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Abstract. We prove that general three- or four-dimensional systems are real-

analytically nonintegrable near degenerate equilibria in the Bogoyavlenskij
sense under additional weak conditions when the Jacobian matrices have a

zero and pair of purely imaginary eigenvalues or two incommensurate pairs of

purely imaginary eigenvalues at the equilibria. For this purpose, we reduce
their integrability to that of the corresponding Poincaré-Dulac normal forms

and further to that of simple planar systems, and use a novel approach for

proving the analytic nonintegrability of planar systems. Our result also im-
plies that general three- and four-dimensional systems exhibiting fold-Hopf and

double-Hopf codimension-two bifurcations, respectively, are real-analytically
nonintegrable under the weak conditions. To demonstrate these results, we

give two examples for the Rössler system and coupled van der Pol oscillators.

1. Introduction

In this paper we study the nonintegrability of systems of the form

ẋ = f(x), x ∈ Rn, (1.1)

where n = 3 or 4 and f(x) is analytic. We assume that x = 0 is an equilibrium,
i.e., f(0) = 0, and the Jacobian matrix Df(0) of f(x) at x = 0 has (I) a zero and
pair of purely imaginary eigenvalues, λ = 0,±iω (ω > 0), for n = 3 or (II) two
pairs of purely imaginary eigenvalues, ±iωj (ωj > 0), j = 1, 2, with ω1/ω2 6∈ Q for
n = 4. Here we adopt the following concept of integrability in the Bogoyavlenskij
sense [6].

Definition 1.1 (Bogoyavlenskij). For any integer n ≥ 1, the n-dimensional system
(1.1) is called (m,n−m)-integrable or simply integrable for some integer m ∈ [1, n]
if there exist m vector fields f1(x)(:= f(x)), f2(x), . . . , fm(x) and n−m scalar-valued
functions F1(x), . . . , Fn−m(x) such that the following two conditions hold:

(i) f1(x), . . . , fm(x) are linearly independent almost everywhere and commute with
each other, i.e., [fj , fk](x) := Dfk(x)fj(x) − Dfj(x)fk(x) ≡ 0 for j, k =
1, . . . ,m, where [·, ·] denotes the Lie bracket ;

(ii) The derivatives DF1(x), . . . ,DFn−m(x) are linearly independent almost every-
where and F1(x), . . . , Fn−m(x) are first integrals of f1, . . . , fm, i.e., DFk(x)

Tfj(x)
≡ 0 for j = 1, . . . ,m and k = 1, . . . , n−m, where the superscript ‘T’ represents
the transpose operator.
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We say that the system is analytically (resp. meromorphically) integrable if the
first integrals and commutative vector fields are analytic (resp. meromorphic).

If an ℓ-degree-of-freedom Hamiltonian system with ℓ ≥ 1 is integrable in the
Liouville sense [3, 26], then so is it in the Bogoyavlenskij sense, since it has not
only ℓ functionally independent first integrals but also ℓ linearly independent com-
mutative (Hamiltonian) vector fields generated by the first integrals. Thus, the
Bogoyavlenskij-integrability in Definition 1.1 is considered as a generalization of
Liouville-integrability for Hamiltonian systems.

Under our assumptions, by power series changes of coordinates, the system (1.1)
is formally transformed to

ẋ1 =− ωx2 + g1(x
2
1 + x2

2, x3)x1 − g2(x
2
1 + x2

2, x3)x2,

ẋ2 =ωx1 + g2(x
2
1 + x2

2, x3)x1 + g1(x
2
1 + x2

2, x3)x2,

ẋ3 =g3(x
2
1 + x2

2, x3)

(1.2)

with x = (x1, x2, x3) for case (I), and to

ẋ1 =− ω1x2 + h1(x
2
1 + x2

2, x
2
3 + x2

4)x1 − h2(x
2
1 + x2

2, x
2
3 + x2

4)x2,

ẋ2 =ω1x1 + h2(x
2
1 + x2

2, x
2
3 + x2

4)x1 + h1(x
2
1 + x2

2, x
2
3 + x2

4)x2,

ẋ3 =− ω2x4 + h3(x
2
1 + x2

2, x
2
3 + x2

4)x3 − h4(x
2
1 + x2

2, x
2
3 + x2

4)x4,

ẋ4 =ω2x3 + h4(x
2
1 + x2

2, x
2
3 + x2

4)x3 + h3(x
2
1 + x2

2, x
2
3 + x2

4)x4

(1.3)

with x = (x1, x2, x3, x4) for case (II), where gj(y1, y2), j = 1, 2, 3, and hj(y1, y2),
j = 1, 2, 3, 4, are formal power series of y1 and y2, which may not be convergent,
such that gj(0, 0),Dx3

g3(0, 0) = 0, j = 1, 2, 3, and hj(0, 0) = 0, j = 1, 2, 3, 4. See,
e.g., Lemmas 1.12 and 1.15 in Section 3.1 of [15] for the derivation of (1.2) and
(1.3). Equations (1.2) and (1.3) are, respectively, represented as

ẋ1 =− ωx2 + α1x1x3 − α2x2x3,

ẋ2 =ωx1 + α2x1x3 + α1x2x3,

ẋ3 =α3(x
2
1 + x2

2) + α4x
2
3

(1.4)

up to O(|x|2) for case (I), and as

ẋ1 =− ω1x2 + (α1(x
2
1 + x2

2) + α2(x
2
3 + x2

4))x1

− (β1(x
2
1 + x2

2) + β2(x
2
3 + x2

4))x2,

ẋ2 =ω1x1 + (β1(x
2
1 + x2

2) + β2(x
2
3 + x2

4))x1

+ (α1(x
2
1 + x2

2) + α2(x
2
3 + x2

4))x2,

ẋ3 =− ω2x4 + (α3(x
2
1 + x2

2) + α4(x
2
3 + x2

4))x3

− (β3(x
2
1 + x2

2) + β4(x
2
3 + x2

4))x4,

ẋ4 =ω2x3 + (β3(x
2
1 + x2

2) + β4(x
2
3 + x2

4))x3

+ (α3(x
2
1 + x2

2) + α4(x
2
3 + x2

4))x4

(1.5)

up to O(|x|3) for case (II), where αj , βj ∈ R, j = 1, . . . , 4. Such simplification is also
one of the standard techniques, especially for bifurcations, in dynamical systems.
See Chapter 3 of [15] and Chapters 3 and 8 of [18] for the details. The above cases
are rather standard applications of the technique, as mentioned below.

Our main results are stated as follows:
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Theorem 1.2. Let n = 3 and suppose that the system (1.1) is transformed to (1.4)
up to O(|x|2). If one of the following conditions holds, then the system (1.1) is not
real-analytically integrable in the Bogoyavlenskij sense near the origin :

(i) α1α4 > 0 ;
(ii) α1α4 < 0 and α4/α1 6∈ Q.

Theorem 1.3. Let n = 4 and suppose that the system (1.1) is transformed to (1.5)
up to O(|x|3). If α1 6= α3, α2 6= α4, and one of the following conditions holds, then
the system (1.1) is not real-analytically integrable in the Bogoyavlenskij sense near
the origin :

(i) α1α3 or α2α4 > 0 ;
(ii) α1α3, α2α4 < 0 and α1/α3, α2/α4 6∈ Q.

