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ABSTRACT. This article is an announcement of a result of the author, which is based on the talk
at the conference “Automorphic form, automorphic L-functions and related topics” at Research
Institute for Mathematical Science on 26 January 2022. We describe local theta correspondence
for quaternionic dual pair of almost equal rank in terms of Langlands parameter when the base
field is R and representations are discrete series.

1. INTRODUCTION

Let F be a local field, and let (G, H) be a reductive dual pair over F'. Then, the local theta
correspondence is a map

0(—,G): Trr(H(F)) — Trr(G(F)) U {0}.

An important property of the local theta correspondence is a simple relation of the L-parameters
of representations corresponding by the map. Assume that the pair (G, H) is either (Spy,,, SO2,),
(SO2n+2,5Ds,,), (Un(E),Un(E)) or (Ups1(E),Uy(E)), and take an L-embedding ¢: “H — LG
of the L-groups of H into that of G. Let o be a tempered irreducible smooth representation of
(H(F)) having L-parameter ¢’. Then, we have a sufficient condition to not vanishing of 0(o, G) in
terms of L-parameters, and we have (o, G) has the L-parameter £ o ¢’ if it is non-zero (c.f.[GI14,
Appendix C]). This is a part of the Adams’ conjecture [Ada89] [HKS96, Conjecture 7.2] (See
also [Mgl1], [GI14, §15.1]).

Now we consider an L-packet Iy (H (F7)) for a tempered L-parameter ¢;. The local Langlands
correspondence provides an injective map ¢: Iy (H(F)) — Irr(m(Cy, ). Here Cy, is the Central-
izer of Im¢] in the Langlands dual H and mo(Cy, ) is its component group. For o9 € Trr(H(F)),
we call (¢4, n5) the Langlands parameter of oq if ¢} is the L-parameter of oo and 75 = t(09).
Then, it is natural to ask how 7’ and 7 are related where (¢’,7’) is the Langlands parameter of
o and (£ o ¢',n) is that of 0(c,G). Prasad had conjectured it [Pra93] [Pra00] and Gan-Ichino
[GI16], Atobe [Atol8] proved them (see also [AG17]).

In this article, we discuss extending the above results to quaternionic dual pairs, which contains
the following topics.

e We use the theory of Kaletha, which formulates the local Langlands correspondence for
each rigid inner twist of a quasi-split reductive group. Since the local theta correspon-
dence is not well-defined in the isomorphism classes of irreducible representations with
the rigid inner twist, we need to classify the rigid inner twists associated with a fixed
rigid inner form. To do this, we introduce the “orientations of tori”. Moreover, for a
quaternionic dual pair (U, U-), we discuss the natural “orientations of tori” associated
with the embedding Uy x U_ — Sp(W).

e In the case F' = R, the local theta correspondence has been described in terms of Harish-
Chandra parameters [LPTZ03]. By translating the Harish-Chandra parameter into the
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Langlands parameter, we describe the local theta correspondence in terms of Langlands
parameters.
e Finally, we will discuss the prospection of the non-Archimedean case.

2. LOCAL LANGLANDS CORRESPONDENCE

2.1. Rigid inner twists. Let F' be a local field of characteristic zero. Kaletha defined the
multiplicative pro-algebraic group u over F, and proved that

Z F' is non-Archimedean,

H%Rw_{mm F=R

([Kall6]). Then, there exists a group W equipped with the exact sequence
1—uF)—=>W-=>T—1

associated with the cohomology class —1 € H?(I',u). Let G be a connected reductive group over
F and let Z be a central finite sub-group of G' defined over F'. Then, we define

ZYu =W, Z = Q)
the set of the 1-cocycles f € Z'(W,G) so that f(u(F)) C Z(F) and Tlu@): w(T) — Z(F) is a
homomorphism. Moreover we define
Hu—=W,Z—-G)=Z"(u—W,Z = G)/B"(W,G)

where B'(W, G) is the set of the 1 co-boundaries. A rigid inner twist of G is a pair (2, ¢) where
zis a 1 co-cycle belonging to Z'(u — W, Z — G) and ¢ is an isomorphism over F from G to a
reductive group G; over F satisfying

o lowopow ™ =Intz(w) (wewW).

