An explicit lifting construction of CAP forms on $\mathrm{O}(1,5)$

Hiro-aki Narita, Ameya Pitale, Siddhesh Wagh

July 28, 2022

Abstract

This article is the write-up of what the fist named author presented on January 25 th in 2022 during the RIMS workshop. We explicitly construct non-tempered cusp forms on the orthogonal group $\mathrm{O}(1,5)$ of signature $(1+, 5-)$. Given a definite quaternion algebra B over \mathbb{Q}, the orthogonal group is attached to the indefinite quadratic space of rank 6 with the anisotropic part defined by the reduced norm of B. As well as the explicit construction we study the cuspidal representations generated by our cusp forms in detail. We determine all local components of the cuspidal representations and show that our cusp forms are CAP forms. Our construction can be viewed as a generalization of [8] to the case of any definite quaternion algebras, for which we note that [8] takes up the case where the discriminant of B is two. Unlike [8] the method of the construction is to consider the theta lifting from Maass cusp forms to $O(1,5)$, following the formulation by Borcherds.

1 Preliminaries

Let $A_{0} \in M_{4}(\mathbb{Q})$ be a positive definite symmetric matrix, and put $A=\left[\begin{array}{ll} & \\ & \\ 1 \\ 1 & \end{array}\right]$. By \mathcal{G} and \mathcal{H} we denote the \mathbb{Q}-algebraic groups defined by

$$
\mathcal{G}(\mathbb{Q})=\left\{\left.g \in \mathrm{GL}_{6}(\mathbb{Q})\right|^{t} g A g=A\right\}, \quad \mathcal{H}(\mathbb{Q})=\left\{h \in \mathrm{GL}_{4}(\mathbb{Q}) \mid{ }^{t} h A_{0} h=A_{0}\right\}
$$

respectively. Both \mathcal{G} and \mathcal{H} are referred to as orthogonal groups. We introduce the standard proper \mathbb{Q}-connected parabolic subgroup \mathcal{P} of \mathcal{G} defined by the Levi decomposition $\mathcal{P}=\mathcal{N} \mathcal{L}$ with

$$
\begin{aligned}
& \mathcal{N}(\mathbb{Q})=\left\{\left.n(x)=\left(\begin{array}{ccc}
1 & { }^{t} x A_{0} & \frac{1}{2} t \\
& 1_{4} & x \\
& & 1
\end{array}\right) \right\rvert\, x \in \mathbb{Q}_{0}\right\} \\
& \mathcal{L}(\mathbb{Q})=\left\{\left.a_{\alpha}=\left(\begin{array}{ccc}
\alpha & & \\
& h & \\
& & \alpha^{-1}
\end{array}\right) \right\rvert\, \alpha \in \mathbb{Q}^{\times}, h \in \mathcal{H}(\mathbb{Q})\right\} .
\end{aligned}
$$

Assume that L_{0} is a maximal even integral lattice in \mathbb{Q}^{4} with respect to A_{0}. We put

$$
L:=\left\{\left.\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \right\rvert\, x, z \in \mathbb{Z}, y \in L_{0}\right\}=L_{0} \oplus \mathbb{Z}^{2}
$$

This is a maximal lattice with respect to A. We let $\Gamma:=\{\gamma \in \mathcal{G}(\mathbb{Q}) \mid \gamma L=L\}$.
Now let B be any definite quaternion algebra over \mathbb{Q} with the reduced trace tr and reduced norm Nrd and \mathcal{O} be any maximal order of B. We regard $(\mathcal{O}, \operatorname{Nrd})$ as a quadratic \mathbb{Z} module of rank 4 . We

2 VECTOR VALUED MODULAR FORMS AND THETA LIFTS

are interested in the case where $\left(\mathbb{Z}^{4}, A_{0}\right) \simeq(\mathcal{O}, \mathrm{Nrd})$. In what follows, we identify these two quadratic modules.

Let \mathbb{A} be the adele ring of \mathbb{Q} and \mathbb{A}_{f} be the set of finite adeles in \mathbb{A}. We consider the adelizations of the \mathbb{Q}-algebraic groups above, denoted by $\mathcal{G}(\mathbb{A}), \mathcal{H}(\mathbb{A}), \mathcal{P}(\mathbb{A}), \mathcal{N}(\mathbb{A})$ and so on. Let $L_{p}:=L \otimes \mathbb{Z}_{p}$ and $L_{0, p}:=L_{0} \otimes \mathbb{Z}_{p}$ and we put $K_{f}:=\prod_{p<\infty} K_{p}$ and $U_{f}:=\prod_{p<\infty} U_{p}$ with

$$
K_{p}:=\left\{k \in \mathcal{G}\left(\mathbb{Q}_{p}\right) \mid k L_{p}=L_{p}\right\}, \quad U_{p}:=\left\{u \in \mathcal{H}\left(\mathbb{Q}_{p}\right) \mid u L_{0, p}=L_{0, p}\right\}
$$

for each finite prime $p<\infty$. Let K_{∞} be the maximal compact subgroup of $\mathcal{G}(\mathbb{R})$ given by

$$
\left\{g \in \mathcal{G}(\mathbb{R}) \left\lvert\,{ }^{t} g\left(\begin{array}{lll}
1 & & \\
& A_{0} & \\
& & 1
\end{array}\right) g=\left(\begin{array}{lll}
1 & & \\
& A_{0} & \\
& & 1
\end{array}\right)\right.\right\}
$$

With $A_{\infty}:=\left\{\left.a_{y}=\left(\begin{array}{lll}y & & \\ & 1_{4} & \\ & & y^{-1}\end{array}\right) \right\rvert\, y \in \mathbb{R}^{+}\right\}$the Iwasawa decomposition $\mathcal{G}(\mathbb{R})=\mathcal{N}(\mathbb{R}) A_{\infty} K_{\infty}$ gives us the 5-dimensional hyperbolic space \mathbb{H}_{5} as follows.

$$
\mathbb{R}^{4} \times \mathbb{R}^{+} \ni(x, y) \mapsto n(x) a_{y} \in \mathcal{G}(\mathbb{R}) / K_{\infty}
$$

Definition. 1.1. For $r \in \mathbb{C}$ we denote by $\mathcal{M}(\Gamma, r)$ the space of smooth functions F on $\mathcal{G}(\mathbb{R})$ satisfying the following conditions:
i) $\Omega \cdot F=\frac{1}{8}\left(r^{2}-4\right) F$, where Ω is the Casimir operator defined in [7, (2.3)],
ii) for any $(\gamma, g, k) \in \Gamma \times \mathcal{G}(\mathbb{R}) \times K_{\infty}$, we have $F(\gamma g k)=F(g)$,
iii) F is of moderate growth.

As usual we say that $F \in \mathcal{M}(\Gamma, r)$ is a cusp form if vanishes at all the cusps of Γ.
From Proposition 2.3 of [7], we see that a cusp form F in $\mathcal{M}(\Gamma, r)$ has the Fourier expansion

$$
\begin{equation*}
F\left(n(x) a_{y}\right)=\sum_{\beta \in L_{0}^{\prime} \backslash\{0\}} A(\beta) y^{2} K_{r}\left(4 \pi \sqrt{Q_{A_{0}}(\beta)} y\right) e\left({ }^{t} \beta A_{0} x\right), \tag{1}
\end{equation*}
$$

with the dual lattice L_{0}^{\prime} of L_{0}. Here, $Q_{A_{0}}$ is the quadratic form corresponding to A_{0}.