We prove these theorems in Section 4. The unfoldings of (1.4) and (1.5),

ẋ1 = νx1 − ωx2 + α1x1x3 − α2x2x3,

ẋ2 = ωx1 + νx2 + α2x1x3 + α1x2x3,

ẋ3 = µ+ α3(x
2
1 + x2

2) + α4x
2
3

(1.6)

and

ẋ1 =− ω1x2 + (ν + α1(x
2
1 + x2

2) + α2(x
2
3 + x2

4))x1

− (β1(x
2
1 + x2

2) + β2(x
2
3 + x2

4))x2,

ẋ2 =ω1x1 + (β1(x
2
1 + x2

2) + β2(x
2
3 + x2

4))x1

+ (ν + α1(x
2
1 + x2

2) + α2(x
2
3 + x2

4))x2,

ẋ3 =− ω2x4 + (µ+ α3(x
2
1 + x2

2) + α4(x
2
3 + x2

4))x3,

− (β3(x
2
1 + x2

2) + β4(x
2
3 + x2

4))x4,

ẋ4 =ω2x3 + (β3(x
2
1 + x2

2) + β4(x
2
3 + x2

4))x3

+ (µ+ α3(x
2
1 + x2

2) + α4(x
2
3 + x2

4))x4

(1.7)

represent normal forms of fold-Hopf and double-Hopf bifurcations, respectively,
where µ, ν ∈ R are the control parameters: At (µ, ν) = (0, 0), fold (saddle-node)
and Hopf bifurcation curves meet for the former, and two Hopf bifurcation curves
for the latter. Such codimension-two bifurcations are fundamental and interest-
ing phenomena in dynamical systems and have been studied extensively since the
seminal papers of Arnold [2] and Takens [39]. See, e.g., [14, 15, 18] for the details.
In [1,42], the nonintegrability of the normal forms (1.6) and (1.7) in the Bogoyavlen-
skij sense were discussed: They were shown to be meromorphically nonintegrable
for almost all parameter values of αj , βj , j = 1, 2, 3, 4, near the x3-axis and the
(x1, x2)- or (x3, x4)-plane, respectively, when (µ, ν) 6= (0, 0), while it was not de-
termined whether they are nonintegrable or not when (µ, ν) = (0, 0). (A special
case of (1.7) in which βj = 0, j = 1, 2, 3, 4, was actually considered in [1] but their
values do not affect the conclusion, as in Theorem 1.3.) Our results show that not
only the normal forms (1.6) and (1.7) with (µ, ν) = (0, 0) but also the full system
(1.1) is real-analytically nonintegrable if the hypotheses of Theorems 1.2 or 1.3 hold
when it is transformed to (1.2) or (1.3) having the O(|x|2)- or O(|x|3)-truncation
(1.4) or (1.5).
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We provide further backgrounds and related work. For a while, we consider the
system (1.1) in a more general situation in which n 6= 3, 4 is allowed but x = 0 is
still an equilibrium.

Definition 1.4 (Poincaré-Dulac normal form). Change the coordinates in (1.1)
such that Df(0) is in Jordan normal form. The system (1.1) is called a Poincaré-
Dulac (PD) normal form if [Sx, f ] = 0, where S is the semisimple part of Df(0),
i.e., S = diagλj, where λj, j = 1, . . . , n, are the eigenvalues of Df(0).

We easily see that the systems (1.2) and (1.3) can be written in PD normal form
for (1.1) under our assumptions although they may not be convergent. Actually,
Eqs. (1.2) and (1.3) become

ż1 = iωz1 + (g1(z1z2, x3) + ig2(z1z2, x3))z1,

ż2 = −iωz2 + (g1(z1z2, x3)− ig2(z1z2, x3))z2,

ẋ3 = g3(z1z2, x3)

(1.8)

and

ż1 = iω1z1 + (h1(z1z2, z3z4) + ih2(z1z2, z3z4))z1,

ż2 = −iω1z2 + (h1(z1z2, z3z4)− ih2(z1z2, z3z4))z2,

ż3 = iω2z3 + (h3(z1z2, z3z4) + ih4(z1z2, z3z4))z3,

ż4 = −iω2z4 + (h3(z1z2, z3z4)− ih4(z1z2, z3z4))z4,

(1.9)

respectively, where

z1 = x1 + ix2, z2 = x1 − ix2, z3 = x3 + ix4, z4 = x3 − ix4.

We easily see that the systems (1.8) and (1.9) are PD normal forms. Henceforth
we also refer to (1.2) and (1.3) as PD normal forms.

Let λj , j = 1, . . . , n, be eigenvalues of Df(0), and let

Zn
j = {p = (p1, . . . , pn) ∈ Zn | pj ≥ −1, pl ≥ 0, l 6= j, p 6= 0}

for j = 1, . . . , n.

Definition 1.5 (Resonance set and degree). Let

Rj =

{
p ∈ Zn

j

∣∣∣∣∣
n∑

l=1

λjpj = 0

}
, j = 1, . . . , n,

and let

R =

n⋃
j=1

Rj .

We refer to R as the resonance set of (1.1) and to

γR = dimQ spanQR

as the resonance degree of (1.1).

For the PD normal forms (1.2) and (1.3) we easily see that the resonance sets
are given by

R = spanN{(1, 0, 0), (0, 1, 1)} and R = spanN{(1, 1, 0, 0), (0, 0, 1, 1)},
respectively, and the resonance degrees are γR = 2. Yamanaka [48] proved the
following result for the general case.
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Theorem 1.6 (Yamanaka). If the resonance degree γR is less than two, then the
PD normal form is analytically integrable. Moreover, there exists an n-dimensional,
analytically nonintegrable PD normal form with n = γR + 1 for γR ≥ 2.

Similar results for Hamiltonian systems are found in [9,10,49,55]. The above re-
sult does not exclude the analytic nonintegrability of (1.2) and (1.3). He also gave a
necessary and sufficient condition for (1.2) to be analytically (1, 2)-integrable in [48].
For example, if the system (1.4) is analytically (1, 2)-integrable, then α1, α3, α4 = 0.

On the other hand, Zung [54] proved the following remarkable result on analyt-
ically integrable PD normal forms.

Theorem 1.7 (Zung). Let n ≥ 1 be any integer. If the system (1.1) is analytically
integrable near x = 0 in the Bogoyavlenskij sense, then there exists an analytic
change of coordinates under which it is transformed to a PD normal form.

A similar result for Hamiltonian systems was obtained by Zung [55]. Theorem 1.7
also implies that the corresponding PD normal form is convergent and analytically
integrable if the system (1.1) is analytically integrable. Hence, the system (1.1)
is analytically nonintegrable if the corresponding PD normal form is divergent or
analytically nonintegrable. So we only have to prove the analytic nonintegrability
of (1.2) and (1.3) for the proofs of Theorems 1.2 and 1.3. In their proofs, we assume
that the system (1.1) is analytically integrable and that the power series in (1.2)
and (1.3) are convergent, and show that these assumptions yield contradictions.

