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Queen Mary University of London 

Some facts on cusps for「o(N)

a Any cusp c E x;。(N)(<C)is equivalent to 

a 
c = 7, for some LIN, gcd(a, L) = l. 

L 

We call L the denominator of c. There are exactly ¢(gcd(L, N/L)) 

cusps of denominator L. 

a The width of a cusp c = I equals 

N 
w(c) = 

gcd(L叉N).

w(c) is the sma I lest integer w such that ('/_ :) (6『)（f:）―1 E「o(N).

a The Atkin-Lehner involutions: Let c = I be a cusp. Then there exists 

an Atkin-Lehner involution taking c to a cusp of denominator L'iff 

valp(L') E {valp(L), valp(N) -valp(L)} for each plN. 
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The mai e main question 

a Let f = I:n>O ar(n)q叫q=e加 'zbe a holomorphic newform of 

weight k, level N, trivial character. 

a Normalize ar(l) = 1. Then it well-known that all ar(n) E乞．

a Fourier expansion at c: Let c =,oo with, E SL2(Z). 

(f|い）（z)＝ど叫n;c)q-;fu.

n2'.0 

Note: ar(n; c) only well-defined up to a w(c)'th root of unity. 

a What can we say about the "denominators" of ar(n; c)? 

For a prime p, we are interested in good lower bounds for 

val p (f I c) : = i ~ ((val p (a r (n; c))). 
n2::0 

Here, valp:厄→ QU { oo} is the p-adic valuation with valp(P) = 1, p 

extended to C via any fixed choice of isomorphism (C'.::::'.已p

Let f be a norm a I ized newform for「o(N)of weight k. 

Find good lower bounds for valp(fl,) := infn2::o(valp(ar(n; c))). 

0 Clearly, valp(fl00) = 0. 

8 The q-expansion principle: If the Fourier coefficients at infinity lie in a 
互豆

ring R, then the Fourier coefficients at any cusp lie in R[l/N, erf]. 

In particular, valp(flc) = 0 if pf N. 

8 Suppose N is squarefree and Pl N. Then using Atkin-Lehner operators, 

all cusps can be moved to oo. An easy calculation now shows that: 

叫 (fK)＝{。—; if valp(L) = 0, 

if valp(L) = 1. 

0 Nothing much previously known for general N. Some generic bounds 
exist due to Conrad using intersection theory on regular stacky 

surfaces, but are quite weak and have other issues. 

8 For the general case, it suffices (thanks to AL operators) to restrict to 

cusps of denominator L such that L 2 IN. 
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Examples 

N = 23 ・ 3, k = 2, p = 2 

f = q _ q2 + q4 + q5 + 2q 7 +... 

伍(1½) = ! (;q¼ + iq½ -2iq~ +...). 
So vab(fl1;2) = -1. 

N = 2. 3見k= 2, p = 3 

f=qーが＋ q4+ 3q5 -4q7 +... 

伍 (1二｝） ＝上(1 2 4 
54 
温q~ 十（『島 qf4 +温q豆十．．．）

伍 (§1lo)＝！ (（詞＋索q½ + (54qi 
6 

54q 6十．．．）．

So val3(fl113) = -3, vah(fl1;9) = -1. 

Exam pies (contd.) 

N = 52, k = 4, p = 5 

f = q + 4q2 -2が＋8q4+ +... 

f 14 (§ ~) = ½ ((-4(含ー 3(s-3) q + (-12(Jー16〈s-12) q2 +...). 

vals(fl 1;5) = -1/2. 

N = 72, k = 4, p = 7 

f = q -5 q2 + 1 7 q4 -45 q8 +... 

印(}1)=}(（-2<9 -4〈1-6(？ -8§ -3〈7- 5) q 

+ (-30〈『+10〈}-20〈?-15§ -10〈7-5) q2 +...) 

vah(fl1;7) = -1/6. 
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Exam pies (contd.) 

N = 28 ・ 3, k = 2, p = 2 

f = q + q3 + 4q7 +... 

