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1 Introduction

切断を持つ有理楕円曲面については, 楕円曲線束が II∗ 型の特異ファイバーを持つことが,

モーデル・ヴェイユ群が自明となる必要十分条件であることが知られている. 9 年前に前

述を, ファイバーの集合体が有理曲面を成す仮定は保持するが, 一般ファイバーを楕円曲

線から種数 g の超楕円曲線に一般化した場合を考察した ([7]). 任意の g に対して, 有理

曲面のピカール数は 4g + 6 以下で, その最大値 4g + 6 をとる場合に制限すれば g = 1 の

ときと同様に, 相対極小な超楕円曲線束が II∗ 型を一般化した特異ファイバーを持つこと

が, モーデル・ヴェイユ群が自明となる必要十分条件であることが判明した. 今回も有理

曲面を成す仮定は保持するが, 一般ファイバーは平面 d 次曲線である場合を考察する. ピ

カール数は d2 + 1 以下で, その最大値をとる場合に制限すると, モーデル・ヴェイユ群が

自明な平面曲線束は，超楕円的なときと同様に, 特殊な特異ファイバーで特徴づけられる

ことを紹介する.

世話人の池田京司さん, 稲場道明さん, 深澤知さんに深く感謝するとともに，多大なご

迷惑をおかけしたことを深くお詫び申し上げます.

2 Preliminaries

We briefly review basic notation and results on fibred rational surfaces. Here, a fibred

rational surface means a smooth projective rational surface X/C together with a relatively

minimal fibration f : X → P1 whose general fibre F is a smooth projective curve of
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genus g ≥ 1. In particular, any fibre of f is connected and contains no (−1)-curves as

components. Since X is rational, the first Betti number of X equals zero. The second

Betti number of X is equal to the Picard number ρ(X) since the geometric genus of X is

zero. Hence, we see that

ρ(X) = 10−K2
X = 4g + 6− (KX + F )2(2.1)

by virtue of Noether’s formula. The adjoint divisor (KX + F ) is nef when g ≥ 2 (See

[5, Lemma 1.1]). Thus we have that ρ(X) ≤ 4g + 6. By means of slope inequalities

[9, Corollary 4.4], we also have that (KX + F )2 ≥ g − 2 and ρ(X) ≤ 3g + 8 if F is

non-hyperelliptic (See [13, Proposition 2.2]).

Lemma 2.1 (See [5, Lemma 1.2]). Let C be an irreducible curve on S such that (KS +

F ).C = 0. If (KS + F )2 > 0, then C is a smooth rational curve satisfying one of the

following:

(i) C is a (−2)-curve contained in a fibre.

(ii) C is a (−1)-section, i.e., a (−1)-curve with F.C = 1.

From now on, we assume that f : S → P1 is a relatively minimal fibration of genus g ≥
2 such that (KS+F )2 > 0. Suppose that there exists a (−1)-curve E with (KS+F ).E = 0

and let µ1 : S → S1 be its contraction. Since F.E = 1, F1 := (µ1)∗F is smooth on S1.

Furthermore, we have µ∗
1(KS1 + F1) = KS + F . If there exists a (−1)-curve E1 with

(KS1 + F1).E1 = 0, then, by contracting it, we get the pair (S2, F2) with F2 smooth and

KS2 + F2 pulls back to KS + F . We can continue the procedure until we arrive at a

pair (Sn, Fn) such that we cannot find a (−1)-curve En with (KSn + Fn).En = 0. We put

W := Sn and G := Fn. If µ : S → W denotes the natural map, then µ∗(KW+G) = KS+F

and G = µ∗F is a smooth curve isomorphic to F . The original fibration f : S → P1

corresponds to a pencil Λf ⊂ |G| with at most simple (but not necessarily transversal)

base points. From the assumption (KS+F )2 > 0, KS+F is nef and big. This implies that,

W is the minimal resolution of singularities of the surface Proj(R(S,KS+F )), which has at

most rational double points by Lemma 2.1, where R(S,KS+F ) =
⊕

n≥0H
0(S, n(KS+F )).

