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Abstract 

This article is the write-up of what the fist named author presented on January 25th in 2022 during 
the RJMS workshop. We explicitly construct non-tempered cusp forms on the orthogonal group 0(1,5) 
of signature (1+, 5-). Given a definite quaternion algebra B over Q, the orthogonal group is attached 
to the indefinite quadratic space of rank 6 with the anisotropic part defined by the reduced norm of 
B. As well as the explicit construction we study the cuspidal representations generated by our cusp 
forms in detail. We determine all local components of the cuspidal representations and show that our 
cusp forms are CAP forms. Our construction can be viewed as a generalization of [8] to the case of 
any definite quaternion algebras, for which we note that [8] takes up the case where the discriminant 
of B is two. Unlike [8] the method of the construction is to consider the theta lifting from Maass 
cusp forms to 0(1, 5), following the formulation by Borcherds. 

1 Preliminaries 

Let A。EM殴） bea positive definite symmetric matrix, and put A = [ 1 -A。1].By 9 and'.}{we 
1 l 

denote the Q-algebraic groups defined by 

9((Q) = {g E G恥((Q)I tgAg = A},'.}{((Q) = {h E GL4((Q) I thA。h= Ao} 
respectively. Both 9 and沢 arereferred to as orthogonal groups. We introduce the standard proper 

(Q-connected p紅 abolicsubgroup'.Pof 9 defined by the Levi decomposition'.P =N£ with 

噸）＝｛n（x)＝ ［1 t]：o 『x『A。x) X E Q4} 
爛＝｛％ ＝ （h a―1) I a E Qx, h E狐）｝

Assume that Lo is a m邸 imaleven integral lattice in (Ql4 with respect to A。.Weput 

L:= { G) I x,zEZ, yEL。}= L。〶 Z乞
This is a maximal lattice with respect to A. We let r := {, E 9(Q) I,L = L}. 
Now let B be any definite quaternion algebra over Q with the reduced trace tr and reduced norm 

Nrd and ('.) be any maximal order of B. We regard (('.), Nrd) as a quadratic Z module of rank 4. We 
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are interested in the case where（訊A0)~ (tJ, Nrd). In what follows, we identify these two quadratic 
modules. 
Let A be the adele ring of Q and的 bethe set of finite adeles in A. We consider the adelizations of 
the IQ-algebraic groups above, denoted by 9(A),沢（A),P(A), :N(A) and so on. Let Lp := L@瓦 and
L。,P:=L。@Zp and we put Kt := Ilp<oo KP and Ut := Ilp<ooら with

Kp := {k E 9(Qp) I kLp = Lp}, Up:= {u E沢(Qp)I uL。,p=L。,p}
for each finite prime p < oo. Let K00 be the maximal compact subgroup of 9（民） givenby 

{ g E 9(1R) ltg C A。1)g=(1 A。1)｝
y 

With A00 := { ay = (y 14 y-l) I y E JR+} the Iwasawa decomposition 9(JR) = N（政）A00K00gives 
y -1 

us the 5-dimensional hyperbolic space lllls as follows. 

酎 x町ぅ (x,y)→n(x)ayE 9（民）/Koo・

Definition. 1. 1. For r E (C we denote by M(r, r) the space of smooth functions F on 9（艮） satisfying
the following conditions: 

1 
i) Q •F = -(r2 -4) F, where n is the Casimir operator defined in {7, (2.3)/, 

8 

ii) for any（ry,g, k) Er x 9(lR) x K00, we have F(rygk) = F(g), 

iii) F is of moderate growth. 

As usual we say that F E M(r, r) is a cusp form if it vanishes at all the cusps of r. 

From Proposition 2.3 of [7], we see that a cusp form Fin M(r,r) has the Fourier expansion 

F(n(x)ay) ＝区 A(/3）y2瓦（41r~函）e(t/3A。 x),
/3EL~ ¥{O} 

with the dual lattice L~ of L。.Here,QA。isthe quadratic form corresponding to A。•

2 Vector valued modular forms and theta lifts 

2.1 Vector valued modular forms 

(1) 

Let dB = N be the discriminant of a definite quaternion algebra B over IQI. By definition this is a square— 

free integer. Let(')be any maximal order of B with(')'.:= (Z4, Ao). Let QA。,Land A be as in Section 1. 
Let(')1 and L'be the dual of(')and L respectively with respect to bilinear forms BAo and BA defined by 
A。andA. We have described the dual(')'in the previous section. We have 