For the problem on nonintegrability of dynamical systems, the Morales-Ramis
theory [26,28] and its extension [4,30] were developed and have produced numerous
remarkable results. See, e.g., [24,27,29] for such examples. Recently, the author and
his coworker also applied the techniques and obtained several results on the problem
for nearly integrable systems in [31, 43, 47], for the restricted three-body problems
in [44, 45] and for an epidemic model in [46]. Here we use a different approach
without relying on the techniques. In particular, a useful relation between first
integral and commutative vector fields for proving the analytic nonintegrability of
planar systems is provided.

The outline of this paper is as follows: In Section 2 we reduce the nonintegrability
of (1.2) and (1.3) to that of simple planar systems. For this purpose, we use
Proposition 2.1 of [1], which enables us to reduce a special class of systems, including
(1.2) and (1.3), to planar systems, along with a simple but clever trick. In Section 3
we provide the useful relation on first integrals and commutative vector fields.
In Section 4 we prove the main theorems using the results of Sections 2 and 3.
Finally, to demonstrate our results, we give two examples for the Rössler system
[7,18,20,25,51] and coupled van der Pol oscillators [8,17,23,32,33,37,38] in Section 5.

2. Reduction to Simple Planar Systems

In this section we reduce the nonintegrability of (1.2) and (1.3) to that of simple
planar systems.

Using the change of coordinate (x1, x2) = (r cos θ, r sin θ), we transform (1.4) to

ṙ = g1(r
2, x3)r, ẋ3 = g3(r

2, x3), θ̇ = ω + g2(r
2, x3), (2.1)

of which the (r1, r2)-components are independent of θ. Using the change of coor-
dinates (x1, x2) = (r1 cos θ1, r1 sin θ1) and (x3, x4) = (r2 cos θ2, r2 sin θ2), we also
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transform (1.5) to

ṙ1 = h1(r
2
1, r

2
2)r1, ṙ2 = h3(r

2
1, r

2
2)r2,

θ̇1 = ω1 + h2(r
2
1, r

2
2), θ̇2 = ω2 + h4(r

2
1, r

2
2)

(2.2)

of which the (r1, r2)-components are independent of θ1 and θ2. So we expect
that one can reduce the nonintegrability of (1.4) and (1.5) to that of the (r, x3)-
components of (2.1),

ṙ = g1(r
2, x3)r, ẋ3 = g3(r

2, x3), (2.3)

and the (r1, r2)-components of (2.2),

ṙ1 = h1(r
2
1, r

2
2)r1, ṙ2 = h3(r

2
1, r

2
2)r2, (2.4)

respectively. This is true in a more general situation as follows.
Let m > 0 be an integer and consider m+ 2-dimensional systems of the form

ẋ = fx(x, y), ẏ = fy(x, y), (x, y) ∈ D, (2.5)

where D ⊂ C2 × Cm is a region containing the m-dimensional y-plane {(0, y) ∈
C2 ×Cm | y ∈ Cm}, and fx : D → C2 and fy : D → Cm are analytic. Assume that
by the change of coordinates x = (x1, x2) = (r cos θ, r sin θ), Eq. (2.5) is transformed
to

ṙ = R(r, y), ẏ = f̃y(r, y), θ̇ = Θ(r, y), (r, y, θ) ∈ D̃ × C, (2.6)

where D̃ ⊂ C × Cm is a region containing the m-dimensional y-plane, and R :
D̃ → C, f̃y : D̃ → Cm and Θ : D̃ → R are analytic. Note that f̃y(r, y) =
fy(r cos θ, r sin θ, y). We are especially interested in the (r, y)-components of (2.6),

ṙ = R(r, y), ẏ = f̃y(r, y), (2.7)

which are independent of θ. In this situation we have the following proposition.

Proposition 2.1.

(i) Suppose that Eq. (2.5) has a meromorphic (resp. analytic) first integral

F (x1, x2, y) near (x1, x2) = (0, 0), and let F̃ (r, θ, y) = F (r cos θ, r sin θ, y).

If f̃yj(0, y) 6= 0 for almost all y ∈ D̃ for some j = 1, . . . ,m, then

G(r, y) = F̃ (r, θ̃j(yj), y)

is a meromorphic (resp. analytic) first integral of (2.7) near r = 0, where yj
and f̃yj(r, y) are the j-th components of y and f̃y(r, y), respectively, and θ̃j(yj)
represents the θ-component of a solution to

dr

dyj
=

R(r, y)

f̃yj(r, y)
,

dyℓ
dyj

=
f̃yℓ(r, y)

f̃yj(r, y)
,

dθ

dyj
=

Θ(r, y)

f̃yj(r, y)
, ℓ 6= j.

(ii) Suppose that Eq. (2.5) has a meromorphic (resp. analytic) commutative vector
field

v(x1, x2, y) :=

v1(x1, x2, y)
v2(x1, x2, y)
vy(x1, x2, y)


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with v1, v2 : D → C and vy : D → Cm near (x1, x2) = (0, 0). If Θ(0, y) 6= 0 for

almost all y ∈ D̃, then(
ṽr(r, θ, y)
ṽy(r, θ, y)

)
=

(
v1(r cos θ, r sin θ, y) cos θ + v2(r cos θ, r sin θ, y) sin θ

vy(r cos θ, r sin θ, y)

)
is independent of θ and it is a meromorphic (resp. analytic) commutative
vector field of (2.7) near r = 0.

See Proposition 2.1 of [1] for the proof. Only the case in which first integrals
and commutative vector fields are meromorphic was treated there but its reduction
to the case in which they are analytic is obvious. Using Proposition 2.1 for (1.4)
and (1.5) (once for the former and twice for the latter), we immediately obtain the
following propositions.

Proposition 2.2. If the complexification of (1.1) in case (I) is analytically inte-
grable near (x1, x2) = (0, 0), then so is the system (2.3) near r = 0.

Proposition 2.3. If the complexification of (1.1) in case (II) is analytically inte-
grable near (x1, x2) = (0, 0) and near (x3, x4) = (0, 0), then so is the system (2.4)
near r1 = 0 and near r2 = 0, respectively.

Here we remark that the systems (2.3) and (2.4) only need to have one first inte-
gral or commutative vector field for their integrability, since they are of dimension
two. Moreover, the converse statements of Propositions 2.2 and 2.3 do not hold in
general.

We turn to systems of the general form (1.1) with n ≥ 2 but f(0) = 0, Df(0) =
0, . . . ,Dk−1f(0) = 0 and Dkf(0) 6= 0 for some k ∈ N. Since f(x) is analytic near
x = 0, we have

f(x) =

∞∑
j=k

fj(x), (2.8)

where the elements of fj(x) are jth-order homogeneous polynomials of x. Letting
x = εy and changing the time variable as t → εkt, we rewrite (1.1) as

ẏ =

∞∑
j=0

εjfj+k(y).

We prove the following result.

