有理曲面を成すモーデル・ヴェイユ群が自明な平面曲線束について

北川真也

1 Introduction

切断を持つ有理楕円曲面については，楕円曲線束が $I I^{*}$ 型の特異ファイバーを持つことが， モーデル・ヴェイユ群が自明となる必要十分条件であることが知られている。 9 年前に前述を，ファイバーの集合体が有理曲面を成す仮定は保持するが，一般ファイバーを楕円曲線から種数 g の超楕円曲線に一般化した場合を考察した（［7］）。任意の g に対して，有理曲面のピカール数は $4 g+6$ 以下で，その最大値 $4 g+6$ をとる場合に制限すれば $g=1$ の ときと同様に，相対極小な超楕円曲線束が I^{*} 型を一般化した特異ファイバーを持つこと が，モーデル・ヴェイユ群が自明となる必要十分条件であることが判明した。今回も有理曲面を成す仮定は保持するが，一般ファイバーは平面 d 次曲線である場合を考察する。ピ カール数は $d^{2}+1$ 以下で，その最大値をとる場合に制限すると，モーデル・ヴェイユ群が自明な平面曲線束は，超楕円的なときと同様に，特殊な特異ファイバーで特徴づけられる ことを紹介する。

世話人の池田京司さん，稲場道明さん，深澤知さんに深く感謝するとともに，多大なご迷惑をおかけしたことを深くお詫び申し上げます。

2 Preliminaries

We briefly review basic notation and results on fibred rational surfaces．Here，a fibred rational surface means a smooth projective rational surface X / \mathbb{C} together with a relatively minimal fibration $f: X \rightarrow \mathbb{P}^{1}$ whose general fibre F is a smooth projective curve of

[^0]genus $g \geq 1$. In particular, any fibre of f is connected and contains no (-1)-curves as components. Since X is rational, the first Betti number of X equals zero. The second Betti number of X is equal to the Picard number $\rho(X)$ since the geometric genus of X is zero. Hence, we see that
\[

$$
\begin{equation*}
\rho(X)=10-K_{X}^{2}=4 g+6-\left(K_{X}+F\right)^{2} \tag{2.1}
\end{equation*}
$$

\]

by virtue of Noether's formula. The adjoint divisor $\left(K_{X}+F\right)$ is nef when $g \geq 2$ (See [5, Lemma 1.1]). Thus we have that $\rho(X) \leq 4 g+6$. By means of slope inequalities [9, Corollary 4.4], we also have that $\left(K_{X}+F\right)^{2} \geq g-2$ and $\rho(X) \leq 3 g+8$ if F is non-hyperelliptic (See [13, Proposition 2.2]).

Lemma 2.1 (See [5, Lemma 1.2]). Let C be an irreducible curve on S such that $\left(K_{S}+\right.$ $F) . C=0$. If $\left(K_{S}+F\right)^{2}>0$, then C is a smooth rational curve satisfying one of the following:
(i) C is a (-2)-curve contained in a fibre.
(ii) C is a (-1 -section, i.e., a (-1 -curve with $F . C=1$.

From now on, we assume that $f: S \rightarrow \mathbb{P}^{1}$ is a relatively minimal fibration of genus $g \geq$ 2 such that $\left(K_{S}+F\right)^{2}>0$. Suppose that there exists a (-1)-curve E with $\left(K_{S}+F\right) \cdot E=0$ and let $\mu_{1}: S \rightarrow S_{1}$ be its contraction. Since $F . E=1, F_{1}:=\left(\mu_{1}\right)_{*} F$ is smooth on S_{1}. Furthermore, we have $\mu_{1}^{*}\left(K_{S_{1}}+F_{1}\right)=K_{S}+F$. If there exists a (-1)-curve E_{1} with $\left(K_{S_{1}}+F_{1}\right) \cdot E_{1}=0$, then, by contracting it, we get the pair $\left(S_{2}, F_{2}\right)$ with F_{2} smooth and $K_{S_{2}}+F_{2}$ pulls back to $K_{S}+F$. We can continue the procedure until we arrive at a pair $\left(S_{n}, F_{n}\right)$ such that we cannot find a (-1)-curve E_{n} with $\left(K_{S_{n}}+F_{n}\right) \cdot E_{n}=0$. We put $W:=S_{n}$ and $G:=F_{n}$. If $\mu: S \rightarrow W$ denotes the natural map, then $\mu^{*}\left(K_{W}+G\right)=K_{S}+F$ and $G=\mu_{*} F$ is a smooth curve isomorphic to F. The original fibration $f: S \rightarrow \mathbb{P}^{1}$ corresponds to a pencil $\Lambda_{f} \subset|G|$ with at most simple (but not necessarily transversal) base points. From the assumption $\left(K_{S}+F\right)^{2}>0, K_{S}+F$ is nef and big. This implies that, W is the minimal resolution of singularities of the surface $\operatorname{Proj}\left(R\left(S, K_{S}+F\right)\right)$, which has at most rational double points by Lemma 2.1, where $R\left(S, K_{S}+F\right)=\bigoplus_{n \geq 0} H^{0}\left(S, n\left(K_{S}+F\right)\right)$. Therefore, such a model is uniquely determined. We call the pair (W, G) the reduction of (S, F).

