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ON  FINITE LENGTH SMOOTH REPRESENTATIONS OF p-ADIC 
GENERAL LINEAR GROUPS 

MAXIM GUREVICH 

ABSTRACT. We survey qualitative aspects of the study of the decomposition of finite-
length smooth representations of the groups Gム(F),for a p--adic field F, with emphasis 
on techniques that have been developing in the recent years. We state general goals 
and questions on decomposition of parabolic induction of irreducible representations, and 
review applications for branching laws such as the local Gan-Gross-Prasad program. 
We give a flavor of the categorical links, and their possible applications, between the 
p--adic setting and the representation theory of quiver Hecke algebras of type A. Finally, 
we review, as a case study, the recent RSK classification of irreducible representations, 
introduced by the author with Lapid. 

1. INTRODUCTION 

This short note is based on an (online) talk given by the author at the January 2022 
"Automorphic forms, automorphic L-functions and related topics" RIMS workshop. The 
author thanks Kazuki Marimoto for his kind invitation to deliver the talk at this workshop. 
Our goal is to survey some background material and recent developments in the study 
of the category of smooth complex representations of the locally compact groups GLn(F), 
where Fis a non-Archimedean local (p-adic) field. 
The family of general linear groups is often considered a prototypical case for the rep-
resentation theory of'[J-adic groups. Aside from standing as a natural counterpart to the 
classical study of continuous symmetry through Lie theory, the rise in interest in the spec-
tral properties of p-adic groups came largely due to their role in arithmetics. Roughly, 
smooth irreducible representations of'[J-adic groups appear as local components of the 
adelic point of view on automorphic forms. As such, their classification and understanding 
became enmeshed with the development of the Langlands program, that aims to describe 
number-theoretic phenomena in Lie-theoretic means. 
In due course, those themes of thinking gave rise to the rather concrete idea of the 
local Langlands reciprocity, an arithmetic (in the sense of Galois representations related 
to the'[J-adic field) description of the collection of smooth irreducible representations of p-
adic groups. Indeed, for the case of general linear groups, such conjectural reciprocity was 
transformed into celebrated theorems, that paved the path for many ongoing developments 
in various surrounding fields of research. First, it were the works of Bernstein-Zelevinsky 
[BZ77, ZelSO] which reduced the classification of irreducible GLn(F)-representations to 
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the supercuspidal case. The later classification of supercuspidal representations was the 
arithmetics gist of the matter. 
In light of this state of affairs, the case of G Ln from the local Langlands perspective may, 
somewhat misleadingly, look as a fully charted part of the theory. Yet, in this note we deal 
with problems arising in modern aspects of the mature theory of GLn(F)-representations, 
for which the traditional picture of the reciprocity for irreducible representations may not 
be sufficiently revealing. We discuss some attempts to venture systematically beyond the 
case of irreducible representations and to obtain meaningful descriptions of (the obviously 
non-semi-simple) categories of representations. 
We will modestly focus on some combinatorial issues around finite-length representations 
that appear naturally in applications. 
In Section 2 we will discuss the basic operation of parabolic induction, which for long is 
considered as the standard inductive mechanism for producing representations of reductive 
groups. We will discuss reducibility issues and the main standing problems related to it, 
sketch the elegant links with the geometric Kazhdan-Lusztig theory and survey some recent 
results. 
In Section 3 we will survey how the study of finite-length representations is, perhaps 
unexpectedly, crucial for treatment of branching problems, such as the celebrated Gan-
Gross-Prasad framework. 
Section 4 will attempt to treat some categorical aspects of the theory. In particular, 
we will exhibit how certain problems on'[J-adic groups representations are equivalent to 
problems in the quantum group domain, where further tools, such as an explicit graded 
structure, are available. 
Finally, the last section reviews the newly-developed alternative construction of irre-
ducible representations, developed by the author with Erez Lapid and based on the com-
binatorial Robinson-Schensted-Knuth transform. 
The author and part of the research activity surveyed in this note are supported by the 
Israel Science Foundation (grant No. 737 /20). 