Theorem 2.4. Suppose that f(x) has the form (2.8) for some k ∈ N. If the system
(1.1) is analytically integrable in the Bogoyavlenskij sense, then so is the truncated
system

ẏ = fk(y). (2.9)

Proof. Let F (x) be an analytic first integral of (1.1) near x = 0, and let

F (x) =

∞∑
j=ℓ

Fj(x) (2.10)
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for some ℓ ∈ N, where Fj(x) is a jth-order homogeneous polynomial of x. Here we
have assumed that F (0) ≡ 0 without loss of generality. Then we have

DF (εy)Tf(εy) =

∞∑
j=0

∞∑
l=0

εk+ℓ+j+lDFℓ+j(y)
Tfk+l(y) ≡ 0,

in particular,

DFℓ(y)
Tfk(y) ≡ 0,

which means that Fℓ(y) is an analytic first integral of the truncated system (2.9).
On the other hand, let v(x) be an analytic commutative vector field of (1.1) near

x = 0. Let

v(εy) =

∞∑
j=0

εjvj(y),

where the elements of vj(x) are jth-order homogeneous polynomials of x, and as-
sume that vj(y) ≡ 0, j = 0, . . . , ℓ − 1, and vℓ(y) 6≡ 0 for some ℓ ∈ N. Then we
have

[v, f ](εy) =Df(εy)v(εy)−Dv(εy)f(εy)

=

∞∑
j=0

∞∑
l=0

εk+ℓ+j+lDfk+l(y)vℓ+j(y)−Dvℓ+j(y)fk+l(y) ≡ 0,

in particular,

Dfk(y)vℓ(y)−Dvℓ(y)fk(y) ≡ 0,

which means that vℓ(y) is an analytic commutative vector field of the truncated
system (2.9).

Suppose that the system (1.1) is analytically integrable. Then we can choose
the analytic first integrals (resp. commutative vector fields) such that their leading
terms are linearly independent almost everywhere in a neighborhood of x = 0, by
taking their linear combinations if necessary. Actually, for instance, if F (x) and
G(x) are linearly independent first integrals with (2.10) and

G(x) =

∞∑
j=ℓ

Gj(x),

where Gj(x) is a jth-order homogeneous polynomials of x, and for some m > ℓ,

m−1∑
j=ℓ

(c1DFj(x) + c2DGj(x)) = 0

for some (c1, c2) 6= (0, 0) but

m∑
j=ℓ

(c̃1DFj(x) + c̃2DGj(x)) 6= 0

for any (c̃1, c̃2) 6= (0, 0), then one may take F (x) and

G̃(x) = c1F (x) + c2G(x),

for which the leading term is

c1DFm(x) + c2DGm(x),
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as two new linearly independent first integrals. So we show that the leading terms
of first integrals and commutative vector fields satisfy conditions (i) and (ii) of
Definition 1.1 for (2.9), along with the above observations. Thus, we obtain the
desired result. □

Remark 2.5.

(i) In contrast to Theorem 2.4, the truncated system

ẏ =

k+m∑
j=k

fj(x)

with m ≥ 1 may not be analytically integrable in general even if the full sys-
tem (2.8) is analytically integrable. Actually, Yoshida [50] showed that the
truncation of the three-particle Toda lattice [40] with k = 1 is analytically non-
integrable at any order m ≥ 1 although the Toda lattice is analytically integrable
as well known [11,16].

(ii) An argument similar to that of the above proof was used for a three-degree-of-
freedom Hamiltonian system in Section 2 of [36].

Applying Theorem 2.4 to (2.3) and (2.4) and using Propositions 2.2 and 2.3, we
obtain the following.

Proposition 2.6. If the complexification of (1.1) in case (I) is analytically inte-
grable near the origin x = 0, then so is the truncated system

ṙ = α1rx3, ẋ3 = α3r
2 + α4x

2
3 (2.11)

near (r, x3) = (0, 0).

Proposition 2.7. If the complexification of (1.1) in case (II) is analytically inte-
grable near the origin x = 0, then so is the truncated system

ṙ1 = (α1r
2
1 + α2r

2
2)r1, ṙ2 = (α3r

2
1 + α4r

2
2)r2 (2.12)

near (r1, r2) = (0, 0).

Remark 2.8. If the system (1.1) is real-analytically integrable near x = 0, then
its complexification is also analytically integrable near x = 0. So we only have to
prove that the complexifications of (2.11) and (2.12) are analytically nonintegrable
near x = 0 for the proofs of Theorems 1.2 and 1.3.

3. Planar Vector Fields

In this section we give a useful relation between first integrals and commutative
vector fields for proving the analytic nonintegrability of such planar systems as
(2.11) and (2.12).

Consider planar vector fields of the form

ż = p(z), z ∈ C2, (3.1)

where p(z) is analytic in z. We prove the following.

Proposition 3.1. Let D ⊂ C be a region that is covered by nonconstant solutions
to (3.1) almost everywhere. Suppose that the system (3.1) has a first integral Q(z)
and commutative vector field q(x) in D. Let

∆(z) = det(p(z), q(z)) = p1(z)q2(z)− p2(z)q1(z),
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where qj(z) and pj(z) are the jth-elements of q(z) and p(z), respectively. Then
there exists a function χ : C → C such that

∆(z)DQ(z) = χ(Q(z))

(
−p2(z)
p1(z)

)
. (3.2)

Proof. Let z = φ(t) be a nonconstant particular solution to (3.1). We begin with
the following lemmas.

Lemma 3.2. If the planar system (3.1) has a commutative vector field q(z) (resp.
a first integral Q(z)), then ξ = q(φ(t)) is a solution to the variational equation (VE)
of (3.1) along φ(t),

ξ̇ = Dp(φ(t))ξ (3.3)

(resp. then η = DQ(φ(t)) is a solution to the adjoint variational equation (AVE) of
(3.1) along φ(t),

η̇ = −Dp(φ(t))Tη ). (3.4)

Proof. Let q(z) be a commutative vector field of (3.1). Then

Dq(z)p(z)−Dp(z)q(z) = 0,

so that
d

dt
q(φ(t)) = Dp(φ(t))q(φ(t)).

Hence, ξ = q(φ(t)) is a solution to (3.3).
On the other hand, let Q(z) be a first integral of (3.1). Then

p(z)TDQ(z) = 0,

so that

D(p(z)TDQ(z)) = Dp(z)TDQ(z) + D2Q(z)p(z) = 0.

Hence,

d

dt
DQ(φ(t)) = D2Q(φ(t))p(φ(t)) = −Dp(φ(t))TDQ(φ(t)),

which means that η = DQ(φ(t)) is a solution to (3.4). □

Lemma 3.3. Let Φ(t) and Ψ(t) be fundamental matrices to the VE (3.3) and AVE
(3.4), respectively. Then

Φ(t)TΨ(t) = const.