L'= { [ ~] : a, b E Z, a E(')'｝． 

Define the discriminant form D by D = L'/ L. From the description of L'above, we have D = L'/ L = 
(')'I(')．D inherits the quadratic form QD and bilinear form BD (with values in oZ) from those of (')' 
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considered modulo 1. The level of D is the smallest positive integer n such that nQ瓜μ)三 0(mod 1) 
for allμ E D. Since Nrd((')＇） ＝炉Z,we see that the level of Dis N. 
The group algebra C[D] is a C-vector space generated by the formal basis vectors { eμ : μ E D} with 
product defined by eμeμ'= eμ+μ'. The inner product on C[D] (anti-linear in the second argument) is 
defined by〈eμ,eμ'〉＝ Oμ,μ'・ Hereafter we will often use the notation μ,μ 

e(x) := exp(21r,／二［x)

for XE賊 Wewill now define a representationゅ ofSL立） onC[D] by specifying it on the generators 
of SL心） givenby T = [ 1 U and S = [ 1 -l]. 

pv(T)eμ = e(Qv(μ))e炉

PD(S)eμ = e(-sgn(D)／8)L e(-B瓜μ,μ'))eμ,=—点 L e(-B叫，μ'))eμ'・
”μ'ED  μ’ED 

This action extends to a unitary representation PD of SL2(Z) on IC[D] called the Weil representation of 
D. 
To construct a vector valued modular form for SL2(Z) with values in IC[D], one has to start with a 
scalar valued modular form of level N. We let S(I'0(N), r) be the space of Maass cusp form of weight 0 
with respect to r0(N) with Laplace eigenvalue (r2 + 1)/4. According to the Selberg conjecture on the 
minimal Laplace eigenvalue for Maass cusp forms, r should be real (cf. [4, Section 11.3 Conjecture]). The 
Fourier expansion off E S(r。(N),r) is given by 

f(u + iv)＝区c(n)W。汀r,:(41rlnlv)e(nu). 
n,f-0 

for 1J := {u+iv E (C: v > O}. Define £v(f): 1J→C[D] by 

£D(f) ＝ こ flMpn(M)―1eo, 

ME応 (N)¥SL2(Z)

where (!IM)(T) = f(M ・ T) := f((aT + b)/(cr十d))for M =［：な］ ESL2(IR). 

Proposition. 2.1. Let f E S(ro(N), r). The function如(!)is well-defined and satisfies 

砂 (f)1 = PD(1)砂(!),

for all, ESL心）．

2.2 Theta lifts 

(2) 

We construct the theta liftoff E S(ro(N),r), N square-free, to an automorphic form on 5-dimensional 
hyperbolic space as in [l]. Also see [7]. More precisely our theta lifts are from vector valued modular 
forms given above. We will follow the construction of the theta lift in Section 3 of [7]. We recall from 
Section 1 that if g E 9（沢）， thenwe can write 

g = n(x)ayk, where n(x) =『 t;~。；五[A。Xl,x E酎 ay=『 14 y-ll,YE酎 kE K00 
y -1 

where K00 is the maximal compact subgroup of 9（股） andthat 

酎 x酎 3(x,y)→n(x)ay E 9（股）/Koo
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gives the 5-dimensional hyperbolic space厨 LetV5 :=（訊QA)and let'Dbe the Grassmanian of positive 
oriented lines in the quadratic space V5. Note that V5 = L@股， whereL was the lattice defined in Section 
1. We will identify恥 witha connected component of'Das follows. 

翫 3(x,y)>-+ v(x, y) := -;,/(y + y―lQ叫 x),-y―lx,y―1)E V5 
⑫ 

satisfying B心 (x,y), v(x, y)) = 1. It generates the positive, oriented line JR.. v(x，砂 whichis an element 
in'D. In fact, we see thatか：＝ ｛艮・v(x,y)I (x,y) E氏｝ isone of the two connected components of'D． 
We now note that the quadratic space V5 is isometric to艮1,5,where正 denotesthe real vector space 
酎 withthe quadratic form 

