C* = f(D砂

The following corollary and proposition give a necessary condition and a sufficient condition 
that a strong code has a finite root, respectively. 

COROLLARY 2.1 [ 18] Let C be a strong code over A. If the root R(C) is finite, then C* is 
context-free. 

PROPOSITION 2. 7 [ 18] Let C be a strong code over A. If C is regular, then the root R(C) 
is finite. 

Zhang conjectured that a strong code has a finite root if and only if it is a simple language. 
Whereas Harging-Smith[3] proved the following theorem in 1973. In the theorem, Let 1r =< 
A; R > be a finitely generated presentation of a group G, and I; = AU A-1 be the set of 
generators and their inverses. The word problem WP(1r) of 1r is the set of all words on I; 
which are equal to the identity. The reduced word problem W Pi。(1r)of 1r is the set WP(1r) ¥ 
WP(1r）刃十•Theset W(1r) of irreducible words is the set WP(1r)＼汀WP(1r図

DEFINITION 2.4 A context-free grammar G = (V, I;, P, S) in Greibach normal form is said 
to be a simple grammar if for all A E N, a E I:, and a,/3EV*, 

A →aa, andA→ a/3imlpya =/3． 
A simple language is a language generated by a simple gr皿 mar.

THEOREM 2.1 [3] The reduced word problem W Pi土） ofa finitely generated group presen-
tation 1r is a simple language if and only if the set of irreducible words W (1r) is finite. 

To prove the conjecture, It remains to check that for any finitely generated presentation 1r =< 
A; R > of a group G with W P(1r)ヂ0，

• The correspondence between strong codes and reduced word problems. 

・ WR。に） isa strong codes and W (1r) is its root. 

・ WR。け）nA* is a strong codes and W (1r) n A* is its root. 

EXAMPLE 2.2 Let I; be an alphabet and let幻beit色copy.The Dyck language DE* over I; is 
generated by the context-free grammar ({S, T}, I; U I;, P, S), where 

S →r::,S→TS,T→aSa (a EI:). 

凡＊ isa free submonoid of (I; U I;)* and its base DE is a strong code over刃ut. If図＝ n,
then DE is often denoted by Dか
Dn is not a regular language. The root of Dn is the set R(D砂＝｛aa I a E町
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EXAMPLE 2.3 The language L = { w I lwla = lwlb} over A = { a, b} is ins-closed and del-
closed. L is a free submonoid of A*. Its base C = min(L) is a maximal strong code of even 

length over A. The root R(C) of C is the set R(C) = { ab, ba} 

3 regular strong codes 

We show that regular strong code is a maximal bifix code by another approach. 

THEOREM 3.1 Let L be a regular ins-closed and del-closed language and C = min(L) be the 

minimal set of generators of L. N be the number of states in a minimal automaton recognizing 
L. Then the following statements hold. 
(1) For any x E alph(L)*, xn EL for some positive integer n ;£ N. 
(2) Let m EM=  Syn(L),叩＝ 1for some n that is Mis a finite group. 

LEMMA 3.1 Let L, C = min(L) and N are the same as those in the theorem. uv EL implies 
的 EL for some O < m ;£ N 

Proof) Let A=  (Q, ~, J, s0, F) be a mini ea皿 nimalautomaton recognizing L. J(s0，か） ＝J(so,ut) t 

for some s, t (0 ;£ s < t ;£ N) since IQI = N. us沢 EL because Lis ins-closed and del-closed. 
Setting O < i = t-s ;£ N, u8+’訳＝が（か沢） EL. Again since Lis ins-closed and del-closed, 
ui E L.1 

Proof of theorem 3.1) (1) Let x E alph(L)* be an arbitrary word. Let a E alph(L), that is 

uav E L. By Lemma 1，砂 EL for some n. Since Lis ins-closed and del-closed,炉（avtEL. 
a(vav •••av) EL holds. We get ai E L(O < i ;£ N) again by Lemma 1. 

叩2 ・・・年 (ar)ir-laに戸•.． a1i1-1 EL. 

By Lemma 1,炉 EL for O < n ~ N. 
(2) Let M = Syn(L) the syntactic monoid of Land¢: A*→Syn(L), u曰 iithe syntactic 
morphism. Since Lis regular, Mis finite. For any m E Syn(L), there exists x E alph(L)* 

such thatの（x)=元＝ m.By (1)，炉 EL呼 -n-l . xn = 1. Therefore元hasan inverse element xn-i. 

Hence M is a finite group. 1 

COROLLARY 3.1 Suppose that L, C = min(L) and N are the same as those in the theorem. 
Then, C is a strong code. 

Proof) We show C is a maximal prefix code. C is a bifix code because L is biunitary. Let 
x E alph(L)*, xxn-l EL= C* £ = C* for some n. This means m叩 mality1 
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