2. PARABOLIC INDUCTION 

Let F be a fixed p-adic field. The well-established Barish-Chandra philosophy of cusp 
forms, when specialized to the p-adic case, points on the parabolic induction functor as a 
preferred method for constructing and analyzing smooth representations of groups of the 
forms G(F), for a connected reductive group G. 
In more detail, a parabolic subgroup P < G that projects onto a corresponding reductive 
Levi subgroup P→M < G, produces a smooth complex G(F)-representation II= i加）
out of a smooth complex M(F)-representation 1r, by inflating it to P(F) and further 
inducing it, with a suitable normalization, to the full group G. 
While i~ is an exact functor between abelian categories of smooth representations, an 
irreducible 1r may give rise to a reducible, albeit still of finite-length, representation II. 
Supposing still that 1r is an irreducible representation, the following basic questions 
appear, in order of potentially increasing difficulty: 
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(1) When is the G(F)-representation II irreducible? 
(2) What are the irreducible representations in the Jordan-Holder series of II? 
(3) What are the possible irreducible sub-representations, or quotient representations, 
of II? 
(4) What is the description of the full sub-representation lattice of II? 

In this generality the questions may prove hard to approach. For one, a satisfactory 
dictionary of classes of irreducible representations, a highly non-trivial issue on its own for 
a general group G, may look as a prerequisite. 
One specific case for the above problems is the context of the Langlands Quotient The— 
orem [BWOO, XI.2]. 
Briefly, for each irreducible smooth G(F)-representation K,, the LQT associates a triple 
(M, T, ¢), where M < G is a standard (containing a fixed maximal torus of G) Levi sub-
group, T is an irreducible tempered M(F)-representation, and ¢ is an unrami且edpositive 
(in a suitable fixed sense, relative to the root data of G) character of M(F). Then, a-
becomes the unique quotient representation of an induced representation ~(K,) = ij(T ・ r/J), 
known as the standard module of氏
While the LQT, for many purposes, reduces the classification of irreducible G(F)-
representation to that of irreducible tempered representations of its Levi subgroups, the 
fine structure of the resulting standard modules ~(K,) remains largely unexplored. 
For example, in the active field of relative representation theory, one often studies the 
space (K,*)H(F) of H(F)-invariant linear functionals on the space of the representation 

K,, where H < G is an algebraic subgroup. Due to the favorable nature of tempered 
representations and convenience of the parabolic induction functor, it is often feasible to 
construct invariant functionals on the standard module ~(K,) rather than on the actual 
representation of interest K,. Subsequently, the fine information on which constructed 
functionals factor through the quotient ~(K,) • K, requires an improved understanding of 
the above mentioned questions when applied to standard modules. See [FL012, Gur15, 
Offl 7, Mat21, Mit19, Suz21] for examples of such a叫 ysis.
Let us now focus on the case of G = GLn. We will shortcut Gn = GLn(F) for the rest 
of this note. 
One advantage of this case in the current context is its immediate links with the pivotal 
Kazhdan-Lusztig theory. Namely, for irreducible Gn-representations吐四， themultiplicity 
of凡 inthe Jordan-Holder series of ~（四） equals the value at 1 of a specified Kazhdan-
Lusztig polynomial coming from a finite group of permutations. 
We recall that those are the polynomials whose computable coefficients describe certain 
homological dimensions of singularities of Schubert varieties. They are also long-known 
to describe the decomposition of Verma modules in the classical theory of semisimple Lie 
algebras. 
The relation of the Lie algebra setting to that of p-adic groups is elegantly revealed 
through Cherednik's construction, which was formalized in the form of Arakawa-Suzuki 
functors [AS98, SuzOO]. The construction, another special feature of the type A setting, 
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produces (degenerate) Hecke algebra modules, which can then be sent to group represen-
tations through standard categorical equivalences (see Section 4), while preserving decom-
position properties. 
More directly, one can see the involvement of the geometry of Kazhdan-Lusztig polyno-
mials in our setting through the Chriss-Ginzburg description of affine Hecke algebras. This 
approach expresses multiplicities in standard modules through homological dimensions of 
singularities of varieties associated to £-parameters [CG97, 8.6.23]. In type A, those vari-
eties may be viewed as orbits on moduli spaces of quiver representations, and subsequently 
compared with Schubert varieties [Zel81]. 
A convenient feature of this case is that all Levi subgroups of Gn are themselves iso-
morphic to groups of the form Gn, x ・ ・ ・ x Gnk, with n1 +... + nk = n. Without loss 
of generality, we may consider only Levi subgroups M(F) of block-diagonal matrices in 
Gn, with P(F) being the parabolic subgroup generated by M(F) and the subgroup of 
upper-triangular matrices. 
In this sense, we may take the irreducible 7r = 1r1 R ・ ・ ・ R冗 toconsist of a tuple of 
irreducible Gn,-representations叩 i= 1,..., k, and write the induced representation in a 
customary (Bernstein-Zelvinsky) product notation 