As a corollary of [6, Theorem 2.3], we have the following.

Theorem 2.2. Let S be a smooth rational surface and $f: S \rightarrow \mathbb{P}^{1}$ a relatively minimal fibration whose general fibre F is a smooth plane curve of degree $d \geq 4$. Then

$$
\rho(S) \leq d^{2}+1
$$

Let (W, G) denote the reduction of (S, F). If $\rho(S)=d^{2}+1$, then $W=\mathbb{P}^{2}$ and G is a curve of degree d. In particular, f has at least one (-1)-section. Furthermore, f has at most $d^{2}(-1)$-sections, which are disjoint from each other.

Corollary 2.3. Let S be a smooth rational surface of $\rho(S)=d^{2}+1$ for any integer $d \geq 3$ and $f: S \rightarrow \mathbb{P}^{1}$ a relatively minimal fibration of plane curve of degree d. Assume that f has no multiple fibres when $d=3$. Then there exists a birational morphism ν : $S \rightarrow \mathbb{P}^{2}$ such that the pull-back to S of a (-1)-curve contracted by ν intersects with F at just one point. In particular, $\nu_{*} F$ is a smooth plane curve of degree d and f has at least one (-1)-section.

3 Mordell-Weil lattices

Via f, we can regard S as a smooth projective curve of genus g defined over the rational function field $\mathbb{K}=f^{*} \mathbb{C}\left(\mathbb{P}^{1}\right)$. We assume that it has a \mathbb{K}-rational point O. Let $\mathcal{J}_{\mathcal{F}} / \mathbb{K}$ be the Jacobian variety of the generic fibre \mathcal{F} / \mathbb{K} of f. The Mordell-Weil group of f is the group of \mathbb{K}-rational points $\mathcal{J}_{\mathcal{F}}(\mathbb{K})$. It is a finitely generated Abelian group, since S / \mathbb{C} is a rational surface. The $\operatorname{rank} \operatorname{rk} \mathcal{J}_{\mathcal{F}}(\mathbb{K})$ of the group is called the Mordell-Weil rank. There is a formula, often referred as the Shioda-Tate formula, relating the Mordell-Weil rank and the Picard number:

$$
\begin{equation*}
\operatorname{rk} \mathcal{J}_{\mathcal{F}}(\mathbb{K})=\rho(S)-2-\sum_{t \in \mathbb{P}^{1}}\left(v_{t}-1\right), \tag{3.2}
\end{equation*}
$$

where v_{t} denotes the number of irreducible components of the fibre $f^{-1}(t)$. There is a natural one-to-one correspondence between the set of \mathbb{K}-rational points $\mathcal{F}(\mathbb{K})$ and the set of sections of f. For $P \in \mathcal{F}(\mathbb{K})$, we denote by (P) the section corresponding to P which is regarded as a horizontal curve on S. In particular, (O) corresponding to the origin O of $\mathcal{J}_{\mathcal{F}}(\mathbb{K})$ is called the zero section. Shioda's main idea in [16] and [19] is to view the free part of $\mathcal{J}_{\mathcal{F}}(\mathbb{K})$ as a Euclidean lattice with respect to a natural pairing induced by the intersection form on $H^{2}(S)$. The lattice is called the Mordell-Weil lattice of f and is denoted by $\operatorname{MWL}(f)$. In fact, by describing the Néron-Severi group $\operatorname{NS}(S)$, we can
explicitly determine the structure of $\operatorname{MWL}(f)$ as follows: Let T be the subgroup of $\operatorname{NS}(S)$ generated by (O) and the irreducible components of the fibres of f. When we equip $\mathrm{NS}(X)$ and T with the bilinear form which is (-1) times of the intersection form, we call them the Néron-Severi lattice $\mathrm{NS}(S)^{-}$and the trivial lattice T^{-}respectively. Since S is a rational surface, $\operatorname{NS}(S)^{-}$is a unimodular lattice, that is, the absolute value of the determinant of the Gram matrix equals one. Then the following holds.

