有理曲面を成すモーデル・ヴェイユ群が自明な平面 曲線束について

北川真也

1 Introduction

切断を持つ有理楕円曲面については、楕円曲線束が II^* 型の特異ファイバーを持つことが、モーデル・ヴェイユ群が自明となる必要十分条件であることが知られている。 9 年前に前述を、ファイバーの集合体が有理曲面を成す仮定は保持するが、一般ファイバーを楕円曲線から種数 g の超楕円曲線に一般化した場合を考察した ([7]). 任意の g に対して、有理曲面のピカール数は 4g+6 以下で、その最大値 4g+6 をとる場合に制限すれば g=1 のときと同様に、相対極小な超楕円曲線束が II^* 型を一般化した特異ファイバーを持つことが、モーデル・ヴェイユ群が自明となる必要十分条件であることが判明した。 今回も有理曲面を成す仮定は保持するが、一般ファイバーは平面 d 次曲線である場合を考察する。ピカール数は d^2+1 以下で、その最大値をとる場合に制限すると、モーデル・ヴェイユ群が自明な平面曲線束は、超楕円的なときと同様に、特殊な特異ファイバーで特徴づけられることを紹介する.

世話人の池田京司さん、稲場道明さん、深澤知さんに深く感謝するとともに、多大なご迷惑をおかけしたことを深くお詫び申し上げます.

2 Preliminaries

We briefly review basic notation and results on fibred rational surfaces. Here, a fibred rational surface means a smooth projective rational surface X/\mathbb{C} together with a relatively minimal fibration $f:X\to\mathbb{P}^1$ whose general fibre F is a smooth projective curve of

²⁰¹⁰ Mathematics Subject Classification. Primary 14D06; Secondary 14J26. Key words and phrases. Plane curve fibrations, Mordell-Weil groups, rational surfaces.

genus $g \geq 1$. In particular, any fibre of f is connected and contains no (-1)-curves as components. Since X is rational, the first Betti number of X equals zero. The second Betti number of X is equal to the Picard number $\rho(X)$ since the geometric genus of X is zero. Hence, we see that

(2.1)
$$\rho(X) = 10 - K_X^2 = 4g + 6 - (K_X + F)^2$$

by virtue of Noether's formula. The adjoint divisor $(K_X + F)$ is nef when $g \ge 2$ (See [5, Lemma 1.1]). Thus we have that $\rho(X) \le 4g + 6$. By means of slope inequalities [9, Corollary 4.4], we also have that $(K_X + F)^2 \ge g - 2$ and $\rho(X) \le 3g + 8$ if F is non-hyperelliptic (See [13, Proposition 2.2]).

LEMMA 2.1 (See [5, Lemma 1.2]). Let C be an irreducible curve on S such that $(K_S + F) \cdot C = 0$. If $(K_S + F)^2 > 0$, then C is a smooth rational curve satisfying one of the following:

- (i) C is a (-2)-curve contained in a fibre.
- (ii) C is a (-1)-section, i.e., a (-1)-curve with F.C = 1.

From now on, we assume that $f:S\to\mathbb{P}^1$ is a relatively minimal fibration of genus $g\geq 2$ such that $(K_S+F)^2>0$. Suppose that there exists a (-1)-curve E with $(K_S+F).E=0$ and let $\mu_1:S\to S_1$ be its contraction. Since F.E=1, $F_1:=(\mu_1)_*F$ is smooth on S_1 . Furthermore, we have $\mu_1^*(K_{S_1}+F_1)=K_S+F$. If there exists a (-1)-curve E_1 with $(K_{S_1}+F_1).E_1=0$, then, by contracting it, we get the pair (S_2,F_2) with F_2 smooth and $K_{S_2}+F_2$ pulls back to K_S+F . We can continue the procedure until we arrive at a pair (S_n,F_n) such that we cannot find a (-1)-curve E_n with $(K_{S_n}+F_n).E_n=0$. We put $W:=S_n$ and $G:=F_n$. If $\mu:S\to W$ denotes the natural map, then $\mu^*(K_W+G)=K_S+F$ and $G=\mu_*F$ is a smooth curve isomorphic to F. The original fibration $f:S\to\mathbb{P}^1$ corresponds to a pencil $\Lambda_f\subset |G|$ with at most simple (but not necessarily transversal) base points. From the assumption $(K_S+F)^2>0$, K_S+F is nef and big. This implies that, W is the minimal resolution of singularities of the surface $\operatorname{Proj}(R(S,K_S+F))$, which has at most rational double points by Lemma 2.1, where $R(S,K_S+F)=\bigoplus_{n\geq 0}H^0(S,n(K_S+F))$. Therefore, such a model is uniquely determined. We call the pair (W,G) the reduction of (S,F).