2 Vector valued modular forms and theta lifts

2.1 Vector valued modular forms

Let $d_{B}=N$ be the discriminant of a definite quaternion algebra B over \mathbb{Q}. By definition this is a squarefree integer. Let \mathcal{O} be any maximal order of B with $\mathcal{O} \simeq\left(\mathbb{Z}^{4}, A_{0}\right)$. Let $Q_{A_{0}}, L$ and A be as in Section 1 . Let \mathcal{O}^{\prime} and L^{\prime} be the dual of \mathcal{O} and L respectively with respect to bilinear forms $B_{A_{0}}$ and B_{A} defined by A_{0} and A. We have described the dual \mathcal{O}^{\prime} in the previous section. We have

$$
L^{\prime}=\left\{\left[\begin{array}{c}
a \\
\alpha \\
b
\end{array}\right]: a, b \in \mathbb{Z}, \alpha \in \mathcal{O}^{\prime}\right\}
$$

Define the discriminant form D by $D=L^{\prime} / L$. From the description of L^{\prime} above, we have $D=L^{\prime} / L=$ $\mathcal{O}^{\prime} / \mathcal{O}$. D inherits the quadratic form Q_{D} and bilinear form B_{D} (with values in \mathbb{Q} / \mathbb{Z}) from those of \mathcal{O}^{\prime}

2 VECTOR VALUED MODULAR FORMS AND THETA LIFTS

considered modulo 1. The level of D is the smallest positive integer n such that $n Q_{D}(\mu) \equiv 0(\bmod 1)$ for all $\mu \in D$. Since $\operatorname{Nrd}\left(\mathcal{O}^{\prime}\right)=\frac{1}{N} \mathbb{Z}$, we see that the level of D is N.

The group algebra $\mathbb{C}[D]$ is a \mathbb{C}-vector space generated by the formal basis vectors $\left\{e_{\mu}: \mu \in D\right\}$ with product defined by $e_{\mu} e_{\mu^{\prime}}=e_{\mu+\mu^{\prime}}$. The inner product on $\mathbb{C}[D]$ (anti-linear in the second argument) is defined by $\left\langle e_{\mu}, e_{\mu^{\prime}}\right\rangle=\delta_{\mu, \mu^{\prime}}$. Hereafter we will often use the notation

$$
e(x):=\exp (2 \pi \sqrt{-1} x)
$$

for $x \in \mathbb{R}$. We will now define a representation ρ_{D} of $\mathrm{SL}_{2}(\mathbb{Z})$ on $\mathbb{C}[D]$ by specifying it on the generators of $\mathrm{SL}_{2}(\mathbb{Z})$ given by $T=\left[\begin{array}{c}1 \\ 1 \\ 1\end{array}\right]$ and $S=\left[1^{-1}\right]$.

$$
\begin{aligned}
& \rho_{D}(T) e_{\mu}=e\left(Q_{D}(\mu)\right) e_{\mu}, \\
& \rho_{D}(S) e_{\mu}=\frac{e(-\operatorname{sgn}(D) / 8)}{\sqrt{|D|}} \sum_{\mu^{\prime} \in D} e\left(-B_{D}\left(\mu, \mu^{\prime}\right)\right) e_{\mu^{\prime}}=-\frac{1}{N} \sum_{\mu^{\prime} \in D} e\left(-B_{D}\left(\mu, \mu^{\prime}\right)\right) e_{\mu^{\prime}} .
\end{aligned}
$$

This action extends to a unitary representation ρ_{D} of $\mathrm{SL}_{2}(\mathbb{Z})$ on $\mathbb{C}[D]$ called the Weil representation of D.

To construct a vector valued modular form for $\mathrm{SL}_{2}(\mathbb{Z})$ with values in $\mathbb{C}[D]$, one has to start with a scalar valued modular form of level N. We let $S\left(\Gamma_{0}(N), r\right)$ be the space of Maass cusp form of weight 0 with respect to $\Gamma_{0}(N)$ with Laplace eigenvalue $\left(r^{2}+1\right) / 4$. According to the Selberg conjecture on the minimal Laplace eigenvalue for Maass cusp forms, r should be real (cf. [4, Section 11.3 Conjecture]). The Fourier expansion of $f \in S\left(\Gamma_{0}(N), r\right)$ is given by

$$
f(u+i v)=\sum_{n \neq 0} c(n) W_{0, \frac{\sqrt{-1} r}{2}}(4 \pi|n| v) e(n u)
$$

for $\mathfrak{h}:=\{u+i v \in \mathbb{C}: v>0\}$. Define $\mathcal{L}_{D}(f): \mathfrak{h} \rightarrow \mathbb{C}[D]$ by

$$
\begin{equation*}
\mathcal{L}_{D}(f)=\sum_{M \in \Gamma_{0}(N) \backslash \operatorname{SL}_{2}(\mathbb{Z})} f \mid M \rho_{D}(M)^{-1} e_{0} \tag{2}
\end{equation*}
$$

where $(f \mid M)(\tau)=f(M \cdot \tau):=f((a \tau+b) /(c \tau+d))$ for $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{R})$.
Proposition. 2.1. Let $f \in S\left(\Gamma_{0}(N), r\right)$. The function $\mathcal{L}_{D}(f)$ is well-defined and satisfies

$$
\mathcal{L}_{D}(f) \mid \gamma=\rho_{D}(\gamma) \mathcal{L}_{D}(f)
$$

for all $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$.

2.2 Theta lifts

We construct the theta lift of $f \in S\left(\Gamma_{0}(N), r\right), N$ square-free, to an automorphic form on 5-dimensional hyperbolic space as in [1]. Also see [7]. More precisely our theta lifts are from vector valued modular forms given above. We will follow the construction of the theta lift in Section 3 of [7]. We recall from Section 1 that if $g \in \mathcal{G}(\mathbb{R})$, then we can write

$$
g=n(x) a_{y} k, \text { where } n(x)=\left[\begin{array}{ccc}
1 & { }^{t} x A_{0} & \frac{1}{2}^{t} x A_{0} x \\
& 1_{4} & x \\
& & 1
\end{array}\right], x \in \mathbb{R}^{4}, a_{y}=\left[\begin{array}{lll}
y & & \\
& 1_{4} & \\
& & y^{-1}
\end{array}\right], y \in \mathbb{R}^{+}, k \in K_{\infty}
$$

where K_{∞} is the maximal compact subgroup of $\mathcal{G}(\mathbb{R})$ and that

$$
\mathbb{R}^{4} \times \mathbb{R}^{+} \ni(x, y) \mapsto n(x) a_{y} \in \mathcal{G}(\mathbb{R}) / K_{\infty}
$$

2 VECTOR VALUED MODULAR FORMS AND THETA LIFTS

gives the 5 -dimensional hyperbolic space \mathbb{H}_{5}. Let $V_{5}:=\left(\mathbb{R}^{6}, Q_{A}\right)$ and let \mathcal{D} be the Grassmanian of positive oriented lines in the quadratic space V_{5}. Note that $V_{5}=L \otimes \mathbb{R}$, where L was the lattice defined in Section 1. We will identify \mathbb{H}_{5} with a connected component of \mathcal{D} as follows.

$$
\mathbb{H}_{5} \ni(x, y) \mapsto \nu(x, y):=\frac{1}{\sqrt{2}}^{t}\left(y+y^{-1} Q_{A_{0}}(x),-y^{-1} x, y^{-1}\right) \in V_{5}
$$

satisfying $B_{A}(\nu(x, y), \nu(x, y))=1$. It generates the positive, oriented line $\mathbb{R} \cdot \nu(x, y)$, which is an element in \mathcal{D}. In fact, we see that $\mathcal{D}^{+}:=\left\{\mathbb{R} \cdot \nu(x, y) \mid(x, y) \in \mathbb{H}_{5}\right\}$ is one of the two connected components of \mathcal{D}. We now note that the quadratic space V_{5} is isometric to $\mathbb{R}^{1,5}$, where $\mathbb{R}^{1,5}$ denotes the real vector space \mathbb{R}^{6} with the quadratic form

$$
Q_{1,5}\left(x_{1}, x_{2}, \cdots, x_{6}\right):=\frac{1}{2}\left(x_{1}^{2}-\sum_{j=2}^{6} x_{j}^{2}\right)
$$

We slightly abuse the notation by using ν to represent the line generated by $\nu(x, y)$. Every line $\nu \in \mathcal{D}^{+}$ induces an isometry

$$
\begin{aligned}
\iota_{\nu}: V_{5} & \rightarrow \mathbb{R} \cdot \nu \oplus\left(\nu^{\perp},\left.Q_{A_{0}}\right|_{\nu^{\perp}}\right) \simeq \mathbb{R}^{1,5} \\
\lambda & \mapsto\left(\iota_{\nu}^{+}(\lambda), \iota_{\nu}^{-}(\lambda)\right),
\end{aligned}
$$

where

$$
\iota_{\nu}^{+}(\lambda):=B_{A}(\lambda, \nu) \nu, \iota_{\nu}^{-}(\lambda):=\lambda-\iota_{\nu}^{+}(\lambda) \in \nu^{\perp}
$$

are the components of λ. Let us remark here that, if we fix $(x, y) \in \mathbb{H}_{5}$, then we get a corresponding isometry of V_{5} into $\mathbb{R}^{1,5}$ where the one dimensional positive definite subspace is the line generated by $\nu(x, y)$.