如 (x1,吟，...,x叫：＝； （叶ー言x;).
We slightly abuse the notation by using v to represent the line generated by v(x, y). Every line v Eか
induces an isometry 

where 

しv: V5 →良・鱈 (v_j_,QA。に） ～恥1,5

入→ （は（入）心（入）），

は（入）：＝ BA(入，v)v,し；（入） ：＝入—は（入） Ev_j_

are the components of入． Letus remark here that, if we fix (x, y) E]H[5, then we get a corresponding 
isometry of ½ into 政1•5 where the one dimensional positive definite subspace is the line generated by 
v(x, y). 
Let u戸（respectively w―)be the orthogonal complement of the line generated by Zv+ (respec-
tively Zv-) inは(Vs)(respectively し；；（Vs)). For入E½, let入w+and入w-be the projection of入to
w+ and w―respectively. We define the linear map w :％→艮1,5by w（入） ＝ （入w+，入w-),so that w is an 
isomorphism from w+ and w―to their images and w vanishes on Zv+ and Zv-. For our special case, w+ 
is trivial, the image of w is 4-dimensional, and the first coordinate of w（入） is0. 
If pis a polynomial on JR1•5, we say that p has homogeneous degree (m+, m―)if it is homogeneous of 
degree m+ in the first variable and homogeneous of degree m―in the last 5 variables. For h+, h―integers 

satisfying O <::: h+ <::: m+ and O <::: h―<'.'. m-define polynomials Pw,h+,h-on w(Vs) of homogeneous degree 
(m+ -h+,m―ー h-)by 

p（叫入）） ＝区恥（入，zu+）h十恥（入，zu-）h―Pw,h+,h-(w（入））． (3) 
h+,h-

Let p:即→艮 bethe polynomial given by p(x1, ・ ・ ・，咋） ＝ー2-2xr.We get a polynomial on V5 
defined by po lv given by the formula 

By (3), we have 

pい（入）） ＝ー2―2BA（入，ッ戸＝ー2―1炉BA（入，z,,,+）乞

Pw,h+,h-= { ~2-l炉 if (h+, h-) ＝ （2,0)； 

゜
otherwise. 

Note that the polynomial Pw,h+,h-is a constant in this case. 
Let△be the Laplacian on JR.1•5. For TE [J, (x,y) E恥 andμ ED= L'/L, define 

区
ー△

脅 v(x,y),p):= L (exp（一）（p））（叫））exp(27r✓可(QA(は（入））T+Q叩（入））テ）），
87rV 

入EL+μ

(4) 
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切 (T,v(x叫，p):=Leμ叶(T,v(x，紛，p).
μED 

Proposition. 2.2. For [ ~な］ ESL心）， we have 

ar+b 
eI、(::::-+-;,v(x,y),p)= lcr+dl5pv( ［：ル］）€）I、（r,v(x,y),p).
cr+d' 

Let f E S(ro(N),r), N square-free, be an Atkin-Lehner eigenform with eigenvalues Ee for all clN. 
Let £v(f) be the C[D] valued modular form as defined in (2). Let切 (r,v(x, y),p) be the theta function 
defined in the previous section. Define 

的 (v(x,y),p, f) := J匹 (f)）（和(T,u(x,y)，p)vg竺・
SL2(Z)\~ 

Here, complex conjugation on C[D] is given by写：＝ e_μ- In the product of切 and£, D (f), we are 
taking the inner product in C[D] to get a C-valued function. By Propositions 2.1 and 2.2, we see that 
the integrand is indeed invariant under SL立）．

Lemma. 2.3. Let, E r = {, E 9(1Qi) :社＝ L}.Then 

的（初(x,y),p,f)＝的(v(x,y),p, f). 

We give a formula for the Fourier coefficients of的 (v(x, y),f) in terms of the Fourier coefficients of 
f. To be precise, we provide a formula for A(/3) in terms of the Fourier coefficients c(n) off. Let us 
define the primitive elements of(')'by 

(')'• := ｛BE (')' pnm • g ¢ (')for all positive integers n > 1}. ｝ 
n 

Proposition. 2.4. Write f3 E(')＇as 

/3 ＝ II炉 n/30, up ~ 0, n > 0, gcd(n, N) = 1 and (30 E(')~rim· 
PIN 

Let q13。=q四 0. For PIN, set 

Then 

8p = {° tfp|qBo; 
l if Pf qf3o ・ 

2%＋8p 
-QA。((3）

A((3）＝』□□可とこ区c( )I1（一％）％ー1.IT Pむー1心
PIN tv=O din 

PIN 
PIN 

We can also verify the following: 

(5) 

Proposition. 2.5. For each representative c of the r-cusps,的（cv(x,y),p,f)has no constant term. 
Namely, our lifts的 (v(x,y),p,f)are cuspidal. 