II=町 X ・・ ・ X冗：＝ i位(1r).

The resulting product is associative, and, up to semisimplification, commutative. Thus, 
some of the problems arising in decomposition of parabolic induction may be stated in the 
GLn case as a quest for the structure constants of an algebra relative to a given basis. 
The algebra here would come as a sum, over all n ~ l, of the Grothendieck groups of 
representation categories of Gn, with a product defined in terms of parabolic induction. 
The given basis is that of the irreducible representations. 
In other words, given irreducible representations (of groups Gn, of corresponding ranks) 
7r1, 7r2，巧， weask about the multiplicity of巧 inthe product 1r1 x巧． Thispicture can now 
be viewed as an affinization of the classical setting of Littlewood-Richardson coefficients 
that arise as structure constants for the representation theory of permutation groups. 
In certain cases, such as when 1r1, 1r2 belong to a convenient, yet widespread in applica-
tions, class known as ladder representations, full combinatorial formulas for the decompo-
sition of町 X乃 inthe spirit of Littlewood-Richardson rules were indeed devised [Gur21b]. 
In fact, a (computationally non-trivial) knowledge of the values of the relevant Kazhdan-
Lusztig polynomials, gives a precise formula for those multiplicities. Namely, one may 
decompose 1r1 x 1r2 into irreducible representations by transferring the problem to that 
of standard modules using the matrix given by the Kazhdan-Lusztig theory, and then 
applying the fact that I:(1r1) x I:(1r砂isitself, up to simplification, a standard module (See, 
for example, [Gur19, Section 3.3]). 
We note though, that the Kazhdan-Lusztig theory tools are essentially limited to the 
semisimplified decomposition problems. We are not aware of a known algorithm to de-
termine the sub-representations lattice of a given general product町 x1r2 of irreducible 
representations. 
We mention here two closely related issues on which recent progress was made. 
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One is the phenomenon of square-irreducible representations, that is, irreducible G町
representations 1r, for which 7r x 7r remains irreducible. 
The first example of a non-square-irreducible irreducible representation tracks back to 
Leclerc's work [Lec03] in the quantum group setting (and is related to the Kashiwara-
Saito goemetric phenomenon [KS97]), which is translated into a construction of a Gざ
representation. 
Lapid-Mfnguez [LM18] have since constructed large families of such representations, and 
characterized the square-irreducibility property within a class known as regular represen-