Fact 2.1. ([Kall6, Corollary 3.8]) If Z contains the center Z(Gqer) of the derived group of G,
then the natural map
H'(u =W, Z = G)— H'(T',G/Z(G))

is surjective.

2.2. Orientations of tori. Let GG be a reductive group over F', and let S C G be a torus defined
over F. In this article, by the orientation of S we mean a basis 0 = (04,...,0,) of the lattice
X*(S) of the algebraic characters of S. Let S’ be another torus of G defined over F, and let
0 = (81,...,0)) be an orientation of S". Then we say (S,9) and (S’,9") are rationally equivalent
if there exists an element g € G(F) so that S’ = gSg~! and

(Int ¢)*0] = 4, ..., (Int g)*0,. = O,.

As explained in the introduction, the orientations of tori have an important role when we study
the inner twists.

Let G* be a quasi-split inner form of G defined over F, let Z be a central finite subgroup of
G#, and let S# be a torus of G# defined over F. We denote by X*(S#) the lattice of algebraic
characters of S#. The torus S* is said to be fundamental if the Z-rank of X*(S#)" is as small
as possible.

Fact 2.2. ([Kall6, Corollary 3.7]) If S# is fundamental, then the natural map
HY(u—W,Z — S*) = H' (u = W, Z — G¥)

is surjective.
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Definition 2.3. Let (2,¢),(2',¢') be rigid inner twists such that z,2' are contained in Z'(u —
W, Z — S*) and ¢, " are isomorphism from G# to the same group G. In this article, we say
the two rigid inner twists (z,) and (2',¢") are S#-rational equivalent if there exist a € S#(T)
and g € G(F) such that ¢’ =Tntgogolnta and 2'(w) = a 'z(w)w(a) for all w € W.

Let (z,¢) be a rigid inner twist where z is contained in Z'(u — W,Z — S#) and ¢ is an
isomorphism G# — G. Then, one can show that ¢(S#) is a torus defined over F. Moreover, if we
fix an orientation 0% of S#, then (¢ ~!)*0# is an orientation of S. If (2, ¢’) is another rigid inner
twist which is S#-rational equivalent to (z, ), then (¢'(S#), (¢'~")*0%) and (p(S#), (¢~ 1)* %)
are rationally equivalent. Conversely, we have the following lemma.

Lemma 2.4. Let (z,¢). (', ) be rigid inner twists as in Definition 2.3. If (¢'(S#), (¢'~1)*o#)
and (¢(S#), (o~ 1)*0#) are rationally equivalent, then (z,) and (2',¢") are S#-rationally equiv-
alent.

2.3. Splittings and Whittaker data. We use the setting of §2.2. Let Tf be a maximal
split torus of G# defined over F, let T# be a maximal torus over F which contains Tf , and
let B# be a Borel subgroup containing 7#. Note that B# is not defined over F in general.
Take a root vector X, for each av € A%,. Then, the triple (T#,B#,{Xa}aer#) consists a

B
splitting of G. Moreover, take a non-trivial unitary character ¢p: F© — C*. Once the splitting
(T#,B* { X4 }ac a0 ) and the character ¢ are given, we obtain the Whittaker datum a =
B

(B#,4 0o \). Here, A is a character on the unipotent radical of B¥ so that A(X,) = 1 for all
aeAY,.

Fact 2.5. ([Atol8, §2]) If G* is either a symplectic group or a quasi-split special orthogonal
group, then the equivalence classes of Whittaker data are parametrized by ¢ € F'* /FX2 and 1.