As a result of this we have an enough knowledge of the Foureir expansion of our theta lifts. From 
Lemma 2.3 and the above Fourier expansion (compare to (1)), we get 

Theorem. 2.6.的（v(x,y), f) is a cusp form belonging to M(r, ✓可r).
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3 Hecke Theory 

3.1 Adelization of automorphic forms 

To study the action of the Hecke operators on our cusp forms constructed by the lift, we need the adelic 
as well as non-adelic treatment of automorphic forms. 

For h E'.){(A), we have the decomposition h = au―1 with (a, u) E GL4(1Ql) x (Ilp<=SL4(Z砂xSL4（恥））．
Let叫：＝ （ITp＜叫加吟 x配）nIQ)4 for h =（加）v冬'° E沢(A).Then, we have ('.)h = a('.) （c.f. [7, Section 
3.3]). The dual lattice('.)~ is then equal to a崎．
To obtain an adelic Fourier expansion, let f E S(fo(N),r) be a Maass cusp form with the Fourier 

expansion f(z)＝区呼0c(n)W0_~ (41rlnly)e(x). Let A be the standard additive character of A/IQ). We 
0, Vr  

introduce the following Fourier series 

的(n(x)aykg)：＝ L Fぃ(n(x)aykg) V(x,y,k,g) Eば x訳 X応 x9（的） （6) 
入E守＼｛O}

with 

Fぃ(n(x)aykg):= A入(g)炉kご r(41r入IAY)A(t入Ax),

where A刈g)is defined by the following conditions: 

A入((lh 1)） = ｛。汲亭星言。6p羞e（戸鳴）且（一,,,)','

A入((Sh S 1)） = ||s| iA 8||A 1入(('h1)) 
A入（n(x)gk):= A(t入Ax)A入(g) V(x,g,k)EAjx9(A1)xK1, 

Here 

1. uか Opand narc as defined in Proposition 2.4 for fJ = h-1入

2. (s,h) E A1 x沢（的） andI Isl IA denotes the idele norm of s. 

（入 E (')~) 

（入 EIQ)4 ¥(')i) 

For,,. EC, let M(9(A),r) denote the space of smooth functions Fon 9(A) satisfying the following 
conditions: 

1. 0 ・ F = ½(r2 -4)F, where O is the Casimir operator defined in [7]. 

2. For any (,,g,k) = 9(1Q) x 9(A) x K, we have F(,gk) = F(g). 

3. F is of moderate growth. 

Note that FE M(9(A), r) has the Fourier expansion 

F(g） ＝区 F刈q), F>.(9) := l•m• F(n(x)g)A(t入Ax)dx,
入EQ4 A勺Q4

where dx is the invariant measure normalized so that the volume ofば／IQ)4is one. The adelic function F 
is called a cusp form if.F,。=0 in the Fourier expansion. By the argument similar to [7, Theorem 3.3] we 
deduce the following proposition from the Fourier expansion discussed in Section 2.2. 

p roposition. 3.1. The adelic function Ff is a cusp form belonging to M(9(A), ✓言r)
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3.2 Sugano Theory 

We will show that if f is a Hecke eigenform then Ft is an Hecke eigenform by using the non-archimedean 
local theory of Sugano [16, Section 7]. For a prime p, let F =② with the ring of integers Zp. Let n。:cs:4 
and let S。€叫(F) be an anisotropic even symmetric matrix of degree no. For the m x m matrix 

Jm = (1.. ・ 1), let叫 denotethe group of F-valued points of the orthogonal group of degree 2m + no, 

defined by the matrix Q = (Jm s。J=).Denote by Lm := z~m+n。 the maximal lattice with respect to 
Qm and let Km be the maximal compact open subgroup of叫 definedby the lattice 

Km := {g E Gm I gLm = Lm}, (7) 

Let叫 beHecke algebra for (Gmぷm)and define ct,l E叩 tobe the double cosets Km心k加
where 