Let w^{+}(respectively w^{-}) be the orthogonal complement of the line generated by $z_{\nu^{+}}$(respectively $z_{\nu^{-}}$) in $\iota_{\nu}^{+}\left(V_{5}\right)$ (respectively $\iota_{\nu}^{-}\left(V_{5}\right)$). For $\lambda \in V_{5}$, let $\lambda_{w^{+}}$and $\lambda_{w^{-}}$be the projection of λ to w^{+}and w^{-}respectively. We define the linear map $w: V_{5} \rightarrow \mathbb{R}^{1,5}$ by $w(\lambda)=\left(\lambda_{w^{+}}, \lambda_{w^{-}}\right)$, so that w is an isomorphism from w^{+}and w^{-}to their images and w vanishes on $z_{\nu^{+}}$and $z_{\nu^{-}}$. For our special case, w^{+} is trivial, the image of w is 4-dimensional, and the first coordinate of $w(\lambda)$ is 0 .

If p is a polynomial on $\mathbb{R}^{1,5}$, we say that p has homogeneous degree $\left(m^{+}, m^{-}\right)$if it is homogeneous of degree m^{+}in the first variable and homogeneous of degree m^{-}in the last 5 variables. For h^{+}, h^{-}integers satisfying $0 \leq h^{+} \leq m^{+}$and $0 \leq h^{-} \leq m^{-}$define polynomials $p_{w, h^{+}, h^{-}}$on $w\left(V_{5}\right)$ of homogeneous degree ($m^{+}-h^{+}, m^{-}-h^{-}$) by

$$
\begin{equation*}
p\left(\iota_{\nu}(\lambda)\right)=\sum_{h^{+}, h^{-}} B_{A}\left(\lambda, z_{\nu^{+}}\right)^{h^{+}} B_{A}\left(\lambda, z_{\nu^{-}}\right)^{h^{-}} p_{w, h^{+}, h^{-}}(w(\lambda)) . \tag{3}
\end{equation*}
$$

Let $p: \mathbb{R}^{6} \rightarrow \mathbb{R}$ be the polynomial given by $p\left(x_{1}, \cdots, x_{6}\right)=-2^{-2} x_{1}^{2}$. We get a polynomial on V_{5} defined by $p \circ \iota_{\nu}$ given by the formula

$$
p\left(\iota_{\nu}(\lambda)\right)=-2^{-2} B_{A}(\lambda, \nu)^{2}=-2^{-1} y^{2} B_{A}\left(\lambda, z_{\nu^{+}}\right)^{2}
$$

By (3), we have

$$
p_{w, h^{+}, h^{-}}= \begin{cases}-2^{-1} y^{2} & \text { if }\left(h^{+}, h^{-}\right)=(2,0) \tag{4}\\ 0 & \text { otherwise }\end{cases}
$$

Note that the polynomial $p_{w, h^{+}, h^{-}}$is a constant in this case.
Let Δ be the Laplacian on $\mathbb{R}^{1,5}$. For $\tau \in \mathfrak{h},(x, y) \in \mathbb{H}_{5}$ and $\mu \in D=L^{\prime} / L$, define

$$
\theta_{\mu}^{L}(\tau, \nu(x, y), p):=\sum_{\lambda \in L+\mu}\left(\exp \left(\frac{-\Delta}{8 \pi v}\right)(p)\right)\left(\iota_{\nu}(\lambda)\right) \exp \left(2 \pi \sqrt{-1}\left(Q_{A}\left(\iota_{\nu}^{+}(\lambda)\right) \tau+Q_{A}\left(\iota_{\nu}^{-}(\lambda)\right) \bar{\tau}\right)\right)
$$

$$
\Theta_{L}(\tau, \nu(x, y), p):=\sum_{\mu \in D} e_{\mu} \theta_{\mu}^{L}(\tau, \nu(x, y), p)
$$

Proposition. 2.2. For $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{Z})$, we have

$$
\Theta_{L}\left(\frac{a \tau+b}{c \tau+d}, \nu(x, y), p\right)=|c \tau+d|^{5} \rho_{D}\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right) \Theta_{L}(\tau, \nu(x, y), p) .
$$

Let $f \in S\left(\Gamma_{0}(N), r\right), N$ square-free, be an Atkin-Lehner eigenform with eigenvalues ε_{c} for all $c \mid N$. Let $\mathcal{L}_{D}(f)$ be the $\mathbb{C}[D]$ valued modular form as defined in (2). Let $\Theta_{L}(\tau, \nu(x, y), p)$ be the theta function defined in the previous section. Define

$$
\Phi_{L}(\nu(x, y), p, f):=\int_{\operatorname{SL}_{2}(\mathbb{Z}) \backslash \mathfrak{h}}\left(\mathcal{L}_{D}(f)\right)(\tau) \overline{\Theta_{L}(\tau, \nu(x, y), p)} v^{\frac{5}{2}} \frac{d u d v}{v^{2}}
$$

Here, complex conjugation on $\mathbb{C}[D]$ is given by $\overline{e_{\mu}}:=e_{-\mu}$. In the product of Θ_{L} and $\mathcal{L}_{D}(f)$, we are taking the inner product in $\mathbb{C}[D]$ to get a \mathbb{C}-valued function. By Propositions 2.1 and 2.2 , we see that the integrand is indeed invariant under $\mathrm{SL}_{2}(\mathbb{Z})$.

Lemma. 2.3. Let $\gamma \in \Gamma=\{\gamma \in \mathcal{G}(\mathbb{Q}): \gamma L=L\}$. Then

$$
\Phi_{L}(\gamma \nu(x, y), p, f)=\Phi_{L}(\nu(x, y), p, f)
$$

We give a formula for the Fourier coefficients of $\Phi_{L}(\nu(x, y), f)$ in terms of the Fourier coefficients of f. To be precise, we provide a formula for $A(\beta)$ in terms of the Fourier coefficients $c(n)$ of f. Let us define the primitive elements of \mathcal{O}^{\prime} by

$$
\mathcal{O}_{\text {prim }}^{\prime}:=\left\{\beta \in \mathcal{O}^{\prime}: \frac{1}{n} \beta \notin \mathcal{O}^{\prime} \text { for all positive integers } n>1\right\}
$$

Proposition. 2.4. Write $\beta \in \mathcal{O}^{\prime}$ as

$$
\beta=\prod_{p \mid N} p^{u_{p}} n \beta_{0}, \quad u_{p} \geq 0, n>0, \operatorname{gcd}(n, N)=1 \text { and } \beta_{0} \in \mathcal{O}_{\text {prim }}^{\prime}
$$

Let $q_{\beta_{0}}=q_{\mu_{\beta_{0}}}$. For $p \mid N$, set

$$
\delta_{p}= \begin{cases}0 & \text { if } p \mid q_{\beta_{0}} \\ 1 & \text { if } p \nmid q_{\beta_{0}} .\end{cases}
$$

Then

$$
\begin{equation*}
A(\beta)=\sqrt{Q_{A_{0}}(\beta)} \sum_{p \mid N} \sum_{t_{p}=0}^{2 u_{p}+\delta_{p}} \sum_{d \mid n} c\left(\frac{-Q_{A_{0}}(\beta)}{\prod_{p \mid N} p^{t_{p}-1} d^{2}}\right) \prod_{p \mid N}\left(-\varepsilon_{p}\right)^{t_{p}-1} \tag{5}
\end{equation*}
$$

We can also verify the following:
Proposition. 2.5. For each representative c of the Γ-cusps, $\Phi_{L}(c \nu(x, y), p, f)$ has no constant term. Namely, our lifts $\Phi_{L}(\nu(x, y), p, f)$ are cuspidal.