Proof. We easily compute

d

dt
(Φ(t)TΨ(t)) =Φ̇(t)TΨ(t) + Φ(t)TΨ̇(t)

=Φ(t)TDp(φ(t))TΨ(t)− Φ(t)TDp(φ(t))TΨ(t) = 0,

which yields the desired result. □

We return to the proof of Proposition 3.1. By Lemma 3.2 ξ = q(φ(t)) and
η = DQ(φ(t)) are solutions to the VE (3.3) and AVE (3.4), respectively. Let η̃(t)
be another linearly independent solution to (3.4). Noting that ξ = p(φ(t)) = φ̇(t)
is another linearly independent solution to (3.3), we see by Lemma 3.3 that(

p(φ(t))T

q(φ(t))T

)
(DQ(φ(t)) η̃(t)) = const., (3.5)
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so that (
p(z)T

q(z)T

)
DQ(z) =

(
0

C(Q(z))

)
(3.6)

holds almost everywhere in D, where C(Q(z)) 6= 0 is a constant only depending
on the value of Q(z), since Eq. (3.5) holds at any point z = φ(t) on the non-
constant solution for the same constant matrix in its right hand side. Note that
DQ(z)Tp(z) = p(z)TDQ(z) = 0 since Q(z) is a first integral of (3.1). The matrix(

p(z)T

q(z)T

)
is nonsigular and its inverse matrix is given by

1

∆(z)

(
q2(z) −p2(z)
−q1(z) p1(z)

)
.

From (3.6) we obtain

DQ(z) =
1

∆(z)

(
−C(Q(z))p2(z)
C(Q(z))p1(z)

)
,

which yields (3.2) with χ(Q) = C(Q). □

4. Proofs of the Main Theorems

We are now in a position to prove Theorems 1.2 and 1.3.

4.1. Proof of Theorem 1.2. By Proposition 2.6 and Remark 2.8, Theorem 1.2
immediately follows from the following proposition.

Proposition 4.1. If one of the following conditions holds, then the truncated sys-
tem (2.11) is analytically nonintegrable.

(i) α1α4 > 0 ;
(ii) α1α4 < 0 and α4/α1 6∈ Q.

Proof. Assume that condition (i) or (ii) holds. We easily see that the system (2.11)
has no constant solution except for (r, x3) = (0, 0) and a first integral

Q(r, x3) = r−2α4/α1(α3r
2 + (α4 − α1)x

2
3),

for which

DrQ(r, x3) =
2(α1 − α4)

α1
r−2α4/α1−1(α3r

2 + α4x
2
3),

Dx3Q(r, x3) = −2(α1 − α4)r
−2α4/α1x3.

Obviously, Q(r, x3) is not analytic. We have the following lemma.

Lemma 4.2. When α1 6= 0, the system (2.11) has an analytic first integral near
the origin if and only if α1α4 ≤ 0 and α4/α1 ∈ Q.

Proof. We easily show the sufficiency. Actually, if α1 6= 0, α1α4 ≤ 0 and 2α4/α1 =
−ℓ/m ∈ Q, where ℓ,m ∈ N are relatively prime, then

rm(α3r
2 + (α4 − α1)x

2
3)

ℓ

is an analytic first integral.
We turn to the necessity. If α1α4 > 0, then

lim
r→0

lim
x3→0

Q(r, x3) → 0, lim
x3→0

lim
r→0

Q(r, x3) → ∞,
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so that ϕ(Q(r, x3)) is not analytic for any function ϕ(s). We next assume that
α1 6= 0, α1α4 < 0, α4/α1 6∈ Q, and ϕ(Q(r, x3)) is analytic for some function ϕ(s).
Let

ϕ(Q(r, x3)) =

∞∑
j=0

∞∑
k=0

ϕjkr
jxk

3 ,

where ϕjk, j, k ∈ Z≥0 := {l ∈ Z | l ≥ 0}, are constants and the right hand side
is convergent near the origin. Here we can set ϕ00 = 0 without loss of generality.
Differentiating the above relation with respect to r and x3 yields

2ϕ′(Q(r, x3))

(
α3(α1 − α4)

α1
r1−2α4/α1 +

α4(α1 − α4)

α1
r−2α4/α1−1x2

3

))
=

∞∑
j=1

∞∑
k=0

jϕjkr
j−1xk

3

and

−2ϕ′(Q(r, x3))(α1 − α4)r
−2α4/α1x3 =

∞∑
j=0

∞∑
k=1

kϕjkr
jxk−1

3 ,

respectively, where ϕ′(s) = dϕ(s)/ds. Hence,

∞∑
j=1

∞∑
k=0

jϕjk r
jxk+2

3 = −
∞∑
j=0

∞∑
k=1

kϕjk

(
α3

α1
rj+2xk

3 +
α4

α1
rjxk+2

3

)
,

which yields

ϕ0k, ϕ1k = 0,

(
kα4

α1
+ j + 2

)
ϕj+2,k = − (k + 2)α3

α1
ϕj,k+2, j, k ∈ Z≥0.

Since
kα4

α1
+ j + 2 6= 0 for any j ≥ 0 and k ≥ 1,

we have

ϕ2j,k =− (k + 2)α3

α1

(
kα4

α1
+ 2j

)−1

ϕ2(j−1),k+2 = · · ·

=(−1)j
(k + 2)α3

α1
· · · (k + 2j)α3

α1

×
(
kα4

α1
+ 2j

)−1

· · ·
(
(k + 2(j − 1))α4

α1
+ 2

)−1

ϕ0,k+2j = 0,

ϕ2j+1,k =− (k + 2)α3

α1

(
kα4

α1
+ 2j + 1

)−1

ϕ2(j−1),k+2 = · · ·

=(−1)j
(k + 2)α3

α1
· · · (k + 2j)α3

α1

×
(
kα4

α1
+ 2j + 1

)−1

· · ·
(
(k + 2(j − 1))α4

α1
+ 3

)−1

ϕ1,k+2j = 0

for any j ≥ 1 and k ≥ 0. Thus, we obtain ϕjk = 0, j, k ∈ Z≥0, which yields a
contraction. This means the desired result. □



NONINTEGRABILITY NEAR DEGENERATE EQUILIBRIA 13

Assume that the system (2.11) has a commutative vector field q(r, x3). Let
p(r, x3) denote the vector field of (2.11). We compute

Q(r, x3)p2(r, x3)

DrQ(r, x3)
= −Q(r, x3)p1(r, x3)

Dx3
Q(r, x3)

=
α1r(α3r

2 + (α4 − α1)x
2
3)

2(α1 − α4)
,

so that by Proposition 3.1

∆(r, x3) = Cr(α3r
2 + (α4 − α1)x

2
3), (4.1)

where C 6= 0 is some constant, since Q(r, x3) is not analytic. We write the Taylor
expansion of qj(r, x3) around the origin as

qj(r, x3) =

∞∑
k,l=1

qjklr
kxl

3,

where qjkl ∈ C, k, l = 1, 2, are constants, for j = 1, 2. Substituting them into (4.1)
and solving the resulting equation about pjkl, we obtain

q(r, x3) = C

(
r
x3

)
+O(|r|2 + |x3|2).

So we have

Dp(r, x3)q(r, x3)−Dq(r, x3)p(z) = C

(
α1rx3

α3r
2 + α4x

2
3

)
+O(|r|3 + |x3|3),

which means that q(r, x3) is not a commutative vector field. Thus, we obtain the
desired result. □

4.2. Proof of Theorem 1.3. As in Section 4.1, by Proposition 2.7 and Re-
mark 2.8, Theorem 1.3 immediately follows from the following proposition.

Proposition 4.3. If α1 6= α3, α2 6= α4, and one of the following conditions holds,
then the truncated system (2.12) is analytically nonintegrable near (r1, r2) = (0, 0) :

(i) α1α3 or α2α4 > 0 ;
(ii) α1α3, α2α4 < 0 and α1/α3, α2/α4 6∈ Q.