心：＝diag(p,...,P,l,... l,p―1,...,p―1) E Gm 
which is a diagonal matrix whose first r and last r entries are p and p―1 respectively. By [16, Section 7], 

{ct,) I 1 ~ r ~ m} forms generators of the Hecke algebra沢加
We embed Gi for i ~min Gm as a subgroup by the middle (2i + no) x (2i + no) block. We regard 
Ki as subgroup of Km similarly. The invariant measure of Gm is normalized so that the volume of Ki is 
one for each i ~ m. 
For a prime p f N, we have no = 0 and m = 3. In this case, the lattice L3 is self-dual. For a 
non-negative integer k, let 

fk,j := 
炉―l(pk-j+l_ l)(pk-j + 1) 

炉ー 1
(¥/j E Z ¥ {O}), (8) 

a special case of [16, 7.11] for no = o = 0. For positive integers k, r, set R~r) := Kk/(Kいぶ応(cい）ー1),
and let IRi,7') I denote the cardinality of Rい． Wehave 

IR灼＝｛↑；＝1fk,J (1::; r::; k); 
(r = 0). 

(9) 

Following the methods in Section 4 of [7], we get the following theorem (essentially Theorem 4.11 of [7] 
for n = 1/2). 

Theorem. 3.2. Suppose that f is a Hecke eigenform and let入P be the Hecke eigenvalue off at p < oo 
with pf N. Then the following holds. 

i) Ff is a Hecke eigenform. 

ii) Let μi be the Hecke eigenvalue with respect to the Hecke operator cii) for l :<:'. i :<:'. 3. We have 

μ1 = p2（碍ー2)+ph,1 =p2⑳ +p+p―1); 

μ; = IR~i-1)1 (μ1 -7_―f h,1),(i=2,3) 
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3.3 The case p I N 

When p I N, we have m = 1 and no = 4. Hence, the Hecke algebra'.J-{1 is generated by Ci1) which 

is the double coset K』l)K1 as defined in (3.2). Let n(x) E G1 be as defined in Section 1 and let 
(t, g) := diag(t, g, C1) E G1 fort E IQ); and g E G。•

Lemma. 3.3. 
叩＝ LJ(p山）n(x)K1LJ LJ (1, l4)n(x)K1 LJ (p―1, l4)K1 

xEX1 xEX3 

where 
迅＝｛ぉ Ep―1('.)/('.)}，知＝ ｛ぉ E(('.)'-('.)）／('.)}. 

(1) 
We can now describe the action of Ct'with the invariant measure dx of G1 normalized so that the 
volume f氏心＝ 1.Dcfinc 

(Cい・①)（g)：＝ J char (1) （瑾(gぉ）dx
G1 

K1ct'K1 

for <I> E M(9(A),r). 

The following proposition derives the action of cF) on Fourier coefficients of屯

Proposition. 3.4. Let <l> E M(9(A)へ仁む） bea lift. Then 

(cF). <I>)(n(x)ay)＝ L A~(l)炉KFTr(47r~向y)A(t入Ao （叫），
入ECJ'¥{O} 

where 『和(l)-A刈1)＋p和 (l)＋p2い（1) ~入 Ep(')'¥ {O}； 
A¥(1) = { p2 Av入(1)-A刈1)+ p2ふ(1) if入E(') ¥p(')'； 

p2Av入(1)-A刈1) if入E(')'¥ (')． 

To write the action of the Hecke operator in terms of Fourier coefficients given in Proposition 2.4, 
we write A入(1)= A(/3）where/3 ＝IT puPn/3o as in the proposition. Note, for入E(')＇and/3 E (')'the 

PIN 

conditions for A~(l) on入fromProposition 3.4 above translate to conditions on f3 as follows: 

Then, as 

入 Ep(')' ＼ {O} ← Up~ 1; 

入E(') ＼p(')'←⇒Up =0心＝ 1;
入E(')＇＼ 0 ⇔ Up= 0,0p = 0. 

AP入(1)= A(p/3); AP-'入(1)= A(p―1 /3) 

we can rewrite the A~ (1) in terms of/3 as 

p2A(p/3） ＋ （p2 -l)A(/3） ＋炉A(p―1/3）

A人(1)＝ ｛四(p/3）+ （p2 -1)A(/3） 
p2A(p/3） -A(/3） 

if Up;:, l; 

if Up = 0, Op= l; 

if Up= 0,今＝0.