As a result of this we have an enough knowledge of the Foureir expansion of our theta lifts. From Lemma 2.3 and the above Fourier expansion (compare to (1)), we get
Theorem. 2.6. $\Phi_{L}(\nu(x, y), f)$ is a cusp form belonging to $\mathcal{M}(\Gamma, \sqrt{-1} r)$.

3 HECKE THEORY

3 Hecke Theory

3.1 Adelization of automorphic forms

To study the action of the Hecke operators on our cusp forms constructed by the lift, we need the adelic as well as non-adelic treatment of automorphic forms.

For $h \in \mathcal{H}(\mathbb{A})$, we have the decomposition $h=a u^{-1}$ with $(a, u) \in \mathrm{GL}_{4}(\mathbb{Q}) \times\left(\Pi_{p<\infty} \mathrm{SL}_{4}\left(\mathbb{Z}_{p}\right) \times \mathrm{SL}_{4}(\mathbb{R})\right)$. Let $\mathcal{O}_{h}:=\left(\Pi_{p<\infty} h_{p} \mathbb{Z}_{p}^{4} \times \mathbb{R}^{4}\right) \cap \mathbb{Q}^{4}$ for $h=\left(h_{v}\right)_{v \leq \infty} \in \mathcal{H}(\mathbb{A})$. Then, we have $\mathcal{O}_{h}=a \mathcal{O}$ (c.f. [7, Section 3.3]). The dual lattice \mathcal{O}_{h}^{\prime} is then equal to $a^{-1} \mathcal{O}^{\prime}$.

To obtain an adelic Fourier expansion, let $f \in S\left(\Gamma_{0}(N), r\right)$ be a Maass cusp form with the Fourier expansion $f(z)=\sum_{n \neq 0} c(n) W_{0, \frac{\sqrt{-1} r}{2}}(4 \pi|n| y) e(x)$. Let Λ be the standard additive character of \mathbb{A} / \mathbb{Q}. We introduce the following Fourier series

$$
\begin{equation*}
F_{f}\left(n(x) a_{y} k g\right):=\sum_{\lambda \in \mathbb{Q}^{4} \backslash\{0\}} F_{f, \lambda}\left(n(x) a_{y} k g\right) \quad \forall(x, y, k, g) \in \mathbb{A}^{4} \times \mathbb{R}_{+}^{\times} \times K_{\infty} \times \mathcal{G}\left(\mathbb{A}_{f}\right) \tag{6}
\end{equation*}
$$

with

$$
F_{f, \lambda}\left(n(x) a_{y} k g\right):=A_{\lambda}(g) y^{2} K_{\sqrt{-1} r}\left(4 \pi|\lambda|_{A} y\right) \Lambda\left({ }^{t} \lambda A x\right),
$$

where $A_{\lambda}(g)$ is defined by the following conditions:

$$
\begin{aligned}
A_{\lambda}\left(\left(\begin{array}{lll}
1 & & \\
& h & \\
& & 1
\end{array}\right)\right) & := \begin{cases}\sqrt{Q_{A_{0}}(\lambda)} \sum_{p \mid N} \sum_{t_{p}=0}^{2 u_{p}+\delta_{p}} \sum_{d \mid n} c\left(\frac{-Q_{A_{0}}(\lambda)}{\prod_{p \mid N}^{p^{t_{p}-1} d^{2}}}\right) \prod_{p \mid N}\left(-\varepsilon_{p}\right)^{t_{p}-1} & \left(\lambda \in \mathcal{O}_{h}^{\prime}\right) \\
0 & \left(\lambda \in \mathbb{Q}^{4} \backslash \mathcal{O}_{h}^{\prime}\right)\end{cases} \\
A_{\lambda}\left(\left(\begin{array}{lll}
s & & \\
& h & \\
& & s^{-1}
\end{array}\right)\right) & :=\|s\|_{\mathbb{A}}^{2} A_{\|s\|_{\mathbb{A}}}{ }^{-1}\left(\left(\begin{array}{lll}
1 & & \\
& & \\
& & 1
\end{array}\right)\right) \\
A_{\lambda}(n(x) g k) & :=\Lambda\left({ }^{t} \lambda A x\right) A_{\lambda}(g) \quad \forall(x, g, k) \in \mathbb{A}_{f}^{4} \times \mathcal{G}\left(\mathbb{A}_{f}\right) \times K_{f} .
\end{aligned}
$$

Here

1. u_{p}, δ_{p} and n are as defined in Proposition 2.4 for $\beta=h^{-1} \lambda$.
2. $(s, h) \in \mathbb{A}_{f}^{\times} \times \mathcal{H}\left(\mathbb{A}_{f}\right)$ and $\|s\|_{\mathbb{A}}$ denotes the idele norm of s.

For $r \in \mathbb{C}$, let $\mathcal{M}(\mathcal{G}(\mathbb{A}), r)$ denote the space of smooth functions F on $\mathcal{G}(\mathbb{A})$ satisfying the following conditions:

1. $\Omega \cdot F=\frac{1}{8}\left(r^{2}-4\right) F$, where Ω is the Casimir operator defined in [7].
2. For any $(\gamma, g, k)=\mathcal{G}(\mathbb{Q}) \times \mathcal{G}(\mathbb{A}) \times K$, we have $F(\gamma g k)=F(g)$.
3. F is of moderate growth.

Note that $F \in \mathcal{M}(\mathcal{G}(\mathbb{A}), r)$ has the Fourier expansion

$$
F(g)=\sum_{\lambda \in Q^{4}} F_{\lambda}(q), \quad F_{\lambda}(g):=\int_{\mathbb{A}^{4} / \mathbb{Q}^{4}} F(n(x) g) \Lambda\left({ }^{t} \lambda A x\right) d x
$$

where $d x$ is the invariant measure normalized so that the volume of $\mathbb{A}^{4} / \mathbb{Q}^{4}$ is one. The adelic function F is called a cusp form if $F_{0} \equiv 0$ in the Fourier expansion. By the argument similar to [7, Theorem 3.3] we deduce the following proposition from the Fourier expansion discussed in Section 2.2.

Proposition. 3.1. The adelic function F_{f} is a cusp form belonging to $\mathcal{M}(\mathcal{G}(\mathbb{A}), \sqrt{-1} r)$

3 HECKE THEORY

3.2 Sugano Theory

We will show that if f is a Hecke eigenform then F_{f} is an Hecke eigenform by using the non-archimedean local theory of Sugano [16, Section 7]. For a prime p, let $F=\mathbb{Q}_{p}$ with the ring of integers \mathbb{Z}_{p}. Let $n_{0} \leq 4$ and let $S_{0} \in M_{n_{0}}(F)$ be an anisotropic even symmetric matrix of degree n_{0}. For the $m \times m$ matrix $J_{m}=\left(._{1} \cdot{ }^{1}\right)$, let G_{m} denote the group of F-valued points of the orthogonal group of degree $2 m+n_{0}$, defined by the matrix $Q=\left({ }_{J_{m}} S_{0}^{J_{m}}\right)$. Denote by $L_{m}:=\mathbb{Z}_{p}^{2 m+n_{0}}$ the maximal lattice with respect to Q_{m} and let K_{m} be the maximal compact open subgroup of G_{m} defined by the lattice

$$
\begin{equation*}
K_{m}:=\left\{g \in G_{m} \mid g L_{m}=L_{m}\right\} \tag{7}
\end{equation*}
$$

Let \mathcal{H}_{m} be Hecke algebra for $\left(G_{m}, K_{m}\right)$ and define $C_{m}^{(r)} \in \mathcal{H}_{m}$ to be the double cosets $K_{m} c_{m}^{(r)} K_{m}$, where

$$
c_{m}^{(r)}:=\operatorname{diag}\left(p, \ldots, p, 1, \ldots 1, p^{-1}, \ldots, p^{-1}\right) \in G_{m}
$$

which is a diagonal matrix whose first r and last r entries are p and p^{-1} respectively. By [16, Section 7], $\left\{C_{m}^{(r)} \mid 1 \leq r \leq m\right\}$ forms generators of the Hecke algebra \mathcal{H}_{m}.

