振動と同期に対する相互作用の時間遅れの効果: 遺伝子発現の振動現象に関する共同研究を題材と して

東京大学大学院新領域創成科学研究科 郡 宏 Hiroshi Kori Graduate School of Frontier Sciences, The University of Tokyo

1 序

エネルギー開放系では自励振動とよばれる自発的で安定な振動が可能である [1]。その 典型例として、メトロノームや Belousov-Zhabotinsky 反応などの化学反応系が挙げられ る。そのような自励振動ダイナミクスは数学的にはリミットサイクルとして記述される。 複数の自励振動子が相互作用を持つと様々な集団現象が生み出される [2-4]。特に、同期、 すなわち各振動子の振動周期が揃う現象はいたるところで観察される。振動タイミングが 全体でほぼ一致する同相同期や、2 つの振動子の振動がちょうど逆のタイミングとなる逆 相同期が典型例として挙げられる [5]。Belousov-Zhabotinsky 反応などの振動性化学反 応系は、良く撹拌すれば1 つの振動子とみなせるが、ペトリ皿上に静置したすると実空間 に広がる近接相互作用系とみなせ、そのような系ではターゲット波やスパイラル波も生成 される [1-3]。

振動子などの動的ユニットの間の相互作用には時間遅れがあることが多い。例として神 経細胞を挙げる。神経細胞はスパイクあるいは活動電位と呼ばれる一過性の電気的活動を 示すが、このとき化学シナプスと呼ばれる情報伝達機構によって、他の神経細胞の電気的 活動を促進したり抑制したりする [6]。この情報の伝達には典型的には数ミリ秒の時間遅

^{〒277-8561} 千葉県柏市柏の葉5丁目1-5

れを伴うが [7]、数十ミリ秒程度の大きな時間遅れもある [8]。神経細胞はその種類や条件 によってほぼ周期的にスパイクを生成する自励振動子となり、数十ミリ秒程度の周期を持 つ速い振動も可能である。伝達の遅れは、同期などの集団ダイナミクスに本質的な影響を 与えると考えられる(例えば Izhikevich による数理的研究を参照 [9])。

著者は相互作用の時間遅れが与える集団ダイナミクスへの影響に興味を持ち、一連の研 究を行ってきた [10–18]。時間遅れのある系は実質的に無限自由度となり、たとえば、1 変数のシステムにおける安定性解析においても超越方程式を解く必要があるなど解析が煩 雑になる(たとえば文献 [19] を参照)。一方、弱結合する振動子系においては、本稿で解 説する近似が有効で、それによって取り扱いが格段に簡素化される。著者の研究の多くで この近似を用いている。文献 [10,11] では、大域結合振動子集団で起こることが知られて いたクラスタ状態間の遅い転移現象、いわゆる slow switching 現象が、相互作用の遅れを 導入すると同相同期状態の不安定化に伴って現れることを発見し、その分岐構造をいくつ かの数理モデルに対して示した。これらの研究を通して、時間遅れによって様々な秩序状 態を安定化できることを着想した。そのアイディアに基づき、集団を特定の秩序状態に至 らせるフィードバック制御手法を開発し、数値実験や化学反応系における実験によって検 証した [12–15]。

論文 [17,18] は遺伝子発現振動の分子機構に関する研究で、相互作用の時間遅れの効果 にフォーカスしている。著者は、この系で現れる現象の予測や理解のために、遺伝子発現 の細胞間相互作用系の数理モデルの構築と解析に携わった。特に、時間遅れの変化によっ て、振動周期が増減したり振動が消失する現象が起こることが予測でき、実際にそれが起 こることが実験で確かめられた。本解説ではこの遺伝子発現振動に関する研究を手短に紹 介する。さらに、本稿では、遺伝子発現を記述するモデルよりも抽象的な位相振動子や振 幅方程式を用いて、現れる現象を定性的および定量的に議論する。

2 遺伝子の発現振動と同期に対する相互作用の遅れの効果

生体内では様々な遺伝子の発現量が振動しており、その振動を何らかの方法で阻害する と特定の機能が損なわれるという例が多数ある [20]。脊髄動物の発生過程ではある時期に 体節形成が行われるが、正常な体節形成が起こるためには Hes7 と呼ばれる遺伝子の発現 振動が不可欠である [20]。また、神経発生過程では、神経幹細胞の分化に Hes1 と呼ばれ る遺伝子の発現振動が重要な役割を担っていることがわかっている [20]。