(10) 

Let f E S(f0(N), r) be a new form with Hecke eigenvalue入Pfor the operator defined by the action of 
the double coset r0(N) [1 P]r0(N) at prime p. Assuming it is an Atkin Lehner eigenform with eigenvalue 
Ep, it can be shown that 

入p= -Ep• (11) 
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Using the single coset decomposition ([6, Lemma 9.141) 

1 
p-1 

ro(N) [］丘(N)= ~~ ro(N) l b P] r0(N) = Id ro(N) [」
we have 

p-1 

区f(
z+b 
） ＝入pf(z).

b=O 
p 

In terms of Fourier coefficients, using (11), we get 

入 一€

e(pm) = 2c(m) = ----Zc(m) Vm E Z. 
p p 

The discussion above and the explicit formula for Fourier coefficients of的 provideus with enough 
ingredients to show the following: 

Theorem. 3.5. Let f E S(r。(N),r) be a new form and eigenfunction of the Atkin Lehner involution 
with eigenvalue Ep at each plN. Let Ft be the liftoff defined in (6). Then Ff is a Hecke eigenform with 

剛 •Fj =（炉＋p2+p-l)FJ, 

4 Non-vanishing of the lift 

In this section, we will obtain the non-vanishing of the map f→Ff constructed in Section 2.2. Let us 
start by observing that the proof of Lemma 4.5 of [8] can be used to conclude that there exists M > 0 
such that the Fourier coefficient c(-M) of f is non-zero. If f is a Hecke eigenform, then this implies that 
c(-1)=I=〇.Usingthe explicit formula (5) for the Fourier coefficients for F1, we can see that in this case 
we get A(l)=I=〇． Hence,the map f→的 isinjective when restricted to Hecke eigenforms f. We will 
now prove the injectivity for all f. 
Consider a basis of Hecke eigenforms {!1,.. •, fk} of S(r0(N), r). Since this is a finite set, we can 

(i) （．) （.） 
find a prime p f N such that the Hecke eigenvalues入1'!off; for i = 1, ・ ・ ・ k satisfy|入; =I= |入尻 I for all 
i =I=j. This follows from Corollary 4.1.3 of [12]. Let F1,.. ・, Fk be the lifts of Ji,・・・,fk, By Theorem 

3.2, we know that F; are Hecke eigenforms with eigenvalues μp,l,i = p2(（紺）2+p+p―1).Because of 
the choice of p, we again see that μp,1,i=I=μp,1,j for all i=I=j. We then verify the non-vanishing of our 
theta lifts by an elementary argument of the linear algebra though there is the well known approach of 
the inner product formula initiated by Rallis [11]. 

Theorem. 4.1. The map f→F1 is an injective linear map on S(r0(N),r). 

5 CAP representation associated to the lift 

Assume that f E S(fo(N), r) is a newform, and let Ft E M(9(A), yコ:r)be the corresponding lift defined 
in (6). Let町,be the representation of 9(A) generated by Ft. 

5.1 Local components of the representation 

5.1.1 The archimedean component 

Let 

N00 := {n(x) Ix E酎｝， A00:= { ay I y E町｝
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for n(x) and ay as defined in Section 1. Letふ： A=→exbe a quasi-character given byふ(y)＝ ys 
for a parameter s E C. We can trivially extend心tothe parabolic subgroupぬ withLanglands 

decomoosition P ecomposition P=＝心A詞鳥 forM=  := { (1 m 1) Im E疇）｝． Wedefine the normalized parabolic 

induction induced fromふbyI定（ふ）． Proposition5.5 of [7] for N = 4 gives us the following: 

Proposition. 5.1. The archimedean component of 7rF is isomorphic to I定(ov'=Ir)as admissible G= 
module, and irreducible. If r is real, namely, f satisfies the Selberg conjecture on the minimal eigenvalue 
of the hyperbolic Laplacian, 7rp is tempered at the archimedean place. 

Using Theorem 3.1 of [9] and Proposition 3.1, we see that 7rp is irreducible. Since Ff is a cusp form, 
we can conclude that 7rp is an irreducible, cuspidal representation of 9(.A). Hence, we can decompose 
7rF =銘叩， where匹 isan irreducible, admissible representation of 9(Qv)- We have obtained the 
description of 7r= above. Next we will describe 7rp for finite primes p. 