tations. The general characterization is still an open problem and seems to relate to some 
deep geometric phenomena [LM20] and properties of canonical bases [Kam22]. 
The square-irreducibility notion gained prominence in Kang-Kashiwara-Kim-Oh [KKK018] 
work on categorification of cluster algebras. This has then influenced the discoveries of 
Lapid-Mfngez on the key role played by same notion in the p-adic setting. For one, 
it was shown [KKK015, LM16] that for a square-irreducible 7r and any irreducible Gn-
representation 1r', the product 1r x 1r'has a unique irreducible sub-representation. 
A second issue is that of "long" products: Given a tuple of irreducible representations 
1r1,..., 7rk, the sub-representation lattice of 1r1 x • • • x 7rk may quickly become too wild to 
control. 
A typical example of unfavorable behavior would be the product II= v112 xv―1/2 X vl/2, 

where V8(a) = la|}, s E <C, is the unramified character of G1 = px. While the Steinberg 
representation of G2, St, is known to appear as a sub-representation of v112 x v―1/2, the 
trivial Grrepresentation, trv, is known to appear as a sub-representation of v―1/2 X炉／2.
Thus, both (irreducible) St x炉／2and v112 x trv are sub-representations of II. In fact, II 
is isomorphic to their direct sum. 
Using the wide collection of square-irreducible representations, we were able to iso-
late conditions of classes of induced representations, for which a unique irreducible sub-
representation (or, dually, a quotient representation) exists. This favorable property is 
highly sought-after, for example, in applications of the theory to branching laws (Section 
3) or to meaningful realizations of irreducible representations (Section 5). 
Since a standard module叫） isknown to have a unique irreducible quotient, any 
quotient representation of a standard module will still possess this property. Motivated by 
terminology from quantum affine algebras, we call such representations cyclic. 
In a work with Mfnguez [GM21], we proved that, in the square-irreducible case, when 
each of the "short" products 7r; x 7rj, 1 ::; i < j ::; k is cyclic, the combined product 
1r1 x • • • x 7rk will be cyclic as well. 
Another criterion for well-behaved products comes from normal sequences, which were 
introduced by Kashiwara-Kim [KK19] in the quiver Hecke algebras setting. 
A work of the author [Gur21c] on the RSK construction (see Section 5) imported the no-
tion into the p-adic setting. These are tuples 1r1,...，7rk of square-irreducible representation, 
satisfying certain computable compatibility conditions. Verifying those conditions, which 
is an attainable task in many cases, again produces induced representations 1r1 x ・ ・ ・ x 7rk 
with a unique irreducible quotient. 
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3. BRANCHING LAWS 

One application of the study of the fine structure of finite-length Gn-representations is 
for the description of J.radic branching laws, or, in other terminology, symmetry-breaking 
operators. 
A copy of the group Gn is naturally found as a subgroup in Gn+l, realized as the upper-
corner matrices. Given a smooth irreducible Gn+1-representation 1r, its restriction to a 
subgroup 1rlan ceases to be irreducible. In fact, as one can intuitively expect from the 
drastic change in group dimension, the restricted representation is far from being of finite-
length. 
In this rather wild setting, a celebrated result [AGRSlO] (whose proof relies solely on 
the geometry of the groups and the invariant distributions it may support) claims that 
each isomorphism class of an irreducible Gn-representation may appear at most once as a 
quotient of the restricted representation 7r|似
Thus, a question arises: For which pairs of irreducible representations (1r, a-) (respectively, 
of the groups Gn+l, G砂， anon-zero Gn-intertwining operator 7r→a-exists? 
Special cases of this question that deal with representation classes that are closer to har-
monic analysis and number theory (through automorphic representations) received much 
attention under the framework of the (local) Gan-Gross-Prasad conjectures [GGP12]. 
More precisely, while the existence of an intertwiner as above for any pair of tempered 
representations (1r, a-) is a long-known phenomenon [JPSS83], analogous questions for rep-
resentations of groups of classical type were an important goal set by the GGP program 
with clear applications to the study of automorphic forms and their £-functions. 
A later development [GGP20] of this program was the formulation of similar precise 
conjectures (that it, a precise list of pairs (7r, a-) with an existing intertwiner) to the case 
of the so-called Arthur-type representations. 
On this frontier, the GLn case of the conjectures has become a non-trivial step, and was 
recently resolved in the works of the author [Gur22] (providing a proof of one direction) 
and ultimately of Chan [Cha22] (which supplied a full stand-alone proof). 
A crucial step of both proofs is a reduction of the problem to that of finite-length 
representations, using what is known as the Bernstein-Zelevinsky filtration of the restricted 
representation. 
Essentially going back to tools from the classical papers [BZ77, Zel80] that developed the 
basics of the theory of smooth representations of J.radic groups, we can produce a filtration 