Therefore, such a model is uniquely determined. We call the pair (W,G) the reduction of

(S, F ).

As a corollary of [6, Theorem 2.3], we have the following.
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Theorem 2.2. Let S be a smooth rational surface and f : S → P1 a relatively minimal

fibration whose general fibre F is a smooth plane curve of degree d ≥ 4. Then

ρ(S) ≤ d2 + 1.

Let (W,G) denote the reduction of (S, F ). If ρ(S) = d2 + 1, then W = P2 and G is a

curve of degree d. In particular, f has at least one (−1)-section. Furthermore, f has at

most d2 (−1)-sections, which are disjoint from each other.

Corollary 2.3. Let S be a smooth rational surface of ρ(S) = d2 + 1 for any integer

d ≥ 3 and f : S → P1 a relatively minimal fibration of plane curve of degree d. Assume

that f has no multiple fibres when d = 3. Then there exists a birational morphism ν :

S → P2 such that the pull-back to S of a (−1)-curve contracted by ν intersects with F at

just one point. In particular, ν∗F is a smooth plane curve of degree d and f has at least

one (−1)-section.

3 Mordell-Weil lattices

Via f , we can regard S as a smooth projective curve of genus g defined over the rational

function field K = f ∗C(P1). We assume that it has a K-rational point O. Let JF/K be

the Jacobian variety of the generic fibre F/K of f . The Mordell-Weil group of f is the

group of K-rational points JF(K). It is a finitely generated Abelian group, since S/C is a

rational surface. The rank rkJF(K) of the group is called the Mordell-Weil rank. There

is a formula, often referred as the Shioda-Tate formula, relating the Mordell-Weil rank

and the Picard number:

rkJF(K) = ρ(S)− 2−
∑
t∈P1

(vt − 1),(3.2)

where vt denotes the number of irreducible components of the fibre f−1(t). There is a

natural one-to-one correspondence between the set of K-rational points F(K) and the set

of sections of f . For P ∈ F(K), we denote by (P ) the section corresponding to P which

is regarded as a horizontal curve on S. In particular, (O) corresponding to the origin O

of JF(K) is called the zero section. Shioda’s main idea in [16] and [19] is to view the

free part of JF(K) as a Euclidean lattice with respect to a natural pairing induced by

the intersection form on H2(S). The lattice is called the Mordell-Weil lattice of f and

is denoted by MWL(f). In fact, by describing the Néron-Severi group NS(S), we can
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explicitly determine the structure of MWL(f) as follows: Let T be the subgroup of NS(S)

generated by (O) and the irreducible components of the fibres of f . When we equip

NS(X) and T with the bilinear form which is (−1) times of the intersection form, we

call them the Néron-Severi lattice NS(S)− and the trivial lattice T− respectively. Since

S is a rational surface, NS(S)− is a unimodular lattice, that is, the absolute value of the

determinant of the Gram matrix equals one. Then the following holds.

Theorem 3.1 (See [16], [19, Theorem 3]). Keep the notation and assumptions as

above. Then

JF(K) ≃ NS(S)/T.

Let L be the orthogonal complement (T−)⊥ ⊂ NS(S)−. Then the dual lattice

L∗ = {x ∈ L⊗Q | ⟨x, y⟩L⊗Q ∈ Z, ∀y ∈ L}

is isomorphic to MWL(f).

4 Main Theorem

Theorem 4.1. Let S be a smooth rational surface of ρ(S) = d2 + 1 for any integer

d ≥ 3 and f : S → P1 a relatively minimal fibration of plane curves of degree d. Assume

that f has no multiple fibres when d = 3. Then f has at least one (−1)-section, and the

following four conditions are equivalent.

(1) The Mordell-Weil group of f is trivial.

(2) f has a reducible fibre whose dual graph corresponds to the graph as in Figure 1.
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Figure 1.