Theorem 3.1 (See [16], [19, Theorem 3]). Keep the notation and assumptions as above. Then

$$
\mathcal{J}_{\mathcal{F}}(\mathbb{K}) \simeq \operatorname{NS}(S) / T .
$$

Let L be the orthogonal complement $\left(T^{-}\right)^{\perp} \subset \mathrm{NS}(S)^{-}$. Then the dual lattice

$$
L^{*}=\left\{\mathfrak{x} \in L \otimes \mathbb{Q} \mid\langle\mathfrak{x}, \mathfrak{y}\rangle_{L \otimes \mathbb{Q}} \in \mathbb{Z}, \quad \forall \mathfrak{y} \in L\right\}
$$

is isomorphic to $\operatorname{MWL}(f)$.

4 Main Theorem

Theorem 4.1. Let S be a smooth rational surface of $\rho(S)=d^{2}+1$ for any integer $d \geq 3$ and $f: S \rightarrow \mathbb{P}^{1}$ a relatively minimal fibration of plane curves of degree d. Assume that f has no multiple fibres when $d=3$. Then f has at least one (-1)-section, and the following four conditions are equivalent.
(1) The Mordell-Weil group of f is trivial.
(2) f has a reducible fibre whose dual graph corresponds to the graph as in Figure 1.

Figure 1.

Here, a double circle denotes a $(-d+1)$-curve and the other circles denote (-2)curves. The numbers indicated outside the circles denote the multiplicities of components in the degenerated fibre.
(3a) $f: S \rightarrow \mathbb{P}^{1}$ can be obtained from \mathbb{P}^{2} by eliminating the base points of the following pencil Λ : Let L be a line on \mathbb{P}^{2}. Take a curve C_{0} of degree d which has a contact of order d with L at one smooth point. Then the pencil Λ is generated by C_{0} and $d L$.
(3b) $f: S \rightarrow \mathbb{P}^{1}$ can be obtained from \mathbb{P}^{2}, after performing a projective transformation, by eliminating the base points of the following pencil Λ : Let $(X: Y: Z)$ be homogeneous coordinates of \mathbb{P}^{2} and L a line defined by $Y=0$. For $t \in \mathbb{C}$, each member of Λ is defined by

$$
\begin{equation*}
t Y^{d}=X^{d}+Y Z^{d-1}+\sum_{i=1}^{d-1} c_{i, 1} X^{i} Y Z^{d-i-1}+\sum_{j=2}^{d} \sum_{i=0}^{d-j} c_{i, j} X^{i} Y^{j} Z^{d-i-j}, \tag{4.3}
\end{equation*}
$$

where $c_{i, j}$ are complex numbers. The member of Λ corresponding to ∞ is $d L$.
In order to show Theorem 4.1, we prove some lemmas. As a first step, we show that the conditions (2), (3a) and (3b) are equivalent. As a second step, we deduce $(2) \Rightarrow(1)$. As a final step, we conclude $(1) \Rightarrow(2)$.

Lemma 4.2. Let S be a smooth rational surface of $\rho(S)=d^{2}+1$ for any integer $d \geq 3$ and $f: S \rightarrow \mathbb{P}^{1}$ a relatively minimal fibration of plane curves of degree d. Assume that f has no multiple fibres when $d=3$. If f has a reducible fibre F_{∞} whose dual graph corresponds to the graph as in Figure 1, then there exists a birational morphism $\nu: S \rightarrow \mathbb{P}^{2}$ such that the images by ν of the fibres of f forms the pencil Λ as in (3a) of Theorem 4.1.