Hes7 と Hes1 の発現振動や細胞間相互作用の分子機構は類似しており、また、どちらも 数時間の振動周期を持つ。本稿では Hes7 と Hes1 を区別せず、ともに Hes と呼ぶことと する。個々の細胞における Hes の発現振動は、Hes の発現が、時間遅れを伴って Hes 遺 伝子の活性を抑制する自己抑制によって生じる。文献 [21] では自己抑制の遅れが振動発 生に不可欠であることが数理モデルと遺伝子工学的手法による実験観測の両面から示され ている。文献 [19] などで解説されている通り、数学的にはこのような遅延フィードバッ クによる振動の発生はよく知られている。時間遅延が臨界値に達すると減衰振動からリ ミットサイクル振動への転移、すなわち、Hopf 分岐が起こることによって振動状態が現 れるのが典型的である。

Hes 遺伝子は Delta-Notch と呼ばれる分子機構によって細胞間で相互抑制的に影響を 与え合うことが知られている。また、その相互作用には様々な要因による時間遅れが存在 する。文献 [17] において、Hes の相互作用系の数理モデルが提案されている。このモデル の概略を図 1 に示す。文献 [17] では現実に近づけるために 2 次元空間に広がった系を考 えたが、ここでは簡単のため、次の方程式で表される 2 つの細胞の相互抑制系を考える:

$$\frac{dX_1}{dt} = v \frac{K_1^m}{K_1^m + X_1(t - \tau_1)^m} \frac{K_2^n}{K_2^n + X_2(t - \tau_2)^n} - rX_1,$$
(1a)

$$\frac{dX_2}{dt} = v \frac{K_1^m}{K_1^m + X_2(t-\tau_1)^m} \frac{K_2^n}{K_2^n + X_1(t-\tau_2)^n} - rX_2.$$
 (1b)

ここで $X_i = X_i(t)$ は時刻 t [h] における細胞 i の Hes タンパク質の量を表す。 $\tau_1 \ge \tau_2$ は、それぞれ、Hes の自己抑制と細胞間相互抑制の時間遅れを表し、変数 X_i に時間遅れ がある場合のみ $X_i(t - \tau_1)$ などと時刻を明示している。 $m \ge n$ は、それぞれ、自己抑制 と相互抑制の非線形性を表すパラメタである。 $v \ge r$ は、それぞれ、Hes タンパク質の 最大生成速度と分解率を表す。以下の数値計算において、 $\tau_1 \ge \tau_2$ 以外のパラメータ値は $v = 10, r = 2, K_1 = 1, K_2 = 2, m = 2, n = 2$ に固定している。数値シミュレーション結 果は、これらのパラメータ値をある程度変化させても定性的に保たれる。また、いくつか の初期条件を試した限り初期条件依存性は観察されていない。

まず $\tau_1 = 0.75$ に固定した場合の時系列 $X_i(t)$ を Fig.2 に表示する。 τ_2 の値によって、 振動停止状態 (a,c)、同相同期 (b)、逆相同期 (d) が得られる。図 Fig.3(a) に X_i の振動振 幅 ΔX と振動周期の τ_2 依存性を示す。ここで振動振幅 ΔX は $X_1(t)$ の 100 $\leq t \leq$ 120 における最大値と最小値の差で定義している。 τ_2 を変化させると、 $\Delta X = 0$ と $\Delta X > 0$ となる領域が交互に現れる。すなわち、振動が停止している領域と、起きている領域が交 互に現れる。振動停止状態は、振動死あるいは振幅死とも呼ばれる。また、各領域内で、 τ_2 の増加に伴い振動周期が増加することが観察される。なお、振動振幅 ΔX からは振動 間の位相関係を読み取ることができないが、図 2 のように時系列を観察すること、最初の 山が同相同期 (in-phase)、次の山が逆相同期 (anti-phase)、そしてその次の山がまた同相 同期に対応していることがわかる。次に、 τ_1 も変化させ、 ΔX を観察したのが図 3(b) である。 τ_1 が小さすぎると振動は起こらない。また τ_1 が十分大きくなるにつれて振動停止状態の領域が狭くなっていることが観察される。

数理モデルによってこのような予言がされたが、実際に Hes の発現振動でこれらに対応 する現象が起きていると考えられる [17,18]。文献 [17] では、相互抑制の時間遅れ τ_2 を 操作するために、図 1 の Dll 遺伝子の発現を早めたり遅めたりする遺伝子操作を行った。 その結果、どちらの場合においても野生株に比べ遺伝子変異株では Hes 振動が大幅に減 弱した。この結果を図 3(a) と照らし合わせる。野生株の τ_2 が強い振動をもたらすような 値に近いと仮定すると、 τ_2 をそこから増減させると振動は確かに弱まるはずである。Hes の振動が機能的に重要であれば、野生株における τ_2 が、Hes の振動振幅をできるだけ大 きくするように定まっている考えることは妥当かもしれない。