Here, a double circle denotes a (−d + 1)-curve and the other circles denote (−2)-

curves. The numbers indicated outside the circles denote the multiplicities of com-

ponents in the degenerated fibre.
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(3a) f : S → P1 can be obtained from P2 by eliminating the base points of the following

pencil Λ: Let L be a line on P2. Take a curve C0 of degree d which has a contact of

order d with L at one smooth point. Then the pencil Λ is generated by C0 and dL.

(3b) f : S → P1 can be obtained from P2, after performing a projective transformation, by

eliminating the base points of the following pencil Λ: Let (X : Y : Z) be homogeneous

coordinates of P2 and L a line defined by Y = 0. For t ∈ C, each member of Λ is

defined by

tY d = Xd + Y Zd−1 +
d−1∑
i=1

ci,1X
iY Zd−i−1 +

d∑
j=2

d−j∑
i=0

ci,jX
iY jZd−i−j,(4.3)

where ci,j are complex numbers. The member of Λ corresponding to ∞ is dL.

In order to show Theorem 4.1, we prove some lemmas. As a first step, we show that

the conditions (2), (3a) and (3b) are equivalent. As a second step, we deduce (2) ⇒ (1).

As a final step, we conclude (1) ⇒ (2).

Lemma 4.2. Let S be a smooth rational surface of ρ(S) = d2 + 1 for any integer

d ≥ 3 and f : S → P1 a relatively minimal fibration of plane curves of degree d. Assume

that f has no multiple fibres when d = 3. If f has a reducible fibre F∞ whose dual graph

corresponds to the graph as in Figure 1, then there exists a birational morphism ν : S → P2

such that the images by ν of the fibres of f forms the pencil Λ as in (3a) of Theorem 4.1.

Proof. Let Θk, k = 0, 1, · · · , d2 − 1 be components of the reducible fibre F∞ that

satisfy the following condition:

(Θi−1.Θj−1)1≤i,j≤d2−1 =



−2 1 0 · · · 0

1 −2 1
. . .

...

0 1
. . . . . . 0

...
. . . . . . −2 1

0 · · · 0 1 −2


,

Θd2−1.Θd2−d−1 = 1, Θ2
d2−1 = −d + 1 and Θd2−1.Θk = 0 for k ̸= d2 − d − 1, d2 − 1. We

know that f has a (−1)-section Ed2 by the last assertion of Corollary 2.3. Since Θ0 is

a unique component whose multiplicity in F∞ is one, Ed2 intersects with Θ0. Let ν be

the birational morphism contracting Ed2 ,Θ0,Θ1, . . . ,Θd2−2 in turn. Then (ν∗Θd2−1)
2 = 1.

Since ρ(S) = d2 + 1, the image of S by ν is P2 with a line L = ν∗Θd2−1. Furthermore,
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multiplicity of Θd2−1 in F∞ implies that ν∗F∞ = dL. Let C0 be the image by ν of f−1(0).

By the Shioda-Tate formula (3.2) and its non-negativity, C0 is an irreducible curve of

degree d. The original fibration f : S → P1 corresponds to a pencil Λ generated by C0

and dL. From the configuration of Ed2 ,Θ0,Θ1, . . . ,Θd2−1 and f−1(0), we see that the

intersection point of C0 and L is a smooth point of C0, and we also deduce that C0 has a

contact of order d with L at the intersection point.

Lemma 4.3. Let S be a smooth rational surface of ρ(S) = d2+1 for any integer d ≥ 3

and f : S → P1 a relatively minimal fibration of plane curves of degree d. Assume that f

has no multiple fibres when d = 3. Then the conditions (2), (3a) and (3b) of Theorem 4.1

are equivalent.

Proof. Lemma 4.2 states (2) ⇒ (3a). It suffices to show (3a) ⇒ (3b) and (3b) ⇒ (2).