2.4. A map [,. We use the setting of §2.3. But, in this section, we assume that F' = R. See
also §4 below for this assumption. Moreover, we assume that G# is either Sp,,, or SO(2n,sgn™),
which possesses an anisotropic maximal torus over R. We denote it by S#. Let Z be the center
of G, let Tg# be a maximal split torus of G# defined over R, and let T# be a maximal torus over
R which contains TfE . Set
IT#,5%) ={g € G*(F) | gS*g™" =T*}.
Then we define the map
lo: 3(T#,S%) — HY(T, 5%)
as follows. Take g € J(T#,S#). We denote by wg#(7) € W(G#,T#) the Weyl element defined
by Ind g7(g)~!. Then, as in [LS87, (2.3)] we obtain the 1-cocycle T — mg# (7). Then, we define
la(g) by
—1)/V=T  G# = Sp(2m)
l 7) =g tmgx(1)7(g) X (
u(g)( ) g b#( ) (g) {1 G# = SO(QTL,SgH”),

Here, €, denotes €(1/2,sgn, ).
2.5. Local Langlands correspondence. We use the setting of §2.4. Let B# be a Borel sub-
group containing 7%, and let A%# be a basis of the positive system Apgz. Note that B¥ is not
defined over R in general. Let G be the Langlands dual group of G# equipped with a splitting
(T,B,{Ys }pe Ay)- More precisely, they are characterized by the following properties.

e The group Gisa complex connected reductive group, B is a Borel subgroup of G , T is

a maximal torus contained in B, Y is a root vector associated with a root 8’ in a basis
AY, of the positive system Ag in R(G,T).
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e There are isomorphisms D1: X*(T#) — X.(T) and Da: X*(T) — X.(T#) so that
D1(AY,) = (AY)Y, Da(A) = (A%, 1Y, and Da(D1(a)") = a” for a € R(GH, T#),

There is a T-action on G such that it preserves 7 and 1, Do are [-isomorphisms. We denote
by “G the semi-product GxT by this action.

Take an orientation dp# = (Or#1,...,0p#,) of T# that is positive with respect to B. Fix
a Whittaker datum a, and take go € Z(T#,S#) so that lo(go) = 1. We denote by Sp# the
new R-structure of 7# so that Int go: S# — Sy is defined over R. Then, we take a 1-cocycle
2 € ZYu — W, Z — Sp#), and isomorphism ¢: G# — G so that (Int g5 ' 0 274, ) is a rigid
inner twist of G#.

Finally, let ¢ be a discrete parameter for G#. Then, we define

Cy = lim Centz(Im f).

—
€

<
©

Moreover, we define
S;r =1i pfl(Centa(Imf))
feod

where p is the canonical covering GT/\Z — G. Since ¢ is a discrete parameter, Cy and S;' are
finite groups. We denote by t[zp#, go, ¢, a] the injective map

II4(G(F)) — Tre(S))
of [Kal16, (5.7)], which is associated with the rigid inner twist (Int g, 'ozg#, ) and the Whittaker

datum a.

Proposition 2.6. Tuke another 2z}, € Z'(u = W.Z — Sp#), gy € Z(T#,5%), and ¢': G#* —
G so that (Int g(’)_1 02y, ') consists a rigid inner twist. Let S be an anisotropic mazimal torus
of G over F, and let O be an orientation on S.

(1) Suppose that zps = /., and both (p(S#), (Int g5 ' 0 = 1)*Opx) and (' (S#), (Int g to
@’71)*87#) are rationally equivalent to (S,d). Then, we have
L[ZT#)g()? ) ﬂ] = L[ZT#MQE): 99,7 C(]~

Hence, we denote by iz, 0, a] instead of by t[z7#, go, ¢, a].
(2) If zr# and 2., represent the same cohomology class, then we have

Uzre,0,a] = 1[2)s, 0, a].

3. REDUCTIVE DUAL PAIRS (ARCHIMEDEAN CASE)
In this section, we assume F' = R.
3.1. Local theta correspondence. Let
H =R+ iR+ jR+ijR
be the skew field of Hamilton’s quaternions. Here the symbols i and j satisfy the relations
i?=-1, j2=—1, and ij + ji = 0.