{O} = Vn-lこVn-2こ．．．こ％ ＝ V 

of Gn-representations on the space V of the G正 1-representation1r. Thus, the study of 
irreducible quotients of汀Ianis decomposed into the study of quotient representations of 
MIV叶 1,for i = 0,..., n -2, and of the splittings in between the graded parts of the 
filtration. 
This study is further reduced to morphism spaces between Bernstein-Zelevinsky deriva-
tives of irreducible representations. 
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A convenient description of the BZ-derivatives is the following functorial diagram. Let 
Rep(G砂denotethe abelian category of finite-length Gn-representations. The classical 
operation of taking Whittaker co-invariants of a representations may be thought of as an 
exact functor Wh : Rep (G砂→ Vec to the category of finite-dimensional vector spaces. 
We also recall the Jacquet functor 

rn1,n2 : Rep(Gn,+n2)→Rep(Gn, X叫）竺 Rep(Gn,)X Rep(G叫，
which is left-adjoint to the previously discussed parabolic induction functor relative to the 

maximal Levi subgroup Gn, X Gn2 < Gn, +nが
In these terms, for given O < k :s; n, the left and right Bernstein-Zelevinsky derivatives 
may be defined as the composed exact functors 

(Id X Wh) o rn-k,k: Rep(G砂→
T → 

Rep(Gn-k) 
7r(k) 

(Wh xid) o rk,n-k: Rep(G→ → Rep(Gn-k) 
T → (k) 7r 

A given irreducible Gn-representation 1r produces derivative Gn-k-representations 7r(k), (k)1r 
that are of finite-length. 
The following basic property [Gur22, Proposition 5.4] of the Bernstein-Zelevinsky fil-
tration makes the connection between branching laws (i.e. a restriction functor) and the 
domain of finite-length representations (i.e. constructions coming from parabolic restric-
tion): 
For irreducible representations (1r, a) of the groups Gn, Gn+l, and the filtration of 1r|広
as above, we have an identification of intertwiner spaces 

Hom叫且IVK+1,a)竺 Homい(|det |¥%（K+1)9 (K)a)， 

for all O < k ~ n. 
In particular, much of the study of branching laws such as the Gan-Gross-Prasad con-
jectures is reduced to the characterization of quotient representations of BZ-derivatives of 

irreducible representations. 
Indeed, the key step in the proof of [Gur22] for the GGP branching law was an application 
of the cyclicity criterion for parabolic induction that was mentioned in Section 2. While 
the original method suggests applying categorical equivalences that translate the problem 
into one about modules over quantum a缶nealgebras, a later development allowed this 
part of the argument to be replaced by the main result of [GM叫 whichdealt with the 
cyclicity criterion in'native'p-adic terms. 