(3a) ⇒ (3b): Let (X : Y : Z) be homogeneous coordinates of P2 and

d∑
j=0

d−j∑
i=0

ci,jX
iY jZd−i−j = 0

the defining equation of C0 for some complex numbers ci,j. We may define the line L by

Y = 0 and assume that the unique tangent point of C0 for L is (0 : 0 : 1). Then we

have c0,0 = c1,0 = · · · = cd−1,0 = 0, cd,0 ̸= 0 and c0,1 ̸= 0. Furthermore, we may put

cd,0 = c0,1 = 1 without loss of generality.

(3b) ⇒ (2): We consider a pencil Λ on P2 defined by (4.3), namely, each member Ct in

Λ is defined by (4.3) for t ∈ C and the member C∞ in Λ corresponding to ∞ is dL, which

is defined by Y d = 0. Then Ct is smooth at the point (0 : 0 : 1) for all t ∈ C. Furthermore,

Ct has a contact of order d with L at the smooth point (0 : 0 : 1). Thus any two members

in Λ are disjoint on P2 \ {(0 : 0 : 1)}. In particular, the d2 base points of Λ consist

of the point (0 : 0 : 1) and its infinitely near points. Therefore, we obtain a relatively

minimal fibration f : S → P1 of smooth plane curves of degree d from ΦΛ : P2 99K P1 by

eliminating the base points of Λ as follows:

Let ν1 : W1 → P2 be the blow-up at the point (0 : 0 : 1) with the exceptional curve E1,

i.e., ν1(E1) = (0 : 0 : 1). Let P2 be the intersection point of E1 and the strict transform

to W1 of L. The strict transform to W1 of Ct has a contact of order d − 1 with that of

L at P2 for all t ∈ C. Next let ν2 : W2 → W1 be the blow-up at the base point P2 with

E2 = ν−1
2 (P2). Let P3 denote the intersection point of E2 and the strict transform to W2

of L. For all t ∈ C the strict transform to W2 of Ct has a contact of order d− 2 with that
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of L at P3. In the same way, for i = 3, 4, . . . , d − 1, after the blow-up νi : Wi → Wi−1

at the base point Pi with Ei = ν−1
i (Pi), the strict transform to Wi of Ct has a contact of

order d − i with that of L at Pi+1. Denote the pull-back of curves by the same symbols

for simplicity. Then we get the irreducible decomposition

C∞ − E1 − E2 − · · · − Ed−1 = d(L− E1 − E2 − · · · − Ed−1) +
d−2∑
i=1

i(d− 1)(Ei − Ei+1).

Furthermore, Ct −E1 −E2 − · · · −Ed−1 has a contact of order (d2 − d+1) with the other

members at Pd for all t ∈ C. Denote by νd : Wd → Wd−1 the blow-up at the base point

Pd with Ed = ν−1
d (Pd). Let Pd+1 be the intersection point of Ed and the strict transform

to Wd of Cd. In fact, Pd+1 corresponds to a tangent direction of Ct−E1−E2−· · ·−Ed−1

at Pd on Wd−1 by νd, and Ct−E1−E2− · · ·−Ed has a contact of order (d2− d) with the

other members at Pd+1 for all t ∈ C. In the same way, for i = d+1, d+2, . . . , d2−1, after

the blow-up νi : Wi → Wi−1 at the base point Pi with Ei = ν−1
i (Pi), Ct−E1−E2−· · ·−Ei

has a contact of order (d2−i) with the other members at Pi+1. Let νd2 : S → Wd2−1 be the

blow-up at the base point Pd2 with Ed2 = ν−1
d2 (Pd2). Put f = ΦΛ◦ν1◦ν2◦· · ·◦νd2 . Then f :

S → P1 is a relatively minimal fibration whose general fibre F is Ct−E1−E2−· · ·−Ed2 for

general t ∈ C and f−1(∞) = C∞−E1−E2−· · ·−Ed2 is a reducible fibre. We remark that

the irreducible components of f−1(∞) consist of one (−d+1)-curve L−E1−E2−· · ·−Ed

and (d2−1) (−2)-curves Ei−Ei+1, i = 1, 2, . . . , d2−1. Furthermore, we see that the dual

graph of the reducible fibre f−1(∞) corresponds to the graph as in Figure 1.