Proof. Let $\Theta_{k}, k=0,1, \cdots, d^{2}-1$ be components of the reducible fibre F_{∞} that satisfy the following condition:

$$
\left(\Theta_{i-1} \cdot \Theta_{j-1}\right)_{1 \leq i, j \leq d^{2}-1}=\left(\begin{array}{ccccc}
-2 & 1 & 0 & \cdots & 0 \\
1 & -2 & 1 & \ddots & \vdots \\
0 & 1 & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & -2 & 1 \\
0 & \cdots & 0 & 1 & -2
\end{array}\right)
$$

$\Theta_{d^{2}-1} \cdot \Theta_{d^{2}-d-1}=1, \Theta_{d^{2}-1}^{2}=-d+1$ and $\Theta_{d^{2}-1} \cdot \Theta_{k}=0$ for $k \neq d^{2}-d-1, d^{2}-1$. We know that f has a (-1)-section $E_{d^{2}}$ by the last assertion of Corollary 2.3. Since Θ_{0} is a unique component whose multiplicity in F_{∞} is one, $E_{d^{2}}$ intersects with Θ_{0}. Let ν be the birational morphism contracting $E_{d^{2}}, \Theta_{0}, \Theta_{1}, \ldots, \Theta_{d^{2}-2}$ in turn. Then $\left(\nu_{*} \Theta_{d^{2}-1}\right)^{2}=1$. Since $\rho(S)=d^{2}+1$, the image of S by ν is \mathbb{P}^{2} with a line $L=\nu_{*} \Theta_{d^{2}-1}$. Furthermore,
multiplicity of $\Theta_{d^{2}-1}$ in F_{∞} implies that $\nu_{*} F_{\infty}=d L$. Let C_{0} be the image by ν of $f^{-1}(0)$. By the Shioda-Tate formula (3.2) and its non-negativity, C_{0} is an irreducible curve of degree d. The original fibration $f: S \rightarrow \mathbb{P}^{1}$ corresponds to a pencil Λ generated by C_{0} and $d L$. From the configuration of $E_{d^{2}}, \Theta_{0}, \Theta_{1}, \ldots, \Theta_{d^{2}-1}$ and $f^{-1}(0)$, we see that the intersection point of C_{0} and L is a smooth point of C_{0}, and we also deduce that C_{0} has a contact of order d with L at the intersection point.

Lemma 4.3. Let S be a smooth rational surface of $\rho(S)=d^{2}+1$ for any integer $d \geq 3$ and $f: S \rightarrow \mathbb{P}^{1}$ a relatively minimal fibration of plane curves of degree d. Assume that f has no multiple fibres when $d=3$. Then the conditions (2), (3a) and (3b) of Theorem 4.1 are equivalent.

Proof. Lemma 4.2 states $(2) \Rightarrow(3 a)$. It suffices to show $(3 a) \Rightarrow(3 b)$ and $(3 \mathrm{~b}) \Rightarrow(2)$.
$(3 \mathrm{a}) \Rightarrow(3 \mathrm{~b})$: Let $(X: Y: Z)$ be homogeneous coordinates of \mathbb{P}^{2} and

$$
\sum_{j=0}^{d} \sum_{i=0}^{d-j} c_{i, j} X^{i} Y^{j} Z^{d-i-j}=0
$$

the defining equation of C_{0} for some complex numbers $c_{i, j}$. We may define the line L by $Y=0$ and assume that the unique tangent point of C_{0} for L is $(0: 0: 1)$. Then we have $c_{0,0}=c_{1,0}=\cdots=c_{d-1,0}=0, c_{d, 0} \neq 0$ and $c_{0,1} \neq 0$. Furthermore, we may put $c_{d, 0}=c_{0,1}=1$ without loss of generality.
$(3 \mathrm{~b}) \Rightarrow(2)$: We consider a pencil Λ on \mathbb{P}^{2} defined by (4.3), namely, each member C_{t} in Λ is defined by (4.3) for $t \in \mathbb{C}$ and the member C_{∞} in Λ corresponding to ∞ is $d L$, which is defined by $Y^{d}=0$. Then C_{t} is smooth at the point $(0: 0: 1)$ for all $t \in \mathbb{C}$. Furthermore, C_{t} has a contact of order d with L at the smooth point $(0: 0: 1)$. Thus any two members in Λ are disjoint on $\mathbb{P}^{2} \backslash\{(0: 0: 1)\}$. In particular, the d^{2} base points of Λ consist of the point $(0: 0: 1)$ and its infinitely near points. Therefore, we obtain a relatively minimal fibration $f: S \rightarrow \mathbb{P}^{1}$ of smooth plane curves of degree d from $\Phi_{\Lambda}: \mathbb{P}^{2} \Longrightarrow \mathbb{P}^{1}$ by eliminating the base points of Λ as follows:

Let $\nu_{1}: W_{1} \rightarrow \mathbb{P}^{2}$ be the blow-up at the point $(0: 0: 1)$ with the exceptional curve E_{1}, i.e., $\nu_{1}\left(E_{1}\right)=(0: 0: 1)$. Let P_{2} be the intersection point of E_{1} and the strict transform to W_{1} of L. The strict transform to W_{1} of C_{t} has a contact of order $d-1$ with that of L at P_{2} for all $t \in \mathbb{C}$. Next let $\nu_{2}: W_{2} \rightarrow W_{1}$ be the blow-up at the base point P_{2} with $E_{2}=\nu_{2}^{-1}\left(P_{2}\right)$. Let P_{3} denote the intersection point of E_{2} and the strict transform to W_{2} of L. For all $t \in \mathbb{C}$ the strict transform to W_{2} of C_{t} has a contact of order $d-2$ with that
of L at P_{3}. In the same way, for $i=3,4, \ldots, d-1$, after the blow-up $\nu_{i}: W_{i} \rightarrow W_{i-1}$ at the base point P_{i} with $E_{i}=\nu_{i}^{-1}\left(P_{i}\right)$, the strict transform to W_{i} of C_{t} has a contact of order $d-i$ with that of L at P_{i+1}. Denote the pull-back of curves by the same symbols for simplicity. Then we get the irreducible decomposition

$$
C_{\infty}-E_{1}-E_{2}-\cdots-E_{d-1}=d\left(L-E_{1}-E_{2}-\cdots-E_{d-1}\right)+\sum_{i=1}^{d-2} i(d-1)\left(E_{i}-E_{i+1}\right) .
$$

Furthermore, $C_{t}-E_{1}-E_{2}-\cdots-E_{d-1}$ has a contact of order $\left(d^{2}-d+1\right)$ with the other members at P_{d} for all $t \in \mathbb{C}$. Denote by $\nu_{d}: W_{d} \rightarrow W_{d-1}$ the blow-up at the base point P_{d} with $E_{d}=\nu_{d}^{-1}\left(P_{d}\right)$. Let P_{d+1} be the intersection point of E_{d} and the strict transform to W_{d} of C_{d}. In fact, P_{d+1} corresponds to a tangent direction of $C_{t}-E_{1}-E_{2}-\cdots-E_{d-1}$ at P_{d} on W_{d-1} by ν_{d}, and $C_{t}-E_{1}-E_{2}-\cdots-E_{d}$ has a contact of order $\left(d^{2}-d\right)$ with the other members at P_{d+1} for all $t \in \mathbb{C}$. In the same way, for $i=d+1, d+2, \ldots, d^{2}-1$, after the blow-up $\nu_{i}: W_{i} \rightarrow W_{i-1}$ at the base point P_{i} with $E_{i}=\nu_{i}^{-1}\left(P_{i}\right), C_{t}-E_{1}-E_{2}-\cdots-E_{i}$ has a contact of order $\left(d^{2}-i\right)$ with the other members at P_{i+1}. Let $\nu_{d^{2}}: S \rightarrow W_{d^{2}-1}$ be the blow-up at the base point $P_{d^{2}}$ with $E_{d^{2}}=\nu_{d^{2}}^{-1}\left(P_{d^{2}}\right)$. Put $f=\Phi_{\Lambda} \circ \nu_{1} \circ \nu_{2} \circ \cdots \circ \nu_{d^{2}}$. Then f : $S \rightarrow \mathbb{P}^{1}$ is a relatively minimal fibration whose general fibre F is $C_{t}-E_{1}-E_{2}-\cdots-E_{d^{2}}$ for general $t \in \mathbb{C}$ and $f^{-1}(\infty)=C_{\infty}-E_{1}-E_{2}-\cdots-E_{d^{2}}$ is a reducible fibre. We remark that the irreducible components of $f^{-1}(\infty)$ consist of one $(-d+1)$-curve $L-E_{1}-E_{2}-\cdots-E_{d}$ and $\left(d^{2}-1\right)(-2)$-curves $E_{i}-E_{i+1}, i=1,2, \ldots, d^{2}-1$. Furthermore, we see that the dual graph of the reducible fibre $f^{-1}(\infty)$ corresponds to the graph as in Figure 1.