4. CATEGORICAL EQUIVALENCES 

The structure of the category finite-length smooth Gn-representations and of the para-
bolic induction functors between them (or their adjoint Jacquet functors) enjoys certain 
universal properties. By that we mean that near equivalent categorical structures appear 
in various other type A Lie-theoretic settings. We will now focus on the relation of the 
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questions discussed in previous sections with the representation theory of quiver Hecke 
algebras. 
We first recall the theory of Bernstein decomposition, when specialized to the category 
Rep(G砂 Itpresents the category as a product of smaller, concretely defined, abelian 
categories known as Bernstein blocks. 
The easiest block to define would be the principal, or lwahori-invariant, block. It is the 
full sub-category of Rep(Gn) containing all representations whose irreducible sub-quotients 
are isomorphic to sub-quotients of parabolic induction of an unramified character of a 
maximal torus in Gn, 
Other Bernstein block are defined by the subtle arithmetic data encoded in supercuspidal 
representations of Levi subgroups of Gn, 
A classical theorem [Bor76] claims that the principal block is naturally equivalent to 
the category of finite-dimensional modules over H国）， theaffine Hecke algebra associated 
with GLn, a concrete finitely generated complex algebra1. 
This line of reasoning for p-adic groups was later developed into satisfactory descriptions 
for more general Bernstein blocks. Arguing either through the type theory of Bushnell-
Kutzko [BK93], or through Heiermann's description [Reill] of endomorphism algebras of 
Bernstein projective generators, the resulting picture for our case of GLn is especially 
appeasmg. 
Any Bernstein block of Rep(G叫isequivalent as an abelian category to the category of 
finite-dimensional modules over an algebra of the form H叫qリR"・RH』叫
A corollary of this avenue of results is that all categorical aspects of the finite-length 
representation theory of the groups { Gn}n remain essentially unchanged when moved to the 
finite-dimensional representation theory of the algebras｛凡（q)}n-In particular, parabolic 
induction and Jacquet functors become equivalent to natural induction and restriction 
functors under these identifications [Roc02]. 
One advantage of this equivalence, as mentioned in the previous section, is the geometric 
Kazhdan-Lusztig or Chriss-Ginzburg [CG97, Chapter 8] realization of affine Hecke algebras. 
It allows for an encoding of Gn-representations and their decompositions in categories of 
perverse sheaves on certain nilpotent cone varieties. 
While this deep underlying geometry may be difficult to access directly with combina— 
torial tools, a valuable aid comes from the algebraic theory of quiver Hecke algebras. 
These are a family of finitely-generated (Z-)graded algebras that were introduced by 
Khovanov-Lauda [KL09] and Rouquier [Rou08] (also commonly known as KLR-algebras) 
with the aim of categorifying quantum groups. In particular, their approach "algebrizes" 
the celebrated Lusztig categorification [Lus90, Lus91] of quantum groups by perverse 
sheaves on moduli spaces of quiver representations. 
We will deal with the type A case, in which quiver Hecke algebras may be presented 
as a sequence of graded algebras { Rn}n, In this case, Rouquier [Rou12, Theorem 3.11] 

1Here q is the cardinality of the finite residue field of F and is used as a parameter in the presentation 
of the algebra. Yet, its value, beyond being a non-root of unity, is largely irrelevant for the categorical 
discussion. Thus, q E IC may be treated邸 aformal variable. 
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and Brundan-Kleshchev [BK09] have shown that凡 isclosely related to the affine Hecke 
algebra几 (q).

Let us write Cn for the category of graded finite-dimensional modules of Rn, and Cn for 
the same category when forgetting t~e graded structure of the modules. 
Rouquier's equivalence identifies Cn with a full sub-category of Hn(q)-modules, which 
essentially captures all of the finite-dimensional representation theory of几 (q).
Moreover, combining the equivalences for n 2 1, we obtain monoidal functors going from 
①nCn into①nRep(G砂， wherethe product structure on the quiver Hecke algebra side is 
what is known as the convolution product (which plays the role of categorification of the 
quantum group product) and the product structure on the p-adic side is the Bernstein-
Zelevinsky parabolic induction product. 
The reader may consult [Gur21c, Section 3] for more details. 
Thus, for many purposes we may view Cn as the category Rep(Gn) enriched with a (in 
hindsight, inherent) graded structure. We remark that the mentioned geometric approach 
already points at a natural graded structure coming from the homological degree of com-
plexes of sheaves. This is the structure algebraically visible in quiver Hecke algebras, while 
typically being hidden in the p-adic approach. 
Indeed, the additional graded structure was recently exploited to tackle specific problems 
on decomposition of finite-length Gn-representations. 