伍（1½) 
1 3 

= 192 (〈128q声＋（紬q声＋．．．）

fl2は口1)
1 15 

= 48 （如q栢十．．．）

伍(~ ½)＝点（ふ砂＋．．．）
fに(156□1) 

1 7 2 

= 1 (2国qi十．．．）

vah (f I 1 ;2) = -6, vah (f I 1; 4) = -4, val 7 (f 13 /8) = -2, val 7 (f Is; 16) = 1. 

The main theorem 

Theorem 1 

For a newform f of weight k for「o(N),a prime p, and a cusp c of 

denominator L, the quantity valp(flc) depends only on f and valp(L). 

For O ::; valp(L)さ
valμ(N) p, we have the bounds valp(flc) 2: 

゜—½ (valp(N) -2valp(L)) + 
, 0 

1 
2 

1 -½valµ(L) 

if valp (L) = 0, 

if valp (L) = 1, valp (N) > 2, 

if valp (L) = ½ valp (N) = 1, 

otherwise. 

For p = 2, we get even stronger bounds. 
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The main theorem 

Theorem 1 (contd...) 

If p = 2 we have the additional stronger bounds. 

vab(fie) こ―½ (valμ(N) -2valμ(L)) 

＋＜ ゜k 
2 

½+1-¼vab(N) 

゜

if vab(L) = ½vab(N) = 1, 

if vab(L) = ½vab(N) E {2, 3, 4 }, 

if vab(L) = ½val2(N) > 4, 

if vab(L) = 3, vab(N) > 6. 

a We have checked experimentally that our bounds are sharp for 

newforms associated to elliptic curves and pさ17.

An application to the Manin constant 

The modularity theorem (Wiles-Taylor, B-C-D-T) 

Given an elliptic curve E /Q of conductor N, 

a (E is modular) There exists a newform f of weight 2 for「o(N)and 

with integral Fourier coefficients such that ar(P) = p + 1-IE(IFp)I 

a (E has a modular parametrization) There is a surjection 

¢: X。(N)Q→ E.

Note: cp is not unique, so it is common to normalize ¢ to be optimal, that 

is, deg(cp) to be the least possible. 

a The Manin constant cc/> is defined byが(wE)= Ccp• 四 where WE is 

the Neron differential and wr = 21rif(z)dz. 

Conjecture (Manin, 1972) 

If¢ is optimal then c</> =土1
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Conjecture (Manin, 1972) 

If¢ is optimal then C¢ =土1

a (Gabber in PhD studies; Edixhoven, 1991) C¢ is an integer. 

a (Abbes-Ullmo, 1996): If¢ is optimal and pie¢, then plN. 

a Mazur, Raynaud, Agashe-Ribet-Stein,….: Further improvements 

a (Cremona): Computationally verified conjecture for all N三390000.

a (Cesnavicius, 2018): If¢ is optimal and pie¢, then p打N.(This 

implies Manin's conjecture if N is squarefree) 

Recall: v2 (N)三8,v3(N)こ5,vp(N)三2for p > 3. 

Theorem 2 

For「1(N)C 「C 「o(N), every suりection¢: (XサQ→ E satisfies 

C¢ I 6 ・ deg（の）， andif N is cube-free or「=「1(N),then even C¢ I deg(¢) 

This is interesting because deg(¢) is a has little in common with N. No 

apparent connection between the conditions p叶Nand pl deg(¢) 

A very brief sketch of proof of Theorem 2: 

0 Using Theorem 1, we show that 

wr lies in the Z-lattice H0(X。(N)z,Q) c H0(X。(N)CQ，炉）， （1)

where D denotes the relative dualizing sheaf. (Arithmetic geometric 

considerations reduce this to certain bounds on the p-adic valuations 

of the denominators of the Fourier coefficients of f at all the cusps of 

Xo(N)c. Theorem 1 gives much stronger bounds than needed.) 

8 Using above, we show that wr lies in an even a priori smaller lattice 

Ho（ふ（N），炉） thatseems otherwise inaccessible. Here⑯ (N) is the 

Neron model of the Jacobian J0(N). 

8 Now Theorem 2 follows from the fact that the composition 

7r 0 戸： E→」o(N)→Eis multiplication by deg(¢) 

For the rest of this talk I will focus on the proof of Theorem 1 
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Recall Theorem 1・ 

Theorem 1 

For a newform f of weight k for「o(N),a prime p, and a cusp c of 

denominator L, the quantity valp(flc) depends only on f and valp(L). 