Proof. Assume that α1 6= α3, α2 6= α4, and condition (i) or (ii) holds. We easily
see that the system (2.12) has no constant solution except for (r, x3) = (0, 0) and
a first integral

Q(r1, r2) =

(
rα4
1

rα2
2

)2(α1−α3) ( (α1 − α3)r
2
1

r22
+ α2 − α4

)α2α3−α1α4

,

for which

Dr1Q(r1, r2) =
2(α1 − α3)(α2 − α4)(α3r

2
1 + α4r

2
2)

r1((α1 − α3)r21 + (α2 − α4)r22)
Q(r1, r2),

Dr2Q(r1, r2) =− 2(α1 − α3)(α2 − α4)(α1r
2
1 + α2r

2
2)

r2((α1 − α3)r21 + (α2 − α4)r22)
Q(r1, r2).

Obviously, Q(r1, r2) is not analytic. We have the following.

Lemma 4.4. If α1 6= α3, α2 6= α4, and condition (i) or (ii) in Proposition 4.3
holds, then the system (2.12) has no analytic first integral.
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Proof. We first assume that α2α3 − α1α4 = 0 and α2α4 6= 0 as well as α1 6= α3.
Then α2 6= α4 and α1α3 6= 0. Hence, α2α4 > 0 (resp. < 0) if and only if α1α3 > 0
(resp. < 0). We see that

Q̃(r1, r2) =
r1

r
α2/α4

2

is a first integral, so that conditions (i) and (ii) do not hold if ϕ(Q̃(r1, r2)) is analytic
for some function ϕ(s).

We next assume that α1 6= α3, α2 6= α4, α1α2α3α4 6= 0, and α2α3 − α1α4 6= 0.
We see that

Q̃(r1, r2) =
rρ1

1 rρ2

2

α2 − α4
+

r
ρ′
1

1 r
ρ′
2

2

α1 − α3
,

where

ρ1 = 2α3(α2 − α4)/(α2α3 − α1α4),

ρ2 = −2α1(α2 − α4)/(α2α3 − α1α4),

ρ′1 = 2α4(α1 − α3)/(α2α3 − α1α4),

ρ′2 = −2α2(α1 − α3)/(α2α3 − α1α4),

is a first integral. We have

Q̃(r1, r2) → 0 or 1/Q̃(r1, r2) → 0 (4.2)

as (r1, r2) → (0, 0) only if α1α3, α3α4 < 0. Hence, if condition (i) holds, then there

is no function ϕ(s) such that ϕ(Q̃(r1, r2)) is analytic, since if so, then Eq. (4.2)
must hold.

We additionally assume that condition (ii) holds and ϕ(Q̃(r1, r2)) is analytic for
some function ϕ(s). By assumption, ρj and ρj , j = 1, 2, are of the same sign, and

ρ1
ρ2

,
ρ′1
ρ′2

6∈ Q. (4.3)

Let

ϕ(Q̃(r1, r2)) =

∞∑
j=0

∞∑
k=0

ϕjkr
j
1r

l
2,

where ϕjk, j, k ∈ Z≥0, are constants, ϕ00 = 0, and the right hand side is convergent
near the origin. Differentiating the above relation with respect to r1 and r2 yields

2ϕ′(Q̃(r1, r2))

α2α3 − α1α4

(
α3r

ρ1−1
1 rρ2

2 + α4r
ρ′
1−1

1 r
ρ′
2

2

)
=

∞∑
j=1

∞∑
k=0

jϕjkr
j−1
1 rk2

and

−2ϕ′(Q̃(r1, r2))

α2α3 − α1α4

(
α1r

ρ1

1 rρ2−1
2 + α2r

ρ′
1

1 r
ρ′
2−1

2

)
=

∞∑
j=0

∞∑
k=1

kϕjkr
j
1r

k−1
2 ,

respectively, where ϕ′(s) = dϕ(s)/ds. Hence,
∞∑
j=1

∞∑
k=0

jϕjk

(
α1r

ρ1+j−1
1 rρ2+k−1

2 + α2r
ρ′
1+j−1

1 r
ρ′
2+k−1

2

)
= −

∞∑
j=0

∞∑
k=1

kϕjk

(
α3r

ρ1+j−1
1 rρ2+k−1

2 + α4r
ρ′
1+j−1

1 r
ρ′
2+k−1

2

)
. (4.4)
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We consider the following two cases separately: (i) ρ1 − ρ′1 or ρ2 − ρ′2 6∈ Z; and
(ii) ρ1 − ρ′1, ρ2 − ρ′2 ∈ Z.
Case (i): From (4.4) we have ϕj0, ϕ0k = 0, and

(jα1 + kα3)ϕjk = (jα2 + kα4)ϕjk = 0,

i.e., ϕjk = 0, for j, k ∈ N.
Case (ii): We assume that ρ1 − ρ′1 = j0 ∈ Z≥0 and ρ2 − ρ′2 = k0 ∈ Z≥0. The
other cases can be treated similarly. If j0 = 0 and k0 = 0, then ρ1 − ρ′1 = 0 and
ρ2−ρ′2 = 0, respectively, so that α2α3−α1α4 = 0. Hence, j0, k0 > 0. From (4.4)
we have ϕj0, ϕ0k = 0 for j, k ∈ N and

(jα2 + kα4)ϕjk = 0 for 0 < j < j0 or 0 < k < k0,

(jα1 + kα3)ϕjk + ((j + j0)α2 + (k + k0)α4)ϕj+j0,k+k0 = 0

for j ≥ j0 and k ≥ k0,

which yields ϕjk = 0 for j, k ∈ N.
Thus, we have a contraction for both cases. This completes the proof. □

Assume that the system (2.12) has a commutative vector field q(r1, r2). Let
p(r1, r2) denote the vector field of (2.12). We have

Q(r1, r2)p2(r1, r2)

Dr1Q(r1, r2)
= −Q(r1, r2)p1(r1, r2)

Dr2Q(r1, r2)
= 1

2r1r2

(
r21

α2 − α4
+

r21
α1 − α3

)
,

so that by Proposition 3.1

∆(r1, r2) = Cr1r2

(
r21

α2 − α4
+

r22
α1 − α3

)
, (4.5)

where C 6= 0 is some constant, since Q(r1, r2) is not analytic. We write the Taylor
expansion of qj(r1, r2) around the origin as

qj(r1, r2) =

∞∑
k,l=1

qjklr
k
1r

l
2,

where qjkl ∈ C, k, l = 1, 2, are constants, for j = 1, 2. Substituting them into (4.1)
and solving the resulting equation about qjkl, we obtain

q(r1, r2) = − C

(α1 − α3)(α2 − α4)

(
r1
r2

)
+O(|r|21 + |r2|2).