5.1.2 Non-archimedean component: pf N case 

Let p be a prime with pf N. Let X1, X2，ゅ beunramified characters of Q;. We get a character x of the 
split torus of 9({Q)p) via 

diag(a1, a2, a3, a31, a21, a戸）→X1(a1)知 (a2)ゅ(a砂．

Extend this to a character of the minimal parabolic subgroup of 9({Q)p) by setting it to be trivial on 
the unipotent radical. By unramified principal series representation of 9（ふ） wemean the normalized 
parabolic induction I(x) of 9({Q)叫inducedfrom X, the character of the minimal parabolic group. 
The argument of the proof of [7, Theorem 5.6] works also for our setting. From Theorem 3.2 we thus 
deduce the following: 

Proposition. 5.2. For primes pf N, the local component 1l"p of 1l"F is the spherical constituent of the 
unramified principal series representation I(x) of 9({Q)p) where the character x corresponds to the three 
unramified characters X1, X2, X3 given by 

X1回）＝（入p+/）29X2回） ＝p，X3回） ＝ 1． 
Here,口Pis an uniformizer in (Qp. Hence, "P is non-tempered for every pf N. 

5.1.3 Non-archimedean component: PIN case 

Let p be a prime with plN. For an unramified character x of (Q;, we get a character of the torus of 9((Qp) 
via 

diag(y, 1, 1, 1, 1, y―1)→x(y). 
We can extend this to a character of the maximal parabolic subgroup P by setting it to be trivial on the 
unipotent radical. The modulus character is given by 

6p(ayn(x)) = IYl4-

Define the normalized unramified principal series I(x) consisting of all smooth functions f : 9((Qp)→ C 
satisfying 

f(ayn(x)g) = IYl2x(y)f(g) for ally E IQ);,x E IQl!,g E 9(1Qlp)-
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If Ji is an unramified vector in I(x), then the Hecke operator Ci1) acts on Ji by a constant. To obtain 
the constant, using Lemma 3.3, we see that 

(cげ）（1）＝ J char ぃ鴫(x)dx
9（む）

K1c;''K1 

＝区 fi(apn(x)）＋区 fl(n(x)）＋fl(ap-1)
xEX1 xEX1 

= P4IPl2x(p)fi(l) + (P2 -1)/i(l) + IP―i12x(P―1)/i(l) 

= (P2X(P) + P2 -1 + P2X(P―1))/i(l). (12) 

From this we can deduce the following: 

Proposition. 5.3. Let plN. The local representation 7rp is the spherical constituent of the unramified 
principal series I(x) with x（四） ＝ P士1.The representation 7rp is non-tempered. 

5.2 C uspidal representation generated by F1 and its CAP property 

Following the description of the local components, we can now state the result for the explicit determi-
nation of the cuspidal representation generated by Ft. 

Theorem. 5.4. Let f be a new form in S(ro(N), r) and let 7rp be the cuspidal representation generated 
by F1. Then, 

i)サ isirreducible and decomposes into the restricted tensor product 7rp = ®~:,;亙叩 of irreducible 
admissible representations四 0f9(Qv)． 

ii) For v = p < oo, if p f N then 7rp is the spherical constituent of the unramified principal series 
representation of 9P with the Satake parameters 

dlag(（い戸）,,P,1, l,p―1 (入p+~)-')
iii) For v = pく (X),ifp I N then 1fp is the spherical constituent of the parabolic induction I(x) of 
9(1Qlp) defined by 

x(P) = p. 

iv) For every finite prime p, 1rp is non-tempered. Suppose that the Selberg conjecture holds for f, namely 
r is a real number for the Laplace eigenvalue for f. Then 1r = is tempered. 

Proof. This follows from Proposition 5.1, Proposition 5.2, Proposition 5.3 and Theorem 3.1 of [9]．ロ

We now review the definition of a CAP representation from [8, Definition 6.6]. 