さらに、文献 [18] では、Delta-Notch の分子機構に影響を与える Lfng という遺伝子を 欠損させる実験を行った。細胞間相互作用を保った状態で培養した場合は、野生株と比較 して、Hes の発現振動は減弱し、また細胞間の位相関係も乱れるようになった。さらに、 振動周期が短くなった。ところが興味深いことに、Lfng 欠損株の細胞を分離培養すると、 振動振幅も周期においても、野生株のものと明確な差は示さなかった。つまり、細胞間相 互作用が振動の減弱と周期の短縮をもたらしたと考えられる。さらなる実験で、Lfng を 欠損させると、細胞間相互作用が 15 分程度早まることが確認された。すなわち τ_2 が 15 分程度短くなると解釈できる。したがって、振動振幅が減弱することは、上述の文献 [17] に対するものと同様に解釈できる。また、振動周期が短くなることも数理モデルでの予言 と一致する (図 3(a))。位相関係の乱れに関しては数理モデルでは議論してないが、振動 振幅が下がると相互作用が実効的に弱まるので、同期の安定性が低下することが期待でき る。したがって、系にノイズを加えると、 τ_2 の変化によって位相関係の乱れが増幅するこ とが再現できると予想される。

これらの現象は、定性的に、どの程度一般的に起こることであろうか? また、現象を、 数理モデルから定量的に説明することが可能であろうか? 本稿では特に、(i)時間遅れの 変化によって安定化する同期状態が変化すること、(ii)時間遅れが増加すると振動周期も 増加すること、(iii)時間遅れの変化によって振動停止状態になることの3点について議論 する。位相振動子モデルや振幅方程式などの普遍的な数理モデルを用いて、これらが一般 的に起こることを示す。また、位相振動子モデルを用いて、(ii)について定量的な予言が できることを示す。

本節の最後に式 (1) や文献 [17] で提案された数理モデルについて補足する。これらの モデルは、文献 [22] で提案されている 1 変数の自己抑制系を相互作用系に拡張したもの

図1 Hes 遺伝子の細胞間相互抑制モデル。通常の矢印と先が平らな記号は、それぞれ、促進と抑制の効果を表す。遺伝子制御ネットワークは概ね左のようなもので、Dll と呼ばれる遺伝子を介して細胞間相互作用が起こる。これをさらに単純化したものが 右のネットワークである。実効的に相互抑制系によって記述できる。

となっている。1 変数の場合の振動の条件や性質については文献 [22] で数値的に調べられ ている。また、相互抑制系に関しては、文献 [23] に類似した数理モデルが提案されてお り、詳細な数値的解析がなされている。

図 2 相互抑制モデル (1) における Hes タンパク質量の時間変動。相互抑制モデル (1) の数値シミュレーションによる結果。 $\tau_1 = 0.75$ に固定し、いくつかの τ_2 について調べた。

図 3 相互抑制モデル (1) の数値シミレーション結果。(a)Hes タンパク質量の振動振幅 ΔX と振動周期 Period の τ_2 依存性。 $\tau_1 = 0.75$ に固定し、 τ_2 依存性を調べた。(b) 振動振幅 ΔX の τ_1, τ_2 依存性。

3 位相記述を用いた相互作用の時間遅れの効果の解析

3.1 時間遅れのある振動子系の位相記述

次の2つの同一な性質を持つリミットサイクル振動子の相互作用系を考える:

$$\dot{x}_1 = g(x_1) + Kh(x_1(t), x_2(t-\tau)),$$
 (2a)

$$\dot{x}_2 = g(x_2) + Kh(x_2(t), x_1(t-\tau)).$$
 (2b)

ここで $x_i(t)$ は振動子 i の状態、 $g(x_i)$ は振動子 i の固有のダイナミクス、 $h(x_i, x_j)$ は振動子 i が振動子 j から受ける影響を表す。また、K は相互作用の強さを表し、時間の逆数 の次元を持つパラメータであるとする。相互作用には時間遅れ τ があるとし、これを相互 作用関数 h の引数である x_j を $x_j(t - \tau)$ とすることによって表現している。このモデル において、振動子間で異なる時間遅れや、さらに、たかだか O(K) の大きさの不均一性、 外力、あるいはノイズなどが存在しても以下の位相記述が可能であるが、ここでは単純さ を優先し式 (2) を考える。

蔵本の位相縮約理論 [3] を適用すると、相互作用の強さ K が十分小さいとき、本モデル は良い近似で次の位相モデルに縮約される。

$$\dot{\phi}_1 = \omega + K f(\phi_1(t) - \phi_2(t - \tau)),$$
(3a)

 $\dot{\phi}_2 = \omega + K f(\phi_2(t) - \phi_1(t - \tau)).$ (3b)

ここで、 ϕ_i は振動子 i の位相、 ω は固有振動数、f は位相結合関数と呼ばれる 2π 周期関数である。 ω は孤立系 $\dot{x} = g(x)$ のリミットサイクルの周期 T を用いて、 $\omega = \frac{2\pi}{T}$ で定義される。また関数 f は g と h が与えられると決まる。