We denote by V =V, , the m = p + ¢ dimensional H-vector space of column vectors equipped
with the Hermitian form (, ): V' x V' — H given by

Ty n

P m
[ p=2 = D> o w
k=1

T Yrm I=p+1
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We denote by W = W,, the n dimensional H-vector space of row vectors equipped with the
skew-Hermitian form (, ): W x W — H given by

n
(@1, )y (s a)) = S -
k=1

Then, W =V &y W is a symplectic space with the symplectic form given by

((x@y, 2’ ®y)) =Ta((z,2') - (y,¢)")

for z,2’ € V and y,y’ € W. Here, Ty denotes the reduced trace of H over R. Let us denote by
U. the unitary group of V, and by U_ the unitary group of W. Then, the action of Uy x U_
on W by

(h,g)-x@y=h"'z@yy
induces a homomorphism Uy x U_ — Sp(W). In this article, we consider the polar decomposition
W = X+ Y obtained in the following way. Let V' (resp. V") be the subspace of V' consisting of
the vectors

1
(21, , 2y € H)
Tm
with p41 = -+ = x,, = 0 (resp. with ; = --- =z, = 0). Then, we have the decomposition

W =W + W” where

W =V'@W, and W' = V" @ W.
For both spaces, choose a polar decompositions W = X' +Y" and W’ = X” +Y”. Then, putting
X=X +X"’and Y = Y + Y”, we have the polar decomposition W = X + Y. Then, one can
construct a 2-cocycle ey 4 € Z2(Sp(W), C!) ([Per8l], [RR93]) and the extension

1 — C" — Mp(W, cy ) — Sp(W) — 1

associated with cy . Moreover, the homomorphism Uy x U_ — Sp(W) lifts to an embedding
Uy x U~ — Mp(W, ¢y ). Such liftings are not unique, but we use the explicit lifting given by
Kudla [Kud94]. Let © be an irreducible representation of U_(F). Then, we define Oy (7, V) as
the largest quotient module

(WY@U ® ﬂ—v)U+

of wy @7 on which G(W) acts trivially. Then, as a consequence of Howe duality (c.f. [GS17]),
Oy (m, V) has the unique non-zero irreducible quotient if it is non-zero. We denote it by 6y (7, V')
if ©y (7, V) is non-zero. If Oy (7, V) =0, we define (7, V) = 0.

3.2. Associated orientations. Put Uf = Sp,,, and U# = SO(2n,sgn™). Then, it is known
that they are the quasi-split inner form of U, and U_. Now, we apply the theory of §2 to them.
Let Tf be a split maximal torus of Uf, let T% be a centralizer of a maximal split torus in Uf,
let Sff be an anisotropic maximal torus of Uf, let S be an anisotropic maximal torus of u* )
and let S_ be an anisotropic maximal torus of U_. Finally, we take an anisotropic maximal torus
Sy of Uy as follows. Denote by U/ (resp. UY) the unitary group of V' (resp. V). Let S’ (resp.
S’) be an anisotropic maximal torus of U’ (resp. UY). Then we put S, =5 x S/ C U,.

Lemma 3.1. There is the unique anisotropic mazimal torus Sw over R containing the image
of Sy x S_. Moreover, putting Sw = Sw N Sp(W') and Sw» = Sw N Sp(W”), we have Sy =
SW’ X SWN.
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Let (u1, ..., Uapn, Usy,, - - -, ui) be a symplectic basis of W =X'4+Y’, and let (uopn+1, - - - U2mn,
Udpns + -+ » Udppy1) e a symplectic basis of W = X" 4+ Y”. Then we define Ty (resp. Txr) as
the torus of diagonal elements of Sp(W’) (resp. Sp(W”)) which is regarded a subgroup of GLa,,
(resp. GLapgq) via the basis. We choose the Borel subgroup By, (resp. Bx/, Bxr) of Sp(W) (resp.
Sp(W’), Sp(W")) as the set of the upper triangle matrices via the basis. Let aw, (resp. ayy,
ayy) be the Whittaker datum of Sp(W) (resp. Sp(W’), Sp(W”)) which is parametrized by ¢ = 1
and ¢ above (c.f. Fact 2.5). Take hy € Z(Tx/, Sw) and hy € Z(Tx, Swr) such that g, (hg) =1
and lq,, (hg) = —1. Then, we have lo,(ho) = 1 for hg = (hg, hy) € U, x UY C Uy. Now we
explain the natural orientations on Sy and S_, which we call the associated orientations.