For O :S valp(L)さ
valμ(N) p, we have the bounds valp(flc) 2:: 

゜—~ (valp(N) -2valp(L)) + 
, 0 

1 
2 

1 -½valµ(L) 

if valp (L) = 0, 

if valp(L) = 1, valp(N) > 2, 

if valp (L) = ½ valp (N) = 1, 

otherwise. 

with sharper bounds for p = 2. 

Fourier expansions and Whittaker models 

In order to prove Theorem 1, for a cusp c =,oo and a prime p, we want 

to prove lower bounds on 

valp(fie) := iQf (valp(ar(n; c))) 
n2'.0 

where 
n 

(f|い）（z)＝ど州n;c)q~. 
n2:0 

Fourier coefficients at general cusps are subtle: e.g., the coefficients 

ar(n; c) are not multiplicative. One way to understand ar(n; c) is via the 

Whittaker model 
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a Let釘： GL2(A)→CCbe the automorphic form associated to f via 

adel ization. 

0 釘 generatesa cuspidal automorphic representation 1r =＠汀v・

a The global Whittaker newform Wr(g) = JQ¥A釘((61)g)心(-x)dx
packages together all Fourier coefficients at all cusps. In particular, 

叫r;c) = Wr(gr,c) for some explicit gr,c E GL尋）
a On the other hand, Wr(g)＝几 W1rv(gv),where 

W1rv : GL2は） →CC is the local Whittaker newform that depends 

only on the local representation叩

An explicit relation 

For a newform f of weight k for「o(N),a prime p, and a matrix 

r = (i_:) E SL2(Z), c = 1, with L2IN, up to a root of unity: 

叫r;c)＝町(ro)（roWr(C)) mrr叩（（：亨））．
qlN 

where ro is the N-free part of r, and uq E勾

a Upshot: Proving lower bounds for valp(fie) reduce to proving lower 
0 qt 

bounds for valp (W四（1也）） forprimes p and q both dividing N, 

t E Z, 0三f三c(；q), Uq E勾

a Since lxlp = p―valp(x), this is a p-adic analogue of the local sup-norm 

question of bounding I W四悩 inhighly ramified cases. (Templier 

2014, S. 2016, Assing 2019) 

a The values of W四 atdiagonal matrices are well-known, the key point 

is to access the non-diagonal elements. 

a Remark: Any matrix g in GL2但q)has a double coset representative 

in N(F)gKi。(n)of the form(『竺 forO ::; £ ::; n; local Atkin-Lehner 

operators halve the range of£. 
qt) 

To prove lower bounds for valp (W1rq ( 
0 qt 

四~ ;))  we refine and extend a 

method developed for the sup-norm problem (S. 2016-2019, Assing 

2018-2019, Assing-Corbett 2019,…） 
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The local functional equation(」acquet-Langlands,1972) 

For a non-archimedean local field F, an infinite-dimensional representation 

1r of GL2(F), an element W in the local Whittaker model of 1r, and a 

character μ of Fx, putting 

Z(W,s,μ) = ix W((Y 1)}µ(y}IYl5—｝かy
FX 

Z(W, s, μ) 

L(s,1rRμ) 
c(s,1rRμ)= 

Z((~1 6) ・ W, 1 -s, μ―1) 

L(l -s, 1r R µ—1) ' 

Above c(s, 1r) is the local GL2 E-factor (Jacquet-Langlands). 

Using this, one can formulate a "basic identity" (S, 2016) that writes 

down W匹 (gq)as an explicit linear combination of terms involving GL2 

and GL1 E-factors. 

For example, if 1r is supercuspidal, the basic identity becomes 

The basic identity for supercuspidal reps 1r 

For a supercuspidal rep 1r of PGL2（ふ）， uE z;, and 1 :S R :S ~）・

(2) 

叫『い＝（l-q―1戸 q―: L c(l/2, μ) c(l/2, μ―11T)μ(u). (3) 

c(μ)=R 
c(μ1r）＝一t

For other representations, the basic identity takes a similar (though slightly 

more complicated) shape. The resulting formulae were written by me in 

some cases (S, 2016 -2018) and in all cases by Assing in his thesis (2019) 

So we need to solve the problem of computing p-adic valuations of 

E-factors of representations of GLr（ふ） wherer = 1, 2. 
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The case q # p 

Theorem 3 

For a finite extension F心q,an infinite-dimensional ramified 

representation 1r of GL2(F) associated to a holomorphic newform, and a 

matrix g E GL2(F), we have W1r(g) E Z [½]. 
In particular, if p # q, then valp(W1r(g)) 2 0. 