So we have

Dp(r1, r2)q(r1, r2)−Dq(r1, r2)p(r1, r2)

= − 2C

(α1 − α3)(α2 − α4)

(
(α1r

2
1 + α2r

2
2)r1

(α3r
2
1 + α4r

2
2)r2

)
+O

(
(|r|4 + |x3|4

)
,

which means that q(r1, r2) is not a commutative vector field. Thus, we obtain the
desired result. □

5. Examples

As stated in Section 1, Theorems 1.2 and 1.3 imply that three- or four-dimensional
systems exhibiting fold-Hopf and double-Hopf bifurcations are analytically nonin-
tegrable under the weak conditions. In this section we give two such examples.
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5.1. Rössler system. We first consider the three-dimensional system

ẋ1 = −(x2 + x3), ẋ2 = x1 + ax2, ẋ3 = bx1 + x3(x1 − c), (5.1)

where a, b, c are constants. The Rössler system

ẋ1 = −(x2 + x3), ẋ2 = x1 + a0x2, ẋ3 = b0 + x3(x1 − c0), (5.2)

which was originally proposed by Rössler [35] and has been extensively studied,
e.g., in [5, 12,13,19,21,22,34,41,52,53], is transformed to (5.1) with

a = a0, b =
c0 ±

√
c20 − 4a0b0
2a0

, c = 1
2

(
c0 ±

√
c20 − 4a0b0

)
,

by a change of coordinates

x 7→ x−
(
x10,−

x10

a0
,
x10

a0

)
, x10 = 1

2

(
c0 ∓

√
c20 − 4a0b0

)
if c20 > 4a0b0 and a0 6= 0, where the upper or lower sign is taken simultaneously,
and with

a = 0, b =
b0
c0

, c = c0,

by a change of coordinates

x 7→ x−
(
0,−b0

c0
,
b0
c0

)
if a0 = 0 and c0 6= 0. The system (5.1) has also been referred to as the Rössler
system in some references. Periodic orbits, invariant tori, chaos and fold-Hopf
bifurcations in (5.1) were studied in [7, 20, 25, 51]. Moreover, the (1, 2)- or (2, 1)-
integrability of (5.1) and/or (5.2) was discussed in [21, 22, 52] and the following
results were obtained:

(i) The systems (5.1) and (5.2) are analytically (1, 2)-integrable when a, b, c = 0
and a0, b0, c0 = 0, respectively;

(ii) The system (5.2) is neither analytically (1, 2)- nor (2, 1)-integrable near x = 0
when a0 6= 0.

The second statement above means that the system (5.1) is neither analytically
(1, 2)- nor (2, 1)-integrable near any point on the line

{(x1, x2, x3) ∈ R3 | x2 = −ax1, x3 = ax1},

especially near the origin when a 6= 0 and c = 2ab 6= 0. However, we cannot deny
from the statement that the systems (5.1) and (5.2) may be analytically (3, 0)-
integrable near the origin even when a0 6= 0.

When b = 1 and c = a ∈ (−
√
2,
√
2), the system (5.1) satisfies condition (I) with

ω =
√
2− a2. We compute the coefficients in (1.4) as

α1 = − a3

2ω2
, α2 =

a2 + 1

2ω
, α3 =

2a

ω2
, α4 =

a

ω2
. (5.3)

See Appendix A.1 for the derivation of (5.3). Applying Theorem 1.2, we obtain the
following.

Proposition 5.1. When b = 1, c = a ∈ (−
√
2,
√
2) and a2 6∈ Q, the Rössler system

(5.1) is not real-analytically integrable near the origin.
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5.2. Coupled van der Pol oscillators. We turn to the second example, the
coupled van der Pol oscillators

ü1 − (δ1 − a1u
2
1)u̇1 + u1 = b1u2,

ü2 − (δ2 − a2u
2
2)u̇2 + cu2 = b2u1,

or as a first-order system

ẋ1 = x2, ẋ2 = −x1 + (δ1 − a1x
2
1)x2 + b1x3,

ẋ3 = x4, ẋ4 = −cx3 + (δ2 − a2x
2
3)x4 + b2x1,

(5.4)

where x = (u1, u̇1, u2, u̇2), and δj , aj , bj , c ∈ R, j = 1, 2, and c > 0 are constants.
The coupled van der Pol oscillators such as (5.4) have attracted much attention in
the field of dynamical systems and for instance, their dynamics and bifurcations
with aj = δj > 0, j = 1, 2, or aj = δ1 > 0 were studied in [8, 17, 23, 32, 33, 37, 38].
For simplicity we assume that aj , bj > 0, j = 1, 2, and c > 1.

When δj = 0, j = 1, 2, and b1b2 < c, the system (5.4) satisfies condition (II)
with

ω1 =

√
(c+ 1)−

√
(c− 1)2 + 4b1b2
2

, ω2 =

√
(c+ 1) +

√
(c− 1)2 + 4b1b2
2

if ω1/ω2 6∈ Q. We easily see that ω1 < 1 < ω2 and that

ω2
1 + ω2

2 = c+ 1, ω2
1ω

2
2 = c− b1b2, (ω2

1 − 1)(ω2
2 − 1) = −b1b2. (5.5)

We compute the coefficients in (1.5) as

α1 =
a1b1(ω

2
2 − 1)2 + a2b2(ω

2
1 − 1)2

2b2ω2
1(ω

2
1 − 1)(ω2

2 − ω2
1)

, α2 =
(ω2

1 − 1)(a1b1 + a2b2)

b2ω2
2(ω

2
2 − ω2

1)
,

α3 = − (ω2
2 − 1)(a1b1 + a2b2)

b2ω2
1(ω

2
2 − ω2

1)
, α4 = −a1b1(ω

2
1 − 1)2 + a2b2(ω

2
2 − 1)2

2b2ω2
2(ω

2
2 − 1)(ω2

2 − ω2
1)

,

βj = 0, j = 1, 2, 3, 4.

(5.6)

See Appendix A.2 for the derivation of (5.6). Using (5.5), we see that the conditions
α1 6= α3 and α2 6= α4 become

a1b1((ω
2
2 − 1)2 − 2b1b2) + a2b2((ω

2
1 − 1)2 − 2b1b2) 6= 0 (5.7)

and

a1b1(ω
2
1 − 1)(ω2

1 + 2ω2
2 − 3) + a2b2(ω

2
2 − 1)(2ω2

1 + ω2
2 − 3) 6= 0, (5.8)

respectively. Moreover, the conditions α1α3 > 0 and α2α4 > 0 become

a1b1(ω
2
2 − 1)2 + a2b2(ω

2
1 − 1)2 > 0

and

a1b1(ω
2
1 − 1)2 + a2b2(ω

2
2 − 1)2 > 0,

respectively, and both of them always hold since ω1 < 1 < ω2 and aj , bj > 0,
j = 1, 2. Applying Theorem 1.3, we obtain the following.

Proposition 5.2. When δj = 0, aj , bj > 0, j = 1, 2, b1b2 < c and ω1/ω2 6∈ Q,
the coupled van der Pol oscillators (5.4) are not real-analytically integrable near the
origin if conditions (5.7) and (5.8) hold.
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Appendix A. Derivation of (5.3) and (5.6)

We compute the coefficients in (1.4) and (1.5) for the examples in Sections 5.1 and
5.2, and derive (5.3) and (5.6). For the reader’s convenience, we also give general
formulas for computing these coefficients. See Sections 8.7.5 and 8.7.6 of [18] for
the details. We write the Taylor expansion of f(x) around x = 0 as

f(x) = Ax+ 1
2B(x, x) + 1

6C(x, x, x) +O(|x|4),

where A = Df(0), and B(ξ, η) and C(ξ, η, ζ) are the bilinear and trilinear vector-
values functions with components

Bj(ξ, η) =

n∑
k,l=1

∂2fj
∂xk∂xl

(0)ξkηl, Cj(ξ, η, ζ) =

n∑
k,l,m=1

∂3fj
∂xk∂xl∂xm

(0)ξkηlζm

for j = 1, . . . , n with n = 3 or 4.