We embed G_{i} for $i \leq m$ in G_{m} as a subgroup by the middle $\left(2 i+n_{0}\right) \times\left(2 i+n_{0}\right)$ block. We regard K_{i} as subgroup of K_{m} similarly. The invariant measure of G_{m} is normalized so that the volume of K_{i} is one for each $i \leq m$.

For a prime $p \nmid N$, we have $n_{0}=0$ and $m=3$. In this case, the lattice L_{3} is self-dual. For a non-negative integer k, let

$$
\begin{equation*}
f_{k, j}:=\frac{p^{j-1}\left(p^{k-j+1}-1\right)\left(p^{k-j}+1\right)}{p^{j}-1} \quad(\forall j \in \mathbb{Z} \backslash\{0\}), \tag{8}
\end{equation*}
$$

a special case of $[16,7.11]$ for $n_{0}=\delta=0$. For positive integers k, r, set $R_{k}^{(r)}:=K_{k} /\left(K_{k} \cap c_{k}^{(r)} K_{k}\left(c_{k}^{(r)}\right)^{-1}\right)$, and let $\left|R_{k}^{(r)}\right|$ denote the cardinality of $R_{k}^{(r)}$. We have

$$
\left|R_{k}^{(r)}\right|=\left\{\begin{array}{lr}
\Pi_{j=1}^{r} f_{k, j} & (1 \leq r \leq k) \tag{9}\\
1 & (r=0)
\end{array}\right.
$$

Following the methods in Section 4 of [7], we get the following theorem (essentially Theorem 4.11 of [7] for $n=1 / 2$).

Theorem. 3.2. Suppose that f is a Hecke eigenform and let λ_{p} be the Hecke eigenvalue of f at $p<\infty$ with $p \nmid N$. Then the following holds.
i) F_{f} is a Hecke eigenform.
ii) Let μ_{i} be the Hecke eigenvalue with respect to the Hecke operator $C_{3}^{(i)}$ for $1 \leq i \leq 3$. We have

$$
\begin{aligned}
& \mu_{1}=p^{2}\left(\lambda_{p}^{2}-2\right)+p f_{2,1}=p^{2}\left(\lambda_{p}^{2}+p+p^{-1}\right) \\
& \mu_{i}=\left|R_{2}^{(i-1)}\right|\left(\mu_{1}-\frac{p^{i-1}-1}{p^{i}-1} f_{3,1}\right),(i=2,3)
\end{aligned}
$$

3 HECKE THEORY

3.3 The case $p \mid N$

When $p \mid N$, we have $m=1$ and $n_{0}=4$. Hence, the Hecke algebra \mathcal{H}_{1} is generated by $C_{1}^{(1)}$ which is the double coset $K_{1} c_{1}^{(1)} K_{1}$ as defined in (3.2). Let $n(x) \in G_{1}$ be as defined in Section 1 and let $(t, g):=\operatorname{diag}\left(t, g, t^{-1}\right) \in G_{1}$ for $t \in \mathbb{Q}_{p}^{\times}$and $g \in G_{0}$.
Lemma. 3.3.

$$
C_{1}^{(1)}=\bigsqcup_{x \in \mathfrak{X}_{1}}\left(p, 1_{4}\right) n(x) K_{1} \sqcup \bigsqcup_{x \in \mathfrak{X}_{3}}\left(1,1_{4}\right) n(x) K_{1} \sqcup\left(p^{-1}, 1_{4}\right) K_{1}
$$

where

$$
\mathfrak{X}_{1}=\left\{x \in p^{-1} \mathcal{O} / \mathcal{O}\right\}, \mathfrak{X}_{3}=\left\{x \in\left(\mathcal{O}^{\prime}-\mathcal{O}\right) / \mathcal{O}\right\} .
$$

We can now describe the action of $C_{1}^{(1)}$ with the invariant measure $d x$ of G_{1} normalized so that the volume $\int_{K_{1}} d x=1$. Define

$$
\left(C_{1}^{(1)} \cdot \Phi\right)(g):=\int_{G_{1}} \operatorname{char}_{K_{1} c_{1}^{(1)} K_{1}}(x) \Phi(g x) d x
$$

for $\Phi \in \mathcal{M}(\mathcal{G}(\mathbb{A}), r)$.
The following proposition derives the action of $C_{1}^{(1)}$ on Fourier coefficients of Φ.
Proposition. 3.4. Let $\Phi \in \mathcal{M}(\mathcal{G}(\mathbb{A}), \sqrt{-1} r)$ be a lift. Then

$$
\left(C_{1}^{(1)} \cdot \Phi\right)\left(n(x) a_{y}\right)=\sum_{\lambda \in \mathcal{\mathcal { O } ^ { \prime } \backslash \{ 0 \}}} A_{\lambda}^{\prime}(1) y^{2} K_{\sqrt{-1} r}\left(4 \pi \sqrt{Q_{A_{0}}(\lambda)} y\right) \Lambda\left({ }^{t} \lambda A_{0}(x)\right)
$$

where

$$
A_{\lambda}^{\prime}(1)= \begin{cases}p^{2} A_{p \lambda}(1)-A_{\lambda}(1)+p^{2} A_{\lambda}(1)+p^{2} A_{p^{-1} \lambda}(1) & \text { if } \lambda \in p \mathcal{O}^{\prime} \backslash\{0\} \\ p^{2} A_{p \lambda}(1)-A_{\lambda}(1)+p^{2} A_{\lambda}(1) & \text { if } \lambda \in \mathcal{O} \backslash p \mathcal{O}^{\prime} \\ p^{2} A_{p \lambda}(1)-A_{\lambda}(1) & \text { if } \lambda \in \mathcal{O}^{\prime} \backslash \mathcal{O}\end{cases}
$$

To write the action of the Hecke operator in terms of Fourier coefficients given in Proposition 2.4, we write $A_{\lambda}(1)=A(\beta)$ where $\beta=\prod_{p \mid N} p^{u_{p}} n \beta_{0}$ as in the proposition. Note, for $\lambda \in \mathcal{O}^{\prime}$ and $\beta \in \mathcal{O}^{\prime}$ the conditions for $A_{\lambda}^{\prime}(1)$ on λ from Proposition 3.4 above translate to conditions on β as follows:

$$
\begin{aligned}
\lambda \in p \mathcal{O}^{\prime} \backslash\{0\} & \Longleftrightarrow u_{p} \geq 1 ; \\
\lambda \in \mathcal{O} \backslash p \mathcal{O}^{\prime} & \Longleftrightarrow u_{p}=0, \delta_{p}=1 ; \\
\lambda \in \mathcal{O}^{\prime} \backslash \mathcal{O} & \Longleftrightarrow u_{p}=0, \delta_{p}=0 .
\end{aligned}
$$