Given a graded module M =④iEZMi in Cn, we may shift its grading M〈r〉＝ ④iEZMi-r 
by an integer r to produce a non-isomorphic module. A duality functor M→M* on Cn 
exists, for which M〈r〉・竺 M*〈-r〉holds.When M is a simple module, a unique shift 
rM E Z exists, for which M〈m〉becomesself-d叫
Now, recall again the product decomposition problem of Section 2, where冗乃 were
taken as irreducible representations of Gn,, Gn2, and the multiplicities m四 ofan irre-

1'1,1「2

ducible乃 inthe Jordan-Holder series of 1r1 x 1r2 were an object of study. 
In the graded setting, we may pose an equivalent problem, where M(1r1), M（1r2), M（叫
are taken as the corresponding self-dual simple quiver Hecke algebra modules. Yet, now we 

may ask for the multiplicity m;？ら ofM（叫〈r〉inthe convolution product M(1r1)oM（叫，
separately for any r E Z. 

We see a Laurent polynomial (a quantized multiplicity)疇，K2(q)＝I:rEZ咬：らが， for
which the original multiplicity m;~ば2 constitutes its value at q = 1. 
Analysis of the quantized multiplicities in a given finite-length module is a compu-
tationally convenient middle ground between the semisimplified decompositions in the 
Grothendieck group and the categorical decomposition with its added subtleties of the 
sub-module lattice. 
Extension properties of perverse sheaves can in these terms have purely algebraic man-
ifestations (see [KKK018, Theorem 4.2.1] and its proof): A given finite-length Min Cn 
admits a graded filtration... C::: Mr+l C::: Mr C:::... CM  of Rn-modules, such that each 
r E Z, Mr/ Mr+l is a semisimple module consisting of the irreducible sub-quotients L in 
M, for which L〈-r〉isself-d叫
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In [KKK018], numerical invariants were produced which shed light on certain decom-
position problems. As discussed above, given a square-irreducible module M in Cn (i.e. 
Mo  M is simple) and any simple module N, the product module Mo  N has a unique 

simple quotient L. Let A=入(M,N) E Z stand for the integer for which L〈-A〉becomes
self-dual. 
Compatibility of the A-invrairants may be used to define and verify the normal sequence 
condition from [KK19]. Indeed, this is the main technique applied in [Gur21c], where a 
passage to the graded setting allowed for a computation of such invariants and a construc-
tion of families of normal sequences. As a result we are able to produce families of better 
understood induced modules, such as the RSK-standard modules of the next section. 

5. RSK-STANDARD MODULES 

The cornerstone Zelevinsky classification of irreducible Gn-representations is a cornbina-
torial refinement of the non-supercuspidal part of the local Langlands reciprocity. 
For simplicity, let us take 7r to be an irreducible representation in the principal Bernstein 
block of Rep(G砂 Acombinatorial gadget m, known as a Zelevinsky rnultisegrnent [Zel80], 
is attached to 7r. This is a rnultiset of pairs of numbers a, b E C, for which b -a is a 
non-negative integer. It is convenient to write rnultisets in additive notation, that is, 

m = [a1, bサ＋．．．＋ ［at, bt]. 