A.1. Derivation of (5.3). Assume that f(x) satisfies condition (I). Let v0 ∈ R3

and v1 ∈ C3 be eigenvectors of A corresponding to the eigenvalues λ = 0 and iω,
respectively,

Av0 = 0, Av1 = iωv1,

and let u0 ∈ R3 and u1 ∈ C3 be eigenvectors of AT corresponding to the eigenvalues
λ = 0 and −iω, respectively,

ATu0 = 0, ATu1 = −iωu1,

such that 〈u0, v0〉 = 〈u1, v1〉 = 1, where 〈·, ·〉 represents the inner product in Cn.
Then we can transform (1.1) to

ẇ0 = κ01w
2
0 + κ02|w1|2 +O(|w0|3 + |w1|3),

ẇ1 = iωw1 + κ11w0w1 +O(|w0|3 + |w1|3),
(A.1)

where w0 = 〈u0, x〉 ∈ R, w1 = 〈u1, x〉 ∈ C and

κ01 = 1
2 〈u0, B(v0, v0)〉 ∈ R, κ02 = 〈u0, B(v1, v

∗
1)〉 ∈ R,

κ11 = 〈u1, B(u0, v1)〉 ∈ C
(A.2)
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with the superscript ‘∗’ denoting complex conjugate. Letting x1 = Rew1, x2 =
Imw1 and x3 = w0, we rewrite (A.1) as (1.4) with

α1 = Reκ11, α2 = Imκ11, α3 = κ02, α4 = κ01

up to O(|x|2).
We now compute the coefficients αj , j = 1-4, for (5.4) when b = 1 and c = a ∈

(−
√
2,
√
2). We have

A =

0 −1 −1
1 a 0
1 0 −a

 , B(ξ, η) =

 0
0

ξ1η3 + ξ3η1


and

v0 =

 a
−1
1

 , v1 =

 a+ iω
1− a2 − iωa

1

 ,

u0 =
1

ω2

−a
−1
1

 , u1 =
1

2ω2(a2 − 1− iωa)

 a− iω
a2 − 1− iωa

−1

 .

By (A.2) we obtain

κ01 =
a

ω2
, κ02 =

2a

ω2
, κ11 =

−a3 + iω(a2 + 1)

2ω2

which yields (5.3).

A.2. Derivation of (5.6). Assume that f(x) satisfies condition (II). For simplicity
we also assume that B(x, x) ≡ 0. For j = 1, 2, let vj ∈ C4 be an eigenvector of A
corresponding to the eigenvalue λ = iωj ,

Avj = iωjvj ,

and let uj ∈ C4 be an eigenvector of AT corresponding to the eigenvalue −iωj ,

ATuj = −iωjuj ,

such that 〈uj , vj〉 = 1. Then we can transform (1.1) to

ẇ1 = iω1w1 + κ11w1|w1|2 + κ12w1|w2|2 +O(|w1|4 + |w1|4),
ẇ2 = iω2w2 + κ21w2|w1|2 + κ22w2|w2|2 +O(|w1|4 + |w1|4),

(A.3)

where wj = 〈uj , x〉 ∈ C, j = 1, 2, and

κ11 = 1
2 〈u1, C(v1, v1, v

∗
1)〉, κ12 = 〈u1, C(v1, v2, v

∗
2)〉,

κ21 = 〈u2, C(v1, v
∗
1 , v2)〉, κ22 = 1

2 〈u2, C(v2, v2, v
∗
2)〉

(A.4)

are also complex. Letting x1 = Rew1, x2 = Imw1, x3 = Rew2 and x4 = Imw2, we
rewrite (A.3) as (1.3) with

α1 = Reκ11, α2 = Reκ12, α3 = Reκ21, α4 = Reκ22,

β1 = Imκ11, β2 = Imκ12, β3 = Imκ21, β4 = Imκ22

up to O(|x|3).
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We now compute the coefficients αj , βj , j = 1-4, for (5.1) with δj = 0, j = 1, 2,
and b1b2 < c. Note that B(ξ, η) ≡ 0. We have

A =


0 1 0 0
−1 0 b1 0
0 0 0 1
b2 0 −c 0

 , C(ξ, η, ζ) =


0

−2a1(ξ1η1ζ2 + ξ1η2ζ1 + ξ2η1ζ1)
0

−2a2(ξ3η3ζ4 + ξ3η4ζ3 + ξ4η3ζ3)


and

v1 =


ib1/(ω1(ω

2
1 − 1))

−b1/(ω
2
1 − 1)

−i/ω1

1

 , u1 =
ω2
1 − 1

2(ω2
1 − ω2

2)


−iω1(ω

2
2 − 1)/b1

(ω2
2 − 1)/b1
−iω1

1

 ,

v2 =


ib1/(ω2(ω

2
2 − 1))

−b1/(ω
2
2 − 1)

−i/ω2

1

 , u2 =
ω2
2 − 1

2(ω2
2 − ω2

1)


−iω2(ω

2
1 − 1)/b1

(ω2
1 − 1)/b1
−iω2

1

 .

Using (5.5) and (A.4), we obtain

κ11 =
a1b

2
1(ω

2
2 − 1) + a2b2(ω

2
1 − 1)2

2b2ω2
1(ω

2
1 − 1)(ω2

2 − ω2
1)

,

κ12 =
(ω2

1 − 1)(a1b1 + a2b2)

b2ω2
2(ω

2
2 − ω2

1)
,

κ21 =
(ω2

2 − 1)(a1b1 + a2b2)

b2ω2
1(ω

2
2 − ω2

1)
,

κ22 = −a1b1(ω
2
1 − 1)2 + a2b2(ω

2
2 − 1)2

2b2ω2
2(ω

2
2 − 1)(ω2

2 − ω2
1)

,

which yields (5.6).
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Rössler system, J. Differential Equations, 314 (2022), 733–751.

[14] J. Guckenheimer and P.J. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifur-

cations of Vector Fields, Springer, New York, 1983.
[15] M. Haragus and G. Iooss, Local Bifurcations, Center Manifolds, and Normal Forms in

Infinite-Dimensional Dynamical Systems, Springer, London, 2011.
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proof, Found. Comput. Math., 9 (2009), 611–649.

[42] K. Yagasaki, Nonintegrability of the unfolding of the fold-Hopf bifurcation, Nonlinearity, 31
(2018), 341–350.

[43] K. Yagasaki, Nonintegrability of nearly integrable dynamical systems near resonant periodic

orbits, J. Nonlinear Sci., 32 (2022), 43.
[44] K. Yagasaki, Nonintegrability of the restricted three-body problem, submitted for publication.

arXiv:2106.04925 [math.DS]
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