Then, as

$$
A_{p \lambda}(1)=A(p \beta) ; \quad A_{p^{-1} \lambda}(1)=A\left(p^{-1} \beta\right)
$$

we can rewrite the $A_{\lambda}^{\prime}(1)$ in terms of β as

$$
A_{\lambda}^{\prime}(1)= \begin{cases}p^{2} A(p \beta)+\left(p^{2}-1\right) A(\beta)+p^{2} A\left(p^{-1} \beta\right) & \text { if } u_{p} \geq 1 \tag{10}\\ p^{2} A(p \beta)+\left(p^{2}-1\right) A(\beta) & \text { if } u_{p}=0, \delta_{p}=1 \\ p^{2} A(p \beta)-A(\beta) & \text { if } u_{p}=0, \delta_{p}=0\end{cases}
$$

Let $f \in S\left(\Gamma_{0}(N), r\right)$ be a new form with Hecke eigenvalue λ_{p} for the operator defined by the action of the double $\operatorname{coset} \Gamma_{0}(N)\left[{ }^{1}{ }_{p}\right] \Gamma_{0}(N)$ at prime p. Assuming it is an Atkin Lehner eigenform with eigenvalue ϵ_{p}, it can be shown that

$$
\begin{equation*}
\lambda_{p}=-\epsilon_{p} \tag{11}
\end{equation*}
$$

4 NON-VANISHING OF THE LIFT

Using the single coset decomposition ([6, Lemma 9.14])

$$
\Gamma_{0}(N)\left[\begin{array}{ll}
1 & \\
& p
\end{array}\right] \Gamma_{0}(N)=\bigsqcup_{b=0}^{p-1} \Gamma_{0}(N)\left[\begin{array}{ll}
1 & b \\
& p
\end{array}\right]
$$

we have

$$
\sum_{b=0}^{p-1} f\left(\frac{z+b}{p}\right)=\lambda_{p} f(z)
$$

In terms of Fourier coefficients, using (11), we get

$$
c(p m)=\frac{\lambda_{p}}{p} c(m)=\frac{-\epsilon_{p}}{p} c(m) \quad \forall m \in \mathbb{Z}
$$

The discussion above and the explicit formula for Fourier coefficients of F_{f} provide us with enough ingredients to show the following:

Theorem. 3.5. Let $f \in S\left(\Gamma_{0}(N), r\right)$ be a new form and eigenfunction of the Atkin Lehner involution with eigenvalue ϵ_{p} at each $p \mid N$. Let F_{f} be the lift of f defined in (6). Then F_{f} is a Hecke eigenform with

$$
C_{1}^{(1)} \cdot F_{f}=\left(p^{3}+p^{2}+p-1\right) F_{f} .
$$

4 Non-vanishing of the lift

In this section, we will obtain the non-vanishing of the map $f \rightarrow F_{f}$ constructed in Section 2.2. Let us start by observing that the proof of Lemma 4.5 of [8] can be used to conclude that there exists $M>0$ such that the Fourier coefficient $c(-M)$ of f is non-zero. If f is a Hecke eigenform, then this implies that $c(-1) \neq 0$. Using the explicit formula (5) for the Fourier coefficients for F_{f}, we can see that in this case we get $A(1) \neq 0$. Hence, the map $f \rightarrow F_{f}$ is injective when restricted to Hecke eigenforms f. We will now prove the injectivity for all f.

Consider a basis of Hecke eigenforms $\left\{f_{1}, \cdots, f_{k}\right\}$ of $S\left(\Gamma_{0}(N), r\right)$. Since this is a finite set, we can find a prime $p \nmid N$ such that the Hecke eigenvalues $\lambda_{p}^{(i)}$ of f_{i} for $i=1, \cdots k$ satisfy $\left|\lambda_{p}^{(i)}\right| \neq\left|\lambda_{p}^{(j)}\right|$ for all $i \neq j$. This follows from Corollary 4.1.3 of [12]. Let F_{1}, \cdots, F_{k} be the lifts of f_{1}, \cdots, f_{k}. By Theorem 3.2, we know that F_{i} are Hecke eigenforms with eigenvalues $\mu_{p, 1, i}=p^{2}\left(\left(\lambda_{p}^{(i)}\right)^{2}+p+p^{-1}\right)$. Because of the choice of p, we again see that $\mu_{p, 1, i} \neq \mu_{p, 1, j}$ for all $i \neq j$. We then verify the non-vanishing of our theta lifts by an elementary argument of the linear algebra though there is the well known approach of the inner product formula initiated by Rallis [11].

Theorem. 4.1. The map $f \rightarrow F_{f}$ is an injective linear map on $S\left(\Gamma_{0}(N), r\right)$.

5 CAP representation associated to the lift

Assume that $f \in S\left(\Gamma_{0}(N), r\right)$ is a newform, and let $F_{f} \in \mathcal{M}(\mathcal{G}(\mathbb{A}), \sqrt{-1} r)$ be the corresponding lift defined in (6). Let π_{F} be the representation of $\mathcal{G}(\mathbb{A})$ generated by F_{f}.

5.1 Local components of the representation

5.1.1 The archimedean component

Let

$$
N_{\infty}:=\left\{n(x) \mid x \in \mathbb{R}^{4}\right\}, \quad A_{\infty}:=\left\{a_{y} \mid y \in \mathbb{R}^{+}\right\}
$$

5 CAP REPRESENTATION ASSOCIATED TO THE LIFT

for $n(x)$ and a_{y} as defined in Section 1. Let $\delta_{s}: A_{\infty} \rightarrow \mathbb{C}^{\times}$be a quasi-character given by $\delta_{s}(y)=y^{s}$ for a parameter $s \in \mathbb{C}$. We can trivially extend δ_{s} to the parabolic subgroup P_{∞} with Langlands decomposition $P_{\infty}=N_{\infty} A_{\infty} M_{\infty}$ for $M_{\infty}:=\left\{\left.\binom{{ }^{1} m_{1}}{{ }_{1}} \right\rvert\, m \in \mathcal{H}(\mathbb{R})\right\}$. We define the normalized parabolic induction induced from δ_{s} by $I_{P_{\infty}}^{G}\left(\delta_{s}\right)$. Proposition 5.5 of [7] for $N=4$ gives us the following:

Proposition. 5.1. The archimedean component of π_{F} is isomorphic to $I_{P_{\infty}}^{G_{\infty}}\left(\delta_{\sqrt{-1} r}\right)$ as admissible G_{∞} module, and irreducible. If r is real, namely, f satisfies the Selberg conjecture on the minimal eigenvalue of the hyperbolic Laplacian, π_{F} is tempered at the archimedean place.

Using Theorem 3.1 of [9] and Proposition 3.1, we see that π_{F} is irreducible. Since F_{f} is a cusp form, we can conclude that π_{F} is an irreducible, cuspidal representation of $\mathcal{G}(\mathbb{A})$. Hence, we can decompose $\pi_{F}=\otimes_{v}^{\prime} \pi_{v}$, where π_{v} is an irreducible, admissible representation of $\mathcal{G}\left(\mathbb{Q}_{v}\right)$. We have obtained the description of π_{∞} above. Next we will describe π_{p} for finite primes p.

5.1.2 Non-archimedean component: $p \nmid N$ case

Let p be a prime with $p \nmid N$. Let $\chi_{1}, \chi_{2}, \chi_{3}$ be unramified characters of \mathbb{Q}_{p}^{\times}. We get a character χ of the split torus of $\mathcal{G}\left(\mathbb{Q}_{p}\right)$ via

$$
\operatorname{diag}\left(a_{1}, a_{2}, a_{3}, a_{3}^{-1}, a_{2}^{-1}, a_{1}^{-1}\right) \rightarrow \chi_{1}\left(a_{1}\right) \chi_{2}\left(a_{2}\right) \chi_{2}\left(a_{3}\right)
$$

Extend this to a character of the minimal parabolic subgroup of $\mathcal{G}\left(\mathbb{Q}_{p}\right)$ by setting it to be trivial on the unipotent radical. By unramified principal series representation of $\mathcal{G}\left(\mathbb{Q}_{p}\right)$ we mean the normalized parabolic induction $I(\chi)$ of $\mathcal{G}\left(\mathbb{Q}_{p}\right)$ induced from χ, the character of the minimal parabolic group.