元のモデル (2) に比べると (3) では自由度が大幅に縮減しているが、相互作用の時間遅 れは残っており、それが解析の障害となる。このような時間遅れのある位相振動子モデル における安定性解析については文献 [24] を参照されたい。ここでは、論文 [25] で提案さ れ、[10] などで用いられている近似法を採用する。

式(3)を積分すると次の評価ができる:

$$\phi_2(t-\tau) = \phi_2(t) - \omega\tau + O(K\tau). \tag{4}$$

これを (3a) に代入すると

$$\dot{\phi}_1 = \omega + Kf(\phi_1(t) - \phi_2(t) + \omega\tau + O(K\tau)) \tag{5}$$

$$= \omega + Kf(\phi_1(t) - \phi_2(t) + \omega\tau) + O(K^2\tau).$$
(6)

これより、 $K^2 \tau \ll K$ つまり

 $K\tau \ll 1 \tag{7}$

のとき、結合に時間遅れのある位相振動子モデルは、時間遅れのない位相モデルでよく 近似できる。このとき、時間遅れの効果は、位相結合関数の位相シフト ωτ として表現さ れる。

3.2 同期状態の存在と安定性

前節の近似により式(3)は次の式に簡略化された:

$$\phi_1 = \omega + K f(\phi_1(t) - \phi_2(t) + \omega\tau), \tag{8a}$$

$$\dot{\phi}_2 = \omega + K f(\phi_2(t) - \phi_1(t) + \omega\tau). \tag{8b}$$

同期状態を解析するために、位相差 $\psi(t) = \phi_1(t) - \phi_2(t)$ を導入する。式 (8) の辺々を引 くと

$$\dot{\psi} = Kg_{\tau}(\psi) \tag{9}$$

を得る。ここで $g_{\tau}(\psi)$ は次式で与えられる奇関数である:

$$g_{\tau}(\psi) = f(\psi + \omega\tau) - f(-\psi + \omega\tau).$$
⁽¹⁰⁾

$$g_{\tau}(\psi^{*}) = f(\psi^{*} + \omega\tau) - f(-\psi^{*} + \omega\tau) = 0$$
(11)

を満たす定数である。同相 (in-phase) 同期 (すなわち $\psi^* = 0$) および逆相 (anti-phase) 同期状態 (すなわち $\psi^* = \pi$) は常に $g_{\tau}(\psi) = 0$ を与えるので、関数 f に依らず常に存在 する。 $\psi = 0, \pi$ 以外の位相ロック状態は異相 (out-of-phase) 同期状態と呼ばれ、関数 f によっては存在する場合がある。

次に同期状態 $\psi = \psi^*$ の安定性を調べる。そのため $\psi(t) = \psi^* + \xi(t)$ と置き、 ξ を微小 として (9) を線形化すると

$$\dot{\xi} = K\lambda\xi \tag{12}$$

を得る。ここで

ち **ψ*** は

$$\lambda = g_{\tau}'(\psi^*) \left(= \left. \frac{dg_{\tau}}{d\psi} \right|_{\psi = \psi^*} \right) \tag{13}$$

である。同期状態 $\psi = \psi^*$ は、 $K\lambda < 0$ のとき漸近安定、 $K\lambda > 0$ のとき不安定である。 特に同相状態と逆相状態に関しては

$$g'_{\tau}(\psi^*) = 2f'(\psi^* + \omega\tau) \tag{14}$$

なので、同相状態と逆相状態は、それぞれ $Kf'(\omega\tau) < 0 \ge Kf'(\pi + \omega\tau) < 0$ のとき漸近 安定となる。

3.3 同期状態における振動周期

同期状態 $\psi = \psi^*$ について考える。このとき、式 (11) に注意すると、振動子 1 と 2 は どちらも

$$\dot{\phi}_i = \omega + K f(\psi^* + \omega\tau) \tag{15}$$

に従うことがわかる。 $\dot{\phi}_i$ を振動子 i の実効的振動数、あるいは単に振動数と呼ぶ。これは 同期状態においては定数であり、固有振動数に比べ $Kf(\psi^* + \omega\tau)$ だけ増減する。

ここで、実効的振動数の時間遅れ依存性を考察する。今、 $\tau = \tau_0$ で同相状態 ($\psi^* = 0$) が安定であるする。さらに、そこから $\Delta \tau$ だけ時間遅れを増加させた、つまり $\tau = \tau_0 + \Delta \tau$ とする。 $\Delta \tau$ が小さい時

$$\dot{\phi}_1 \simeq \omega + K f(\omega \tau) + K f'(\omega \tau) \Delta \tau$$
 (16)

なので、 $\Delta \tau$ の効果による振動数の増減は $Kf'(\omega \tau_0)$ の符号に依存する。同相状態が安定 なときは $Kf'(\omega \tau_0) < 0$ なので時間遅れの増加は振動数を減少させる、すわなち、振動周 期が増大することがわかる。このことは逆相同期でも同様である。