Proposition 3.2. (1) There exists an orientation Oy = (04 1,...,04 m) on Sy such that
X' @C-hy' = (057 @& (0772,
X"®C-hy' = (0F5) @ - @ (9ZR),
Y ®C-hyl = (8;1162") R (3;,1,;@%)7 and
Y'©C-hy' = (075" e 8 (075,
as algebraic representations of S4.
(2) There exists an orientation 0_ = (0_1,...,0_ ) on S_ such that
X®C hy'=(0%%") & o (982"), and

YeC hy'= @1 a0,

,n

as algebraic representations of S_.
(8) The orientation (S4+,0+) (resp. (S—,0-)) satisfying (1) (resp. (2)) is determined
uniquely up to rationally equivalence.

3.3. Correspondence of Langlands parameters. In this subsection, we assume either n = m
or n=m+ 1. Let 7 (resp. 7_) be the torus, and let B4 (resp. B_) be the Borel subgroup of

Uy (resp. [i) as in §2.5. In particular, there are fixed I'-isomorphisms

D7 XNTF) = Xu(Ty), D7: X*(TF) = X (T2)

OF: XN(Ty) = X(TF), D5: X*(T) — X.(T%).
We take the Whittaker data a;,a_ of U, U_ respectively so that both are parametrized by the
same ¢ € F'* /F *? and 1. We take an L-embedding

& LU_ - LU, in the case n = m,
& UL - PU_  inthecasen=m+1

so that £ 1(By) = B_ or £ 1(B_) = By respectively. Moreover, we assume that

571(071 )= 8T7 m=mn,
ENO0ps) =0ps n=m+1.

- +

Let ¢ be a discrete parameter for “U_ (resp. “U,) when n = m (resp. when n = m 4 1). The
L-embedding £ induces the homomorphism of S-groups

Z.gF +
§:55 = Sgoy
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Moreover, & induces t¢: Tgs — T (vesp. te: Tqn — Ty#) if n.=m (vesp. if n =m + 1), and
T S- - +
induces
te: H(u = W, Z = Tgs) > H' (u = W, Z = Tg#) ifn=nm,
¥ *
te: H(u =W, Z = Tge) > H' (u =W, Z = Tgz) ifn=m+1.
- ¥
Now, we state the main result.
Theorem 3.3. Let zp» € H'(u = W,Z — Tgs), let Zr# € H'(u — W, Z — Tgz), let
+ + -
g+ € I(Tf75f) so that la, (9+) = 1, and let g— € T(T#,5%) so that l,_(g_) = 1. Assume
the quaternionic unitary groups Uy and U_ are associated with (Int g4)* 2z, and (Int g_)*z,.»
7 ,

respectively. Let m be an irreducible discrete series representation belonging to Iy (U—(R)) (resp.
IIg(UL(R)) if n =m (resp. ifn=m+1). If o = 0y(m,V) # 0 (resp. o = Oy(m,W) #0) and
Zyp# = te(zp#) (resp. zps =te(zp#)), then we have

+ ¥

3
3

['[Zva o4, Cl+](0’)( (S)) = L[Zvaafv CLKTF)(S) if n=m,
tfzpw, 0-,a_](0)(£(s)) = L[sz, Or,ai](m)(s) ifn=m+1

for all s € S;r. Here, 04 and O_ are as in §3.2.