The argument of the proof of [7, Theorem 5.6] works also for our setting. From Theorem 3.2 we thus deduce the following:

Proposition. 5.2. For primes $p \nmid N$, the local component π_{p} of π_{F} is the spherical constituent of the unramified principal series representation $I(\chi)$ of $\mathcal{G}\left(\mathbb{Q}_{p}\right)$ where the character χ corresponds to the three unramified characters $\chi_{1}, \chi_{2}, \chi_{3}$ given by

$$
\chi_{1}\left(\varpi_{p}\right)=\left(\frac{\lambda_{p}+\sqrt{\lambda_{p}^{2}-4}}{2}\right)^{2}, \chi_{2}\left(\varpi_{p}\right)=p, \chi_{3}\left(\varpi_{p}\right)=1 .
$$

Here, ϖ_{p} is an uniformizer in \mathbb{Q}_{p}. Hence, π_{p} is non-tempered for every $p \nmid N$.

5.1.3 Non-archimedean component: $p \mid N$ case

Let p be a prime with $p \mid N$. For an unramified character χ of \mathbb{Q}_{p}^{\times}, we get a character of the torus of $\mathcal{G}\left(\mathbb{Q}_{p}\right)$ via

$$
\operatorname{diag}\left(y, 1,1,1,1, y^{-1}\right) \rightarrow \chi(y)
$$

We can extend this to a character of the maximal parabolic subgroup P by setting it to be trivial on the unipotent radical. The modulus character is given by

$$
\delta_{P}\left(a_{y} n(x)\right)=|y|^{4}
$$

Define the normalized unramified principal series $I(\chi)$ consisting of all smooth functions $f: \mathcal{G}\left(\mathbb{Q}_{p}\right) \rightarrow \mathbb{C}$ satisfying

$$
f\left(a_{y} n(x) g\right)=|y|^{2} \chi(y) f(g) \quad \text { for all } y \in \mathbb{Q}_{p}^{\times}, x \in \mathbb{Q}_{p}^{4}, g \in \mathcal{G}\left(\mathbb{Q}_{p}\right)
$$

5 CAP REPRESENTATION ASSOCIATED TO THE LIFT

If f_{1} is an unramified vector in $I(\chi)$, then the Hecke operator $C_{1}^{(1)}$ acts on f_{1} by a constant. To obtain the constant, using Lemma 3.3, we see that

$$
\begin{align*}
\left(C_{1}^{(1)} f_{1}\right)(1) & =\int_{\mathcal{G}\left(\mathbb{Q}_{p}\right)} \operatorname{char}_{K_{1} c_{1}^{(1)} K_{1}}(x) f_{1}(x) d x \\
& =\sum_{x \in \mathfrak{X}_{1}} f_{1}\left(a_{p} n(x)\right)+\sum_{x \in \mathfrak{X}_{1}} f_{1}(n(x))+f_{1}\left(a_{p^{-1}}\right) \\
& =p^{4}|p|^{2} \chi(p) f_{1}(1)+\left(p^{2}-1\right) f_{1}(1)+\left|p^{-1}\right|^{2} \chi\left(p^{-1}\right) f_{1}(1) \\
& =\left(p^{2} \chi(p)+p^{2}-1+p^{2} \chi\left(p^{-1}\right)\right) f_{1}(1) . \tag{12}
\end{align*}
$$

From this we can deduce the following:
Proposition. 5.3. Let $p \mid N$. The local representation π_{p} is the spherical constituent of the unramified principal series $I(\chi)$ with $\chi\left(\varpi_{p}\right)=p^{ \pm 1}$. The representation π_{p} is non-tempered.

5.2 Cuspidal representation generated by F_{f} and its CAP property

Following the description of the local components, we can now state the result for the explicit determination of the cuspidal representation generated by F_{f}.

Theorem. 5.4. Let f be a new form in $S\left(\Gamma_{0}(N), r\right)$ and let π_{F} be the cuspidal representation generated by F_{f}. Then,
i) π_{F} is irreducible and decomposes into the restricted tensor product $\pi_{F}=\otimes_{v \leq \infty}^{\prime} \pi_{v}$ of irreducible admissible representations π_{v} of $\mathcal{G}\left(\mathbb{Q}_{v}\right)$.
ii) For $v=p<\infty$, if $p \nmid N$ then π_{p} is the spherical constituent of the unramified principal series representation of \mathcal{G}_{p} with the Satake parameters

$$
\operatorname{diag}\left(\left(\frac{\lambda_{p}+\sqrt{\lambda_{p}^{2}-4}}{2}\right)^{2}, p, 1,1, p^{-1},\left(\frac{\lambda_{p}+\sqrt{\lambda_{p}^{2}-4}}{2}\right)^{-2}\right)
$$

iii) For $v=p<\infty$, if $p \mid N$ then π_{p} is the spherical constituent of the parabolic induction $I(\chi)$ of $\mathcal{G}\left(\mathbb{Q}_{p}\right)$ defined by

$$
\chi(p)=p
$$

iv) For every finite prime p, π_{p} is non-tempered. Suppose that the Selberg conjecture holds for f, namely r is a real number for the Laplace eigenvalue for f. Then π_{∞} is tempered.

Proof. This follows from Proposition 5.1, Proposition 5.2, Proposition 5.3 and Theorem 3.1 of [9].
We now review the definition of a CAP representation from [8, Definition 6.6].
Definition. 5.5. Let G_{1} and G_{2} be two reductive algebraic groups over a number field F such that $G_{1, v} \simeq G_{2, v}$ for almost all places v, where $G_{i, v}=G_{i}\left(F_{v}\right)(i=1,2)$ is the group of F_{v}-points of G_{i} for the local field F_{v} at v. Let P_{2} be a parabolic subgroup of G_{2} with Levi decomposition $P_{2}=M_{2} N_{2}$. An irreducible cuspidal automorphic representation $\pi=\otimes_{v}^{\prime} \pi_{v}$ of $G_{1}(\mathbb{A})$ is called cuspidal associated to parabolic (CAP) P_{2}, if there exists an irreducible cuspidal automorphic representation σ of M_{2} such that $\pi_{v} \simeq \pi_{v}^{\prime}$ for almost all places v, where $\pi^{\prime}=\otimes_{v}^{\prime} \pi_{v}^{\prime}$ is an irreducible constituent of $\operatorname{Ind}_{P_{2}(\mathbb{A})}^{G_{2}(\mathbb{A})}(\sigma)$.

5 CAP REPRESENTATION ASSOCIATED TO THE LIFT

For our case $G_{1}=\mathcal{G}=\mathrm{O}(1,5)$ and $G_{2}=\mathrm{O}(3,3)$. We have $G_{1, p}=G_{2, p}$ for all $p \nmid N$. Let σ be a cuspidal representation of GL_{2} generated by a Maass cusp form f with the trivial central character. Assume that f is a new form. We want to regard the representation $|\operatorname{det}|_{\mathbb{A}}^{-1 / 2} \sigma \times|\operatorname{det}|_{\mathbb{A}}^{1 / 2} \sigma$ of $\mathrm{GL}_{2}(\mathbb{A}) \times \mathrm{GL}_{2}(\mathbb{A})($ cf. [8, Section 6.2]) as the representation of $\mathbb{A}^{\times} \times \mathrm{O}(2,2)(\mathbb{A})$, which is isomorphic to a Levi subgroup of a maximal parabolic subgroup $P(\mathbb{A})$ of $\mathrm{O}(3,3)(\mathbb{A})$. Recall that our previous work [8] introduced the parabolic induction from the representation $|\operatorname{det}|_{\mathbb{A}}^{-1 / 2} \sigma \times|\operatorname{det}|_{\mathbb{A}}^{1 / 2} \sigma$ of $\mathrm{GL}_{2}(\mathbb{A}) \times \mathrm{GL}_{2}(\mathbb{A})$ to discuss the CAP property of our lifting for the case of $d_{B}=2$ in the setting of GL_{2} over B. In the present setting we consider the parabolic induction from the aforementioned representation of $\mathbb{A}^{\times} \times \mathrm{O}(2,2)(\mathbb{A})$ instead and can show that π_{F} is a CAP representation attached to this parabolic induction.