相互作用の時間遅れと振動周期の間にこのような一般的関係があることは興味深い。また、この関係性が不安定な同期状態では逆になることにも注意したい。つまり、 $Kf'(\omega\tau_0) > 0$ の場合は同相状態は不安定なのだが、そのような同相状態に対しては、時間遅れの増加とともに振動周期が減少する。

3.4 簡単な例

例として、式 (8) において $K = 1, f(\phi) = -\sin \phi$ を考える。このとき (11) を満たすの は $\psi^* = 0, \pi$ のみであり、異相状態は存在しない。また

$$f'(\psi^* + \omega t) = -\cos(\psi^* + \omega \tau) \tag{17}$$

である。遅れ *τ* を 0 から増やしていくと、*ωτ* = $\frac{\pi}{2}$ を境に安定状態は同相状態から逆相状態に瞬時に切り変わる。つまり、一方が安定なときは他方が不安定であり、双安定となるような時間遅れの範囲はない。振動数は、たとえば同相状態に対しては

$$\phi_i = \omega - \sin \omega \tau \tag{18}$$

である。時間遅れを $0 \le \omega \tau < 2\pi$ の範囲に限定すると同相同期は $0 \le \omega \tau < \frac{\pi}{2}$ および $\frac{3\pi}{2} < \tau < 2\pi$ のとき安定であるが、そこでは τ が大きくなると振動数が小さくなること が確認できる。

3.5 Hes 遺伝子の考察: 振動周期について

さて、§2 で紹介した Hes 遺伝子の発現の振動について考察する。各細胞の振動が次式 の位相振動子モデルによって記述されるとする:

$$\dot{\phi}_i = \omega + K \sum_{j \in \mathcal{N}_i} f(\phi_i(t) - \phi_j(t - \tau_j))$$
(19)

$$\simeq \omega + K \sum_{j \in \mathcal{N}_i} f(\phi_i(t) - \phi_j(t) + \omega \tau_j).$$
⁽²⁰⁾

ここで \mathcal{N}_i は細胞 *i* に隣接する細胞の集合である。文献 [18] の実験観測によると、時間遅 れ τ_i は、振動子 *j* の細胞が野生株 (WT) か Lfng 欠損株 (KO) であるかに依存する。そ れぞれの場合について、

$$\tau_j = \begin{cases} \tau_{\rm WT} & (j \in {\rm WT}) \\ \tau_{\rm KO} & (j \in {\rm KO}) \end{cases}$$
(21)

と置く。観測によると KO は WT に比べ、時間遅れが 15 分程度短い。すなわち

$$\tau_{\rm WT} - \tau_{\rm KO} = \Delta \tau \approx 15 [\rm m] \tag{22}$$

である。

以下、WT のみ、KO のみの集団を考える。集団は同相状態にあるとし、また、各細胞 に隣接する細胞数が一様に *n* 個であるとする。このとき各細胞の実効振動数は

$$\dot{\phi}_i^{\rm WT} = \omega + Knf(\omega\tau_{\rm WT}) \tag{23}$$

$$\dot{\phi}_i^{\rm KO} = \omega + Knf(\omega\tau_{\rm KO}) \tag{24}$$

となる。ここで、 $\Delta \tau$ が小さいとすると

$$\phi_i^{\rm WT} = \omega + Knf(\omega\tau_{\rm WT}) \tag{25}$$

$$\dot{\phi}_i^{\rm KO} = \omega + Knf(\omega\tau_{\rm WT}) - \mu\omega\Delta\tau \tag{26}$$

と近似できる。ここで

.....

$$\mu = Knf'(\omega\tau_{\rm WT}) \tag{27}$$

である。この μ は、§3.2 に現れた $K\lambda$ と関係する量で、 $\mu < 0$ のとき WT の同相状態は 漸近安定である。そこでここでは $\mu < 0$ を仮定する。すると §3.3 と同様に、結合遅れの 短い KO のほうが振動数が大きい(すなわち振動周期が短い)ことが結論される。これは 実験結果とも式 1 の数値シミュレーション結果とも合う。

ここでさらに、相互作用の遅れの振動周期に対する影響を定量的に議論する。振動数の 差は $\mu\omega\Delta\tau$ で与えられいる。このうち ω は孤立した細胞における振動周期から見積もれ る。また $\Delta\tau$ も計測されている。したがって、 μ を測定できれば振動数の変化を量的に予 言することができる。その方法として以下がありえる。