3.4. Sketch of the proof. For simplicity, we consider only the case n = m and €, = v/—1. We
identify the Weil group of R with C* U jC* C H*. Take f € ¢ so that f(C*) C 7 and f(j)
normalizes 7_. Then we define pp € X *(T#) so that

X(f(re?)) = 200cn) (1 € Ry, 0 €R)

for all x € X*(7). Then one can show that s is regular. Replacing f with f* for some Weyl
element w if necessary, we may assume that f is positive with respect to B_. First, there exists
a surjective map

I(T#,5%) 5 W, (U#(F)): g — (g)

and o[1, a](x(9))(s) = (La(g), (Int g+)*(s)) for s € Cy. Here g4 is an element of Z(T7, $%) so that

la(g+) = 1. Then, 7(g+) is nothing other than the unique generic representation in H¢(Uf£(F)).
Second, there is a surjective map

I(T#,5%) = Ty(U_(F)): g — n(g)

so that the following properties hold.

e The Harish-Chandra parameter of 7(g) with respect to (S_,d_) is ((¢51)* o (Int )*)(1f)-
Here ¢ is the inner twist so that ((¢3")* o (Int g)*)(0,#) = 0.
o We have

Uzg#. 0-,a_](n(g))(s) = (inv(n(g"),7(9)), Int g*)"(s))
for all s € S}. Here, the 1-cocycle inv(n(g"),7(g)) is defined by
inv(m(g"), m(9))(w) = 73 zpg(ww(vs)  (w e W)
where v, = g7 1gy and 2,4 = (Int gy) 0 274

See [Kall6, §5.6] and [She82] for more discussions. In terms of the Harish-Chandra parameters,
the description of the local Langlands correspondence had been established [LPTZ03]. Denote
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by &s: X*(S-) — X*(S4) the isomorphism satisfying £s(0—) = 4. Then, their result implies
that the following diagram is commutative.

In = In = 2
(3.1) X)L xS X (57) <P X (s4)
E*T €p,qo&s
* (PH# * ( QFF *( oFF *
X (17 )(m*X (57 )(Inm )*X (87) o X*(5-)
Here, € 4 is the isomorphism X*(S;) — X*(S,) given by
17) k=1,...
epa(@ra) = vk
—Oyoprqr1-r k=p+1,....m,

which is realized as Int g; for certain g, € Uy (R). We put 71 = ¢;'(g1) - 7. On the other hand,
the following diagram is commutative by definitions.

. [z " (Int g4)* "
(3.2) X*(8y) —=> X*(5F) === X(17)

Es TE*

X7(5) = X (5#) 2 e (1)

Combining (3.1) and (3.2), we have
(Inty-)op=po(Intgiv)
by denoting p = ((Int g~*) o £ o (Int g )). Hence, we have
P (inv (m, 7a)) (w) = p(7Z 2 (w)w(7-))
=p(r= 2 (w)y- =t w(r-))
= zpg(whn 1 wn)
=1 ' zpg(w)w(m)
= 7;1%,4(“’)”(79
= inv(o,0q)(w).
Here, z = (Intg_) o z;#. Note that we use the fact that p(v= w(v_)) is cohomologous to
Y 1w(’yl), which is a corIscquencc of voluminous and routine computations. Therefore we have
[z 04, 0:](0)E(S)) = tlzge, D, a)(m)(s)

and we have the theorem.

4. NON-ARCHIMEDEAN CASES

Finally, we explain some prospects for the non-Archimedean cases. It will be possible to com-
plete the formulation if we find the right definition of the map l,: Z(T#, S#) — H'(T', S#) in the
non-Archimedean cases (see §2.4). More precisely, the arguments of §§2.5-3.2 are still available
with a few modifications if the definition of [, is determined. Then, by using the compatibility
between the local theta correspondence and the localization of the global theta correspondence,
we will have a lot of examples of the descriptions of the local theta correspondences in terms of
Langlands parameters.
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