To see this we start with recalling the following two isomorphisms

$$
\mathrm{GL}_{2} \times \mathrm{GL}_{2} /\left\{(z, z) \mid z \in \mathrm{GL}_{1}\right\} \simeq \operatorname{GSO}(2,2), \quad \mathrm{GO}(2,2)=\mathrm{GSO}(2,2) \rtimes\langle t\rangle
$$

We now note that the representation $|\operatorname{det}|_{\mathbb{A}}^{-1 / 2} \sigma \times|\operatorname{det}|_{\mathbb{A}}^{1 / 2} \sigma$ of $\mathrm{GL}_{2}(\mathbb{A}) \times \mathrm{GL}_{2}(\mathbb{A})$ can be regarded as the representation of $\operatorname{GSO}(2,2)(\mathbb{A})$ since σ has the trivial central character. We construct a representation of $\mathrm{GO}(2,2)(\mathbb{A})$ by considering its induced representation from $\operatorname{GSO}(2,2)(\mathbb{A})$ to $\mathrm{GO}(2,2)(\mathbb{A})$. Furthermore consider the pull-back of the representation of $G O(2,2)(\mathbb{A})$ to $\mathbb{A}^{\times} \times O(2,2)(\mathbb{A})$ via the surjection $\mathbb{A}^{\times} \times \mathcal{O}(2,2)(\mathbb{A}) \rightarrow \mathrm{GO}(2,2)(\mathbb{A})$. We denote the resulting representation simply by σ and introduce the normalized parabolic induction $\operatorname{Ind}_{P(\mathbb{A})}^{\mathrm{O}(3,3)(\mathbb{A})} \sigma$, where P is the maximal parabolic subgroup with Levi subgroup isomorphic to $\mathrm{GL}(1) \times \mathrm{O}(2,2)$ and the abelian unipotent radical. Then we have the following:

Proposition. 5.6. Let π_{F} be as above and recall that we have assumed that the Maass cusp form f is a new form. The cuspidal representation π_{F} is CAP to the parabolic induction $\operatorname{Ind}_{P(\mathbb{A})}^{O(3,3)(\mathbb{A})} \sigma$.

5.3 Global standard L-function for F_{f}

We define the standard L-function of the orthogonal group \mathcal{G}, following Sugano [16, Section 7, $(7,6)]$. The local factors for places $p \nmid d_{B}$ are well known. We find them in [16, Section 7, $\left.(7,6)\right]$. For places $p \mid d_{B}$, the case of $\left(n_{0}, \partial\right)=(4,2)$ in $[16$, Section $7(7.6)]$ is valid. We define the standard L-function by the Euler product over all finite primes. Putting the local datum of Theorem 5.4 (ii) and (iii) together, we have the following result with the help of Y. Jo [5, Theorem 5.7] and Gelbert-Jacquet [3]:

Proposition. 5.7. Suppose that a Maass cusp form f is a new form in $S\left(\Gamma_{0}(N), r\right)$ and recall that σ denotes the cuspidal representation of $\mathrm{GL}_{2}(\mathbb{A})$ generated by f. Let $\Pi=\operatorname{Ind}_{P_{2,2}(\mathbb{A})}^{G L_{4}(\mathbb{A})}\left(|\operatorname{det}|_{\mathbb{A}}^{-1 / 2} \sigma \times|\operatorname{det}|_{\mathbb{A}}^{1 / 2} \sigma\right)$, with the parabolic subgroup $P_{2,2}$ of GL_{4} with Levi part $\mathrm{GL}_{2} \times \mathrm{GL}_{2}$. By $L\left(F_{f}, \mathrm{std}, s\right)$ (respectively $L(\Pi, \wedge, s)$) we denote the standard L-function for the lift F_{f} (respectively exterior square L-function of Π). We have

$$
L\left(F_{f}, \operatorname{std}, s\right)=L(\Pi, \wedge, s)=L\left(\operatorname{sym}^{2}(f), s\right) \zeta(s-1) \zeta(s) \zeta(s+1)
$$

where the Riemann zeta function $\zeta(s)$ is defined by the Euler product over all finite primes.
Remark. 5.8. The above coincidence of the two L-functions is expected in the framework of the Langlands L-functions (for instance see [2, Section 4]). We remark that our example is given for non-generic representations while the case of generic representations is known to be proved by Shahidi's theory [15, Theorem 3.5] (see [2, Lemma 3.5]).

REFERENCES

References

[1] Borcherds, R. E.: Automorphic forms with singularities on Grassmanians. Invent. Math., 132 (1998), 491-562.
[2] Gan, W. T. and Takeda, S.: Local Langlands conjecture for GSp(4), Ann. of Math., 173 (2011), no. 3, 1841-1882.
[3] Gelbert S. and Jacquet H.: A relation between automorphic representations of $G L(2)$ and $G L(3)$ Ann. Sci. Ecole Normale Sup. (4) 11 (1978), no. 4, 471-542.
[4] Iwaniec, H.: Spectral methods of automorphic forms, Second edition. American Mathematical Society, Revista Matematica Iberoamericana (2002).
[5] Jo Y.: Derivatives and exceptional poles of the local exterior square L-function for $G L_{m}$. Math. Z. 294 (2020), no. 3-4, 1687-1725.
[6] Knapp, A.: Elliptic Curves. (MN-40), Volume 40. Princeton University Press, 1992.
[7] Li, Y., Narita, H. and Pitale, A.: An explicit construction of non-tempered cusp forms on $O(1,8 n+1)$. Ann. Math. Quebec, 44 (2020), no. 2, 349-384
[8] Muto, M., Narita, H., and Pitale, A.: Lifting to $G L(2)$ over a division quaternion algebra and an explicit construction of CAP representations. Nagoya Math. J., 222, (2016) issue 01, 137-185.
[9] Narita, H., Pitale, A., and Schmidt, R.: Irreducibility criteria for local and global representations. Proc. Am. Math. Soc., 141, (2013) no. 1, 55-63.
[10] Narita, H., Pitale, A., and Wagh S.: An explicit lifting construction of CAP forms on $O(1,5)$. arXive 2203.04853.
[11] Rallis, S.: Injectivity properties of lifting associated to Weil representations, Compositio Math., 52 (1984), no. 2, 139-169.
[12] Ramakrishnan, D.: Modularity of the Rankin-Selberg L-series, and multiplicity one for SL(2). Ann. of Math. (2) 152 (2000), no. 1, 45-111
[13] Scheithauer, N.: On the classification of automorphic products and generalized Kac-Moody algebras. Invent. Math., 164 (2006), no. 3, 641-678
[14] Schwagenscheidt, M., Volz, F.: Lifting new forms to vector valued modular forms for the Weil representation. Int. J. Number Theory, 11 (2015), no. 7, 2199-2219.
[15] Shahidi F.: A proof of Langlands' conjecture on Plancherel measures; complementary series for p-adic groups, Ann. of Math. 132 (1990), no. 2, 273-330.
[16] Sugano, T.: Jacobi forms and the theta lifting. Commentarii Math. Univ. St. Pauli, 44 (1995), no.1, 1-58.

REFERENCES

Hiro-aki Narita
Department of Mathematics
Faculty of Science and Engineering
Waseda University
3-4-1 Ohkubo, Shinjuku, Tokyo 169-8555, Japan
E-mail address: hnarita@waseda.jp
Ameya Pitale
Department of Mathematics
University of Oklahoma
Norman, Oklahoma, USA
E-mail address: apitale@ou.edu
Siddhesh Wagh
Department of Mathematics
Bar Ilan University
Ramat Gan, Israel
E-mail address: siddesw@biu.ac.il