WT の分離培養細胞集団を考える。ただし、それなりの細胞密度があり細胞間相互作 用が存在しているとする。そして、 $\phi_i^{WT}(t) = \phi^0(t)$ で同相同期しているとする。このと き各細胞は式 (25) にしたがう。今、この集団に位相が多少ずれた WT の細胞を少量混ぜ る。このとき小集団の各細胞の位相を ϕ とすると、これは

$$\dot{\phi} = \omega + Knf(\phi - \phi^0 + \omega\tau_{\rm WT}) \tag{28}$$

にしたがう。 $\psi = \phi - \phi^0$ とおく。位相差 ψ が小さいとき、方程式を線形化すると

$$\dot{\psi} = \mu\psi \Leftrightarrow \psi(t) = \psi_0 e^{\mu t} \tag{29}$$

を得る。ここで ψ_0 は初期の位相差である。同期にかかる時間 T を

$$\psi(T) = \psi_0 e^{-1} \approx 0.37 \psi_0 \tag{30}$$

で定義すると、

$$\mu = -\frac{1}{T} \tag{31}$$

となる。つまり、μは同期にかかる時間の逆数から見積もることができる。

さて、(26)から(25)を辺々引き、(31)を代入すると

$$\omega \Delta \tau = T(\dot{\phi}_i^{\rm KO} - \dot{\phi}_i^{\rm WT}) \tag{32}$$

という関係式を得る。T以外は以下の通り文献 [18] ですでに量れている。

まず、孤立した細胞での観察から、WT と KO の固有振動数 ω はともに以下の程度である:

$$\omega = \frac{2\pi}{200[\mathrm{m}]} \approx 0.031 \tag{33}$$

つぎに、相互作用系の振動数は

$$\dot{\phi}_i^{\text{WT}} \approx \frac{2\pi}{165[\text{m}]} \approx 0.038,$$
(34)

$$\dot{\phi}_i^{\text{KO}} \approx \frac{2\pi}{150[\text{m}]} \approx 0.042 \tag{35}$$

と見積もれる。これらと、 $\Delta \tau = 15 [m] \epsilon (32)$ に代入すると

$$T = 115[\mathrm{m}] \tag{36}$$

が出てくる。同期にかかる時間が2時間程度という予言がされた。

同期にかかる時間は直接実験で定量できるだろう。この時間は、培養の密度に依存する と期待される。たとえば密度を半分にすれば、相互作用の強さ K は半分程度になると考 えられる。もしそうであれば、(27) より、同期にかかる時間は倍程度になる。また、この とき、同期したときの振動数と固有周期との差も半分程度になる。実験検証してみたい課 題である。

4 振動振幅に対する結合の遅れの効果

相互作用が振動振幅に大きな影響を与える状況を考えたい。振動振幅への影響を知り たいので、位相振動子モデルは不適切である。Hes モデルの示す振動は Hopf 分岐によっ て生じていることから、その標準形の Stuart-Landau 振動子系を考えるのが妥当だろう。 具体的に次のモデルを考える:

$$\dot{z}_1 = (\mu + i\omega)z_1 - |z_1|^2 z_1 + K e^{i\eta} (z_2(t-\tau) - z_1),$$
(37a)

$$\dot{z}_2 = (\mu + i\omega)z_2 - |z_2|^2 z_2 + K e^{i\eta} (z_1(t-\tau) - z_2).$$
(37b)

ここで $z_i \in \mathbb{C}$ は振動子 i の複素振幅、 μ は分岐パラメータ、K は相互作用強度、 η は相 互作用の性質に関係するパラメータである。パラメータはすべて実数である。K = 0 の ときは $\mu = 0$ で Hopf 分岐が起こり、 $\mu < 0$ では減衰振動、 $\mu > 0$ ではリミットサイクル 振動が現れる。

このモデルは文献 [26] で解析されているものに、相互作用項の e^{iŋ} を追加したものであ る。時間遅れがあるため解析が煩雑となる。その解析方法は文献 [26] を参照していただ きたい。ここでは §3 と似たような近似を用いて、時間遅れをなくす簡単な解析方法を紹 介する。

まずK = 0のとき、(37)には

$$z_i = \sqrt{\mu} e^{i(\omega t + \theta_i)} \tag{38}$$

という安定なリミットサイクルがあることに注意する。ここで θ_i は任意の定数で、初期 位相を与える。このリミットサイクル上では

$$z_i(t-\tau) = z_i(t)e^{-i\omega\tau}$$
(39)

となる。これを (37a) と (37b) に代入すると

$$\dot{z}_1 = (\mu + i\omega)z_1 - |z_1|^2 z_1 + K e^{i\eta} (z_2 e^{-i\omega\tau} - z_1)$$
(40a)

$$\dot{z}_2 = (\mu + i\omega)z_2 - |z_2|^2 z_2 + K e^{i\eta} (z_1 e^{-i\omega\tau} - z_2)$$
(40b)