Definition. 5.5. Let G1 and G2 be two reductive algebraic groups over a number field F such that 
G1,v ~ G2,v for almost all places v, where G;,v = G;(F』 (i= 1, 2) is the group of Fv-points of G; 
for the local field Fv at v. Let P2 be a parabolic subgroup of G2 with Levi decomposition P2 = M心
An irreducible cuspidal automorphic representation 1r =娼匹 ofG1 (A) is called cuspidal associated to 
parabolic (CAP) F,ぁ ifthere exists an i汀educiblecuspidal automorphic representation a of M2 such that 

G退）叩~ 1r~ for almost all places v, where 1r'＝羞叫 isan i汀educibleconstituent of Ind乃(A）に）．
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For our case G1 = 9 = 0(1, 5) and G2 = 0(3, 3). We have G1,P = G2,P for allp f N. Let a be a cuspidal 
representation of GL2 generated by a Maass cusp form f with the trivial central character. Assume that 

f is a new form. We want to regard th e representation I <let I 
-1/2 
A (J'x ldet I 

1/2 
A (J'of GL2(A) x G恥(A)(cf.[8, 

Section 6.2]) as the representation of Ax x0(2, 2)(A), which is isomorphic to a Levi subgroup of a maximal 
parabolic subgroup P(A) of 0(3, 3)(A). Recall that our previous work [8] introduced the parabolic 

induction from the representation I det 1-;,112(J'x I det 1!(2a of GL2(A) xGL2(A) to discuss the CAP property 
of our lifting for the case of仰＝ 2in the setting of GL2 over B. In the present setting we consider 
the parabolic induction from the aforementioned representation of Ax x 0(2, 2) (A) instead and can show 
that 7l'F is a CAP representation attached to this parabolic induction. 
To see this we start with recalling the following two isomorphisms 

GL2 x GL2/{(z, z) I z E GL1} ~ GS0(2, 2), G0(2, 2) = GS0(2, 2))q〈t〉・

We now note that th e representation I det I 
-1/2 1/2 
A (J'x I det I~(J'of GL2(A) x GL2(A) can be regarded as the 

representation of GS0(2, 2)(A) since(J'has the trivial central character. We construct a representation 
of G0(2, 2)(A) by considering its induced representation from GS0(2, 2)(A) to G0(2, 2)(A). Further-
more consider the pull-back of the representation of G0(2, 2) (A) to Ax x 0(2, 2) (A) via the surjection 
記 x('.)（2,2)(A)→G0(2, 2) (A). We denote the resulting representation simply by(J'and introduce 

0(3,3)(A) the normalized parabolic induction Ind(J'，where P is the maximal parabolic subgroup with Levi P(A) 

subgroup isomorphic to GL(l) x 0(2, 2) and the abelian uni potent radical. Then we have the following: 

Proposition. 5.6. Let 7l'F be as above and recall that we have assumed that the Maass cusp form f is a 

new form. The cuspidal representation 7l'F is CAP to the parabolic induction Ind(J'. 
0(3,3)(A) 
P(A) 

5.3 Global standard £-function for F1 

We define the standard £-function of the orthogonal group 9, following Sugano [16, Section 7, (7,6)]. The 
local factors for places pf dB arc wcll known. Wc find thcm in [16, Section 7, (7,6)]. For places pldB, the 
case of (n0,8) = (4,2) in [16, Section 7 (7.6)] is valid. We define the standard £-function by the Euler 
product over all finite primes. Putting the local datum of Theorem 5.4 (ii) and (iii) together, we have 
the following result with the help of Y. Jo [5, Theorem 5.7]皿 dGelbert-Jacquet [3]: 

p roposition. 5.7. Suppose that a Maass cusp form f is a new form in S(fo(N),r) and recall that a 
GL4(A) 1/2 

denotes the cuspidal representation ofGL2(A) generated by f. Let IT= Ind恥 (A)(|det |；1/2びxI det l!:'2a), 
with the parabolic subgroup P2,2 ofGL4 with Levi part GL2 xGL2. By L(FJ, std, s) {respectively L(IT, /¥, s)} 
we denote the standard £-function for the lift Ff {respectively exterior square £-function of IT). We have 

L(FJ, std, s) = L(IT, /¥, s) = L(syn召(f),s)((s-l)((s)((s + 1), 

where the Riemann zeta functionく(s)is defined by the Euler product over all finite primes. 

Remark. 5.8. The above coincidence of the two £-functions is expected in the framework of the Lang-
lands £-functions (for instance see /2, Section 4]). We remark that our example is given for non-generic 
representations while the case of generic representations is known to be proved by Shahidi's theo内/{15, 
Theorem 3.5] (see /2, Lemma 3.5]}. 
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