This relies on a formula for the Whittaker newvector in terms of a family 

of nonarchimedean 2巳 hypergeometricintegrals (Assing 2019; also 

unpublished works of Templier (2012) and Hu (2016)) 

Sketch of proof of Theorem 3 (assuming above-mentioned formula) 

Suppose G compact group, KこGof finite index, vol(K) E R. Let 

f: G f-----+ R be a right-K-invariant function. Then JG f(g)dg E R. 

So we are reduced to the case q = p. 

The case q == p 

So the next problem is: Let F be a finite extension of Qp. Understand the 

p-adic valuations of c(l/2, μ) and c(l/2, μ R 1r) whereμ is a finite order 

character of Fx and 1r be an infinite-dimensional, irreducible, unitary 

representation of PGL2(F) 

a If 1r is principal series, we need to also assume that it comes from a 

global holomorphic newform (otherwise we cannot expect good 

results) 

a Note: c(l/2, μ) and c(l/2, μ@ 1r) are algebraic numbers of 

absolute value 1, but are not necessarily roots of unity. 
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The case of GL1 

a The GL1 E-factors defined by Tate are closely related to classical 

Gauss sums. 

a For a classical Gauss sum, there is a well-known result (Stickelberger's 

congruence) that gives its p-adic valuation 

Theorem 4 

For a finite extension F /羞 anda character x: Fx→(C x of finite order, 

O if a(x) = 1, then, 

1 ［野：『p], s(x) 
叫（e（う'x))=—+ , 0さs(x):::;(p-1)［野／恥]; 2.  p-1 

o ifぐ＝ 1or a(x) > 1, then E（ふx)is a root of unity, and so 

1 
valp (E (i, X)) = 0. 

2 

A classification of infinite-dimensional, irreducible, unitary representation 

of GL2(F) and trivial central character. 

0 Principal series representations 

8 Special representations (twists of Steinberg) 

8 Supercuspidal representations: 
a Dihedral supercuspidal 
b Non-dihedral supercuspidal (can only occur if p = 2) 

All other cases reduce to GL1 

In cases 1, 2 and 3a, one can write the GL2 E-factor in terms of GL1 

E-factors. So the problem here reduces to one we have solved. 

Analysis of non-dihedral representations 

There are exactly 16 representations of Type 3b. Using the Local 

Langlands correspondence and the basic identity we write down W7T(g) 
exactly in each case, from which the required bounds follow. 
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a We now know how to estimate the p-adic valuations of GLr-E-factors 

for r = 1, 2. 

w 
0 pt 

e The basic identity expresses W,.e (~ 生 ） as an explicit finite sum 

involving the above. 

a This allows us to prove our main local result, which gives sharp p-adic 

bounds for valμ(Wnp (..) in all cases. 

Here is a special case of our main local result: 

A special case of our local theorem 

Theorem 5 

Let p be odd and F心P a finite extension. Let 1r be a supercuspidal 

representation of GL2(F), with trivial central character and c(1r) = n > 2 

For O::; £::; n/2 and u E OF, 

叫(W,,((~u;亡）））＞｛゚ ift=0,1, 
=---l [IF F : IF』(1-!) otherwise. 

a Our main local theorem gives such bounds (with lots of subcases) 

covering all representations and conductors. 

a If p = 2, we only do the case F = Q2 

a We get stronger bounds forふ byexploiting additional parity 

cancellation in sums of E-factors. 

Now, Theorem 1 follows as described earlier. 
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That is, we combine the local bounds on valµ(W1r((~ u;~e))) 
given by (the general version of) Theorem 5 with 

叫r;c)＝叫ro)（roWr(C)) k/2 rr叩（（：亨））
qlN 

to obtain the sharp lower bounds for valp(flc) for holomorphic newforms f 
at each cusp c, which is the content of Theorem 1. 