を得る。ただし、(39) は (37) の *O*(*K*) を無視した取り扱いとなっており、この近似の精 度には検討が必要であることを注意しておく。

この近似されたモデル (40) において、 完全同期すなわち *z*₁ = *z*₂ を仮定する。完全同 期は同相同期のリミットサイクル版のようなもので、位相も振幅も完全に一致した状態で ある。この状態の安定性解析は省略する。完全同期状態ではそれぞれの振動子は次式に 従う。

$$\dot{z}_i = (\mu + i\omega)z_i - |z_1|^2 z_i + K e^{i\eta} (e^{-i\omega\tau} - 1)z_i$$
(41)

$$= (\widehat{\mu} + i\widehat{\omega})z_i - |z_i|^2 z_i.$$
(42)

ここで

$$\widehat{\mu} = \mu + K(\cos(\eta - \omega\tau) - \cos\eta) \tag{43}$$

$$\widehat{\omega} = \omega + K(\sin(\eta - \omega\tau) - \sin\eta) \tag{44}$$

である。

式 (42) は $\hat{\mu} = 0$ で Hopf 分岐を起こす。安定解は次のとおりである:

$$z_i = \begin{cases} \sqrt{\widehat{\mu}}e^{i(\widehat{\omega}t+\theta)} & \text{for } \widehat{\mu} > 0, \\ 0 & \text{for } \widehat{\mu} \le 0. \end{cases}$$
(45)

ここで θ は任意の定数である。 $\hat{\mu}$ は $\omega \tau = \eta$ で最大となる。このとき $\hat{\mu} > 0$ であるとす る。 τ がその値からずれると振幅は小さくなる。 τ が η からある程度離れ、 $\hat{\eta}$ が負となる 場合は、Hopf 分岐が起こり振幅死が起こる。また、同期したときの振動数 $\hat{\omega}$ は、 τ が増 加すると減少する。つまり振動周期は長くなる。振動周期に関しては、位相振動子モデル のときの解析と同様の結果である。

この節の解析方法はたいへん荒いものだが、振幅死が一般的に起こることや、時間遅れ が振動振幅や周期に与える効果について理解する助けになるだろう。

5 おわりに

時間遅れは様々な系で本質的な影響を与えると考えられる。本稿では特に振動子間の相 互作用の時間遅れの効果を扱った。Hes 遺伝子の発現の振動にみられたいくつかの現象 が、簡単な遺伝子制御ネットワークモデルから予測され、また、そのような現象が位相振 動子モデルや Stuart-Landau 振動子モデルによって定性的に説明できることを解説した。 さらに、時間遅れの振動周期に対する効果については、位相振動子モデルで定量的に取り 扱うことができることを示した。最後の点は、実験検証できれば面白い。

最後に、生命現象のような複雑なシステムに対して、数理モデルを考えることの意義に ついて私見を述べたい。数理モデルの大きな利点の1つは、それが安くて早い実験プラッ トフォームであるということであろう。どのような仮説も、ある項に修正を加える、ある いは、追加したり削除したりしたりして、すぐさまにその効果を検証することができる。 そしてもう1つの大きな利点は、数理モデルはコミュニケーションツールであるというこ とである。実験家と話すときにも、数理モデルが手元にあれば、お互いに似たシステムを 念頭に置きながら具体的に会話することができる。理論研究者が自問自答するときにも、 数理モデルと実験システムを比較しながら、考察を深めていくことができる。

このような観点から、ことに異分野との共同研究においては、数理モデルはできる限り 解釈のしやすい単純なモデルを使うべきだろう。数式の各項の役割を、共同研究者を含む コミュニティ全体に対して明確に説明できることが、そのモデルを使うための必要条件だ と考える。また、数理モデルを用いて様々な仮説を試すときにも、各項の役割が明確であ れば無理なく行える。そしてパラメータ数の少なさも重要なファクターである。パラメー タが多くなるにしたがって、現象を再現するための労力は指数関数的に増大し、それゆ え、一般的に起こりうる現象を見つけづらくしてしまう。単純なモデルで定性的な再現が できた後に、必要に応じて、現実に合わせるためにモデルを複雑化していくのが能率のよ い研究の進め方だと考える。

謝辞

本稿について小澤歩氏と三井譲氏に原稿の詳細なチェックと有用なコメントを頂いた。 この場を借りてお礼申し上げたい。

参考文献

- [1] 郡宏, 森田善久. 生物リズムと力学系. 共立出版, 2011.
- [2] Arthur T Winfree. The geometry of biological time. Springer-Verlag New York, 2001.
- [3] Yoshiki Kuramoto. Chemical Oscillations, Waves, and Turbulence. Springer-Verlag Berlin Heidelberg, 1984.
- [4] Arkady Pikovsky, Michael Rosenblum, and Jürgen Kurths. *Synchronization: a universal concept in nonlinear sciences.* Cambridge University Press, 2001.
- [5] 蔵本由紀,河村洋史.同期現象の科学:位相記述によるアプローチ.京都大学学術出版会,2017.
- [6] Eugene M Izhikevich. Dynamical systems in neuroscience. MIT press, 2007.
- [7] Bernard Katz and Ricardo Miledi. The measurement of synaptic delay, and the time course of acetylcholine release at the neuromuscular junction. *Proceedings*

of the Royal Society of London. Series B. Biological Sciences, Vol. 161, No. 985, pp. 483–495, 1965.