As a corollary of Theorem 3.1, we have the following.

Lemma 4.4. The Mordell-Weil group of f is trivial if and only if the zero section (O)

and the irreducible components of the fibres of f generate NS(S).

(2) ⇒ (1)

Lemma 4.5. Let S be a smooth rational surface of ρ(S) = d2+1 for any integer d ≥ 3

and f : S → P1 a relatively minimal fibration of plane curves of degree d. Assume that

f has no multiple fibres when d = 3. If f has the reducible fibre F∞ whose dual graph

corresponds to the graph as in Figure 1, then the Mordell-Weil group of f is trivial.

Proof. We use the same notation as in Proof of Lemma 4.3. The irreducible com-

ponents of F∞ are L− E1 − E2 − · · · − Ed and Ei − Ei+1, i = 1, 2, . . . , d2 − 1. These and

Ed2 , which is a (−1)-section of f , generate L and Ej, j = 1, 2, . . . , d2, and form a Z-basis
of NS(S). Therefore the Mordell-Weil group of f is trivial by Lemma 4.4.
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Proof of Theorem 4.1. Combining Lemmas 4.3 and 4.5, it suffices to show (1) ⇒ (2)

to prove Theorem 4.1. Let S be a smooth rational surface of ρ(S) = d2+1 for any integer

d ≥ 3 and f : S → P1 a relatively minimal fibration of plane curves of degree d. Assume

that f has no multiple fibres when d = 3. We denote by F a general fibre of f . Let

ν : S → P2 be a birational morphism as in Corollary 2.3 and Ei, i = 1, 2, . . . , d2 the

pull-back to S of d2 (−1)-curves contracted by ν. Assume that the Mordell-Weil group of

f is trivial. Then a section of f is unique. We shall denote by Ed2 the (−1)-section of f .

Furthermore, in the process of contracting by ν, we may assume that Ei+1 corresponds

to an infinitely near point of the point corresponding to Ei for i = 1, 2, . . . , d2 − 1. Since

(d2−1) (−2)-curves Ei−Ei+1, i = 1, 2, . . . , d2−1 are connected, a reducible singular fibre

F∞ of f contains all of them. However, they do not generate F∞. By the Shioda-Tate

formula (3.2) and ρ(S) = d2 + 1, another component of F∞ is unique, where we denote it

by Θ, and all other fibres of f are irreducible.

Let L be the pull-back by ν : S → P2 of a line. Then Θ = αL −
∑d2

i=1 βiEi for some

non-negative integers α, βi. Since Θ.Ed2 and Θ.(Ei − Ei+1) are non-negative, we have

0 ≤ βd2 ≤ βd2−1 ≤ · · · ≤ β2 ≤ β1 ≤ α. Lemma 4.4 implies α = 1. These and Θ.F = 0

provide Θ = L − E1 − E2 − · · · − Ed. Here, Θ and (d2 − 1) (−2)-curves Ei − Ei+1,

i = 1, 2, . . . , d2 − 1 form a singular fibre whose dual graph corresponds to the graph as in

Figure 1.

This completes the proof of Theorem 4.1.

In [1], Beauville pointed out that the minimum number of singular fibres is two over

P1, if f : S → P1 is not a trivial fibration. There are many interesting arithmetic and

geometric properties in this extreme case (see [3]).

Example 4.6. Let f : S → P1 be as in (3b) of Theorem 4.1. Consider the case where

ci,j = 0 for the defining equation (4.3), and recall the proof of (3b) ⇒ (2). Let Ct be a

curve on P2 defined by tY d = Xd + Y Zd−1. Then Ct is smooth unless t = 0,∞, namely,

the number of singular fibres of f is two.

References

[1] A. Beauville, Le nombre minimum de fibres singulieres d’une courbe stable sur P1,
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