As a corollary of Theorem 3.1, we have the following.
Lemma 4.4. The Mordell-Weil group of f is trivial if and only if the zero section (O) and the irreducible components of the fibres of f generate $\operatorname{NS}(S)$.

$$
(2) \Rightarrow(1)
$$

Lemma 4.5. Let S be a smooth rational surface of $\rho(S)=d^{2}+1$ for any integer $d \geq 3$ and $f: S \rightarrow \mathbb{P}^{1}$ a relatively minimal fibration of plane curves of degree d. Assume that f has no multiple fibres when $d=3$. If f has the reducible fibre F_{∞} whose dual graph corresponds to the graph as in Figure 1, then the Mordell-Weil group of f is trivial.

Proof. We use the same notation as in Proof of Lemma 4.3. The irreducible components of F_{∞} are $L-E_{1}-E_{2}-\cdots-E_{d}$ and $E_{i}-E_{i+1}, i=1,2, \ldots, d^{2}-1$. These and $E_{d^{2}}$, which is a (-1)-section of f, generate L and $E_{j}, j=1,2, \ldots, d^{2}$, and form a \mathbb{Z}-basis of $\operatorname{NS}(S)$. Therefore the Mordell-Weil group of f is trivial by Lemma 4.4.

Proof of Theorem 4.1. Combining Lemmas 4.3 and 4.5, it suffices to show (1) \Rightarrow (2) to prove Theorem 4.1. Let S be a smooth rational surface of $\rho(S)=d^{2}+1$ for any integer $d \geq 3$ and $f: S \rightarrow \mathbb{P}^{1}$ a relatively minimal fibration of plane curves of degree d. Assume that f has no multiple fibres when $d=3$. We denote by F a general fibre of f. Let $\nu: S \rightarrow \mathbb{P}^{2}$ be a birational morphism as in Corollary 2.3 and $E_{i}, i=1,2, \ldots, d^{2}$ the pull-back to S of $d^{2}(-1)$-curves contracted by ν. Assume that the Mordell-Weil group of f is trivial. Then a section of f is unique. We shall denote by $E_{d^{2}}$ the (-1)-section of f. Furthermore, in the process of contracting by ν, we may assume that E_{i+1} corresponds to an infinitely near point of the point corresponding to E_{i} for $i=1,2, \ldots, d^{2}-1$. Since $\left(d^{2}-1\right)(-2)$-curves $E_{i}-E_{i+1}, i=1,2, \ldots, d^{2}-1$ are connected, a reducible singular fibre F_{∞} of f contains all of them. However, they do not generate F_{∞}. By the Shioda-Tate formula (3.2) and $\rho(S)=d^{2}+1$, another component of F_{∞} is unique, where we denote it by Θ, and all other fibres of f are irreducible.

Let L be the pull-back by $\nu: S \rightarrow \mathbb{P}^{2}$ of a line. Then $\Theta=\alpha L-\sum_{i=1}^{d^{2}} \beta_{i} E_{i}$ for some non-negative integers α, β_{i}. Since $\Theta . E_{d^{2}}$ and $\Theta .\left(E_{i}-E_{i+1}\right)$ are non-negative, we have $0 \leq \beta_{d^{2}} \leq \beta_{d^{2}-1} \leq \cdots \leq \beta_{2} \leq \beta_{1} \leq \alpha$. Lemma 4.4 implies $\alpha=1$. These and $\Theta . F=0$ provide $\Theta=L-E_{1}-E_{2}-\cdots-E_{d}$. Here, Θ and $\left(d^{2}-1\right)(-2)$-curves $E_{i}-E_{i+1}$, $i=1,2, \ldots, d^{2}-1$ form a singular fibre whose dual graph corresponds to the graph as in Figure 1.