- [8] HARVEY A Swadlow. Physiological properties of individual cerebral axons studied in vivo for as long as one year. *Journal of neurophysiology*, Vol. 54, No. 5, pp. 1346–1362, 1985.
- [9] Eugene M Izhikevich. Polychronization: computation with spikes. Neural computation, Vol. 18, No. 2, pp. 245–282, 2006.
- [10] Hiroshi Kori and Yoshiki Kuramoto. Slow switching in globally coupled oscillators: robustness and occurrence through delayed coupling. *Phys. Rev. E*, Vol. 63, No. 4, p. 046214, 2001.
- [11] Hiroshi Kori. Slow switching in a population of delayed pulse-coupled oscillators. *Phys. Rev. E*, Vol. 68, No. 2, p. 021919, 2003.
- [12] Istvan Z. Kiss, Craig G. Rusin, Hiroshi Kori, and John L. Hudson. Engineering complex dynamical structures: Sequential patterns and desynchronization. *Science*, Vol. 316, pp. 1886–1889, 2007.
- [13] Hiroshi Kori, Craig G. Rusin, Istvan Z. Kiss, and John L. Hudson. Synchronization engineering: Theoretical framework and application to dynamical clustering. *Chaos*, Vol. 18, p. 026111, 2008.
- [14] Yasuaki Kobayashi and Hiroshi Kori. Design principle of multi-cluster and desynchronized states in oscillatory media via nonlinear global feedback. New Journal of Physics, Vol. 11, No. 3, p. 033018, 2009.
- [15] Craig G Rusin, Hiroshi Kori, István Z Kiss, and John L Hudson. Synchronization engineering: tuning the phase relationship between dissimilar oscillators using nonlinear feedback. *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences*, Vol. 368, No. 1918, pp. 2189–2204, 2010.
- [16] Timea Nagy, Erika Verner, Vilmos Gáspár, Hiroshi Kori, and István Z Kiss. Delayed feedback induced multirhythmicity in the oscillatory electrodissolution of copper. *Chaos: An Interdisciplinary Journal of Nonlinear Science*, Vol. 25, No. 6, p. 064608, 2015.
- [17] Hiromi Shimojo, Akihiro Isomura, Toshiyuki Ohtsuka, Hiroshi Kori, Hitoshi Miyachi, and Ryoichiro Kageyama. Oscillatory control of delta-like1 in cell interactions regulates dynamic gene expression and tissue morphogenesis. Genes &

development, Vol. 30, No. 1, pp. 102–116, 2016.

- [18] Kumiko Yoshioka-Kobayashi, Marina Matsumiya, Yusuke Niino, Akihiro Isomura, Hiroshi Kori, Atsushi Miyawaki, and Ryoichiro Kageyama. Coupling delay controls synchronized oscillation in the segmentation clock. *Nature*, Vol. 580, No. 7801, pp. 119–123, 2020.
- [19] James D Murray. Mathematical biology i: an introduction, 2002.
- [20] 影山龍一郎.時間遅れと遺伝子発現振動. Journal of Japanese Biochemical Society,
 Vol. 93, No. 2, pp. 212–220, 2021.
- [21] Yoshiki Takashima, Toshiyuki Ohtsuka, Aitor González, Hitoshi Miyachi, and Ryoichiro Kageyama. Intronic delay is essential for oscillatory expression in the segmentation clock. *Proceedings of the National Academy of Sciences*, Vol. 108, No. 8, pp. 3300–3305, 2011.
- [22] M.A. Lema, D.A. Golombek, and J. Echave. Delay model of the circadian pacemaker. *Journal of theoretical biology*, Vol. 204, No. 4, pp. 565–573, 2000.
- [23] Hiroshi Momiji and Nicholas AM Monk. Oscillatory notch-pathway activity in a delay model of neuronal differentiation. *Physical Review E*, Vol. 80, No. 2, p. 021930, 2009.
- [24] Matthew G Earl and Steven H Strogatz. Synchronization in oscillator networks with delayed coupling: A stability criterion. *Physical Review E*, Vol. 67, No. 3, p. 036204, 2003.
- [25] E. M. Izhikevich. "Phase Models With Explicit Time Delays". Phys. Rev. E, Vol. 58, p. 905, 1998.
- [26] DV Ramana Reddy, Abhijit Sen, and George L Johnston. Time delay induced death in coupled limit cycle oscillators. *Physical Review Letters*, Vol. 80, No. 23, p. 5109, 1998.