Without loss of essential information, we rnay focus on the case when all a;, b; are integer 
numbers. Thus, we think of the collection of rnultisegrnents畑＝ Z2o[Seg]as a rnonoid 
with basis Seg = {(a,b) E Z x Z : a::::; b}. 
The Zelevinsky classification then takes the form of a bijection Z :暉→ Irro= 
旦吟0Irr0 (G n), where the sub-collection of irreducible G n-representations Irr0 (G砂captures,
up to supercuspidal data, the categorical role of all irreducible objects in Rep(G砂
For given m E碑 Zelevinskylocates the irreducible Z(m) as a sub-representation of 
a (possibly reducible) Zelevinsky-standard representation ((m) constructed by parabolic 
induction. The similarity with the Langlands Quotient Theorem construction is not coin-
cidental, and both approaches may be viewed as dual to each other through the categorical 
symmetry known as the Zelevinsky involution. 
As discussed in Section 2, the fine structure of representations such as ((m) may be chal-
lenging to access. A quest for further models for construction of irreducible representation, 
perhaps tailored for specific needs, remains a desirable goal. 
One such alternative construction was devised in the work of the author with Lapid 
[GL21]. Our starting point in this approach are the well-behaved properties of the class of 
irreducible ladder representations. These are representations of the form Z([a1, b1] +... + 
[at, bt]), with a1 <... < at and b1 <... < bt, 
While the specialty of this subset of Irr。wasnoted in various Lie-theoretic incarnations, 
their explicit appearance in the p-adic theory begins in [LM14]. Yet, perhaps the most 
convincing argument for the basic role of ladder representations is visible when passing 
through the equivalence with quiver Hecke algebra representations,邸 inSection 4. Ladder 
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representations are those elements 1r E Irr0, for which the grading of the self-dual simple 
module M = M(1r) is concentrated in a single degree, i.e. Mi = {O}, for all i -/c 0, when 
writing M = EBiEZMi as a graded vector space. This perspective was the focal point of the 
Kleshchev-Ram study [KRlO] of homogenous modules. 
Now, to each 7r E lrr0 we associate a tuple of ladder representations a1,...，叩， andlocate 
1r as a sub-representation [GL21, Theorem 1.1] of the parabolic induction representation 

A(1r) =゚1X ・ ・ ・ X 四・
We call A(1r) the RSK-standard module of 1r, due to the Robinson-Schensted-Knuth trans-
form which is used to produce its inducing data. 
The number w = w(1r), which we call the width of 1r, can be read directly from the 
Zelevinsky data of 1r. It is the minimal length of a product of ladder representations, in 
which 1r may be found as a sub-quotient representation [Gur19]. Thus, our model A(1r) 
is in a suitable sense minimal, when taking the view of ladder representations as basic 
construction blocks. 
The RSK construction becomes somewhat more transparent when moved into the quiver 
Hecke algebra setting, as was conducted in [Gur21c]. The categorical equivalences of 
Section 4 were a crucial tool to show that 1r is indeed the unique sub-representation of 
A(1r). In fact, the tuple of ladder representations aw,..., a1 was shown to be an example 
of a normal sequence. 
Moreover, one can apply the mechanism of BZ-derivatives on RSK-standard to produce 
a plethora of additional "derived" models for irreducible representations. In [Gur21a] 
it was observed that by picking suitable derivatives on the RSK construction, one can 
reconstruct the LQT standard module, the Zelevinsky-standard module and the various 
Specht modules inflated from cyclotomic Hecke algebra quotients. Thus, the new approach 
seems to be of a universal nature, whose underlying geometric pinning may yet to be 
discovered. 
Some open intriguing problems regarding the RSK model are still standing. Specifically, 
the nature of the Jordan-Holder series of the representations A(1r), though should concep-
tually be shorter than that of the standard区（1r),remains shrouded with mystery, on which 
some ideas were conjectured in [GL21, Section 6]. 
We remark that the derivative procedures of [Gur21a] preserve the decomposition mul-
tiplicities. Thus, the multiplicities hidden in RSK-standard modules should in princi-
ple contain the information encoded both in Kazhdan-Lusztig polynomials and in Specht 
decomposition numbers (which are usually a common source of interest in the modular 
setting). 
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