This completes the proof of Theorem 4.1.
In [1], Beauville pointed out that the minimum number of singular fibres is two over \mathbb{P}^{1}, if $f: S \rightarrow \mathbb{P}^{1}$ is not a trivial fibration. There are many interesting arithmetic and geometric properties in this extreme case (see [3]).

Example 4.6. Let $f: S \rightarrow \mathbb{P}^{1}$ be as in (3b) of Theorem 4.1. Consider the case where $c_{i, j}=0$ for the defining equation (4.3), and recall the proof of $(3 \mathrm{~b}) \Rightarrow(2)$. Let C_{t} be a curve on \mathbb{P}^{2} defined by $t Y^{d}=X^{d}+Y Z^{d-1}$. Then C_{t} is smooth unless $t=0, \infty$, namely, the number of singular fibres of f is two.

References

[1] A. Beauville, Le nombre minimum de fibres singulieres d'une courbe stable sur \mathbb{P}^{1}, Séminaire sur les Pinceaux de Courbes de Genre au Moins Deux, Astérisque, 86 (1981), 97-108.
[2] Y. Fujimoto, On rational elliptic surfaces with multiple fibers, Publ. Res. Inst. Math. Sci. 26 (1990), 1-13.
[3] C. Gong, J. Lu and S.-L. Tan, On families of complex curves over \mathbb{P}^{1} with two singular fibers, Osaka J. Math., 53 (2016), 83-99.
[4] C. Gong, S. Kitagawa and J. Lu, Extremal trigonal fibrations on rational surfaces, to appear in J. Math. Soc. Japan.
[5] S. Kitagawa and K. Konno, Fibred rational surfaces with extremal Mordell-Weil lattices, Math. Z. 251 (2005), 179-204.
[6] S. Kitagawa, Maximal Mordell-Weil lattices of fibred surfaces with $p_{g}=q=0$, Rend. Sem. Mat. Univ. Padova 117 (2007), 205-230.
[7] S. Kitagawa, Extremal hyperelliptic fibrations on rational surfaces, Saitama Math. J. 30 (2013), 1-14.
[8] K. Kodaira, On compact analytic surfaces II, Ann. of Math. 77 (1963), 563-626.
[9] K. Konno, Clifford index and the slope of fibered surfaces, J. Alg. Geom. 8 (1999), 207-220.
[10] K. Konno, On certain fibred rational surfaces, Kodai Math. J. 31 (2008), 21-37.
[11] R. Miranda and U. Persson, On extremal rational elliptic surfaces, Math. Z. 193 (1986), 537-558.
[12] I. Naruki, Configurations related to maximal rational elliptic surface, Complex analytic singularities, Adv. Studies in Pure Math. 8 (1986), 315-347.
[13] K. V. Nguyen and M.-H. Saito, On Mordell-Weil lattices for nonhyperelliptic fibrations of surfaces with zero geometric genus and irregularity. Izv. Ross. Akad. Nauk Ser. Mat. 66 (2002), 137-154.
[14] K. Oguiso and T. Shioda, The Mordell-Weil lattice of a rational elliptic surface, Comment. Math. Univ. St. Paul. 40 (1991), 83-99.
[15] M.-H. Saito and K.-I. Sakakibara, On Mordell-Weil lattices of higher genus fibrations on rational surfaces, J. Math. Kyoto Univ. 34 (1994), 859-871.
[16] T. Shioda, On the Mordell-Weil lattices, Comment. Math. Univ. St. Pauli 39 (1990), 211-240.
[17] T. Shioda, Mordell-Weil lattices of type E_{8} and deformation of singularities, Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), 10-12.
[18] T. Shioda, Generalization of a theorem of Manin-Shafarevich, Lecture Notes in Math. 1468, Springer, Berlin (1991), 177-202.
[19] T. Shioda, Mordell-Weil lattices for higher genus fibration over a curve, New trends in algebraic geometry (Warwick, 1996), 359-373.

Shinya Kitagawa,
General Education (Natural Sciences),
National Institute of Technology, Gifu College, 2236-2 Kamimakuwa, Motosu, Gifu 501-0495, Japan
e-mail: kit058shiny@gifu-nct.ac.jp

[^0]: 2010 Mathematics Subject Classification．Primary 14D06；Secondary 14J26．
 Key words and phrases．Plane curve fibrations，Mordell－Weil groups，rational surfaces．