As a corollary of [6, Theorem 2.3], we have the following.

THEOREM 2.2. Let S be a smooth rational surface and $f: S \to \mathbb{P}^1$ a relatively minimal fibration whose general fibre F is a smooth plane curve of degree $d \geq 4$. Then

$$\rho(S) \le d^2 + 1.$$

Let (W,G) denote the reduction of (S,F). If $\rho(S)=d^2+1$, then $W=\mathbb{P}^2$ and G is a curve of degree d. In particular, f has at least one (-1)-section. Furthermore, f has at most d^2 (-1)-sections, which are disjoint from each other.

COROLLARY 2.3. Let S be a smooth rational surface of $\rho(S) = d^2 + 1$ for any integer $d \geq 3$ and $f: S \to \mathbb{P}^1$ a relatively minimal fibration of plane curve of degree d. Assume that f has no multiple fibres when d=3. Then there exists a birational morphism $\nu: S \to \mathbb{P}^2$ such that the pull-back to S of a (-1)-curve contracted by ν intersects with F at just one point. In particular, ν_*F is a smooth plane curve of degree d and f has at least one (-1)-section.

3 Mordell-Weil lattices

Via f, we can regard S as a smooth projective curve of genus g defined over the rational function field $\mathbb{K} = f^*\mathbb{C}(\mathbb{P}^1)$. We assume that it has a \mathbb{K} -rational point O. Let $\mathcal{J}_{\mathcal{F}}/\mathbb{K}$ be the Jacobian variety of the generic fibre \mathcal{F}/\mathbb{K} of f. The Mordell-Weil group of f is the group of \mathbb{K} -rational points $\mathcal{J}_{\mathcal{F}}(\mathbb{K})$. It is a finitely generated Abelian group, since S/\mathbb{C} is a rational surface. The rank $\mathrm{rk}\,\mathcal{J}_{\mathcal{F}}(\mathbb{K})$ of the group is called the *Mordell-Weil rank*. There is a formula, often referred as the Shioda-Tate formula, relating the Mordell-Weil rank and the Picard number:

(3.2)
$$\operatorname{rk} \mathcal{J}_{\mathcal{F}}(\mathbb{K}) = \rho(S) - 2 - \sum_{t \in \mathbb{P}^1} (v_t - 1),$$

where v_t denotes the number of irreducible components of the fibre $f^{-1}(t)$. There is a natural one-to-one correspondence between the set of K-rational points $\mathcal{F}(\mathbb{K})$ and the set of sections of f. For $P \in \mathcal{F}(\mathbb{K})$, we denote by (P) the section corresponding to P which is regarded as a horizontal curve on S. In particular, (O) corresponding to the origin O of $\mathcal{J}_{\mathcal{F}}(\mathbb{K})$ is called the zero section. Shioda's main idea in [16] and [19] is to view the free part of $\mathcal{J}_{\mathcal{F}}(\mathbb{K})$ as a Euclidean lattice with respect to a natural pairing induced by the intersection form on $H^2(S)$. The lattice is called the Mordell-Weil lattice of f and is denoted by MWL(f). In fact, by describing the Néron-Severi group NS(S), we can

explicitly determine the structure of MWL(f) as follows: Let T be the subgroup of NS(S) generated by (O) and the irreducible components of the fibres of f. When we equip NS(X) and T with the bilinear form which is (-1) times of the intersection form, we call them the Néron-Severi lattice $NS(S)^-$ and the trivial lattice T^- respectively. Since S is a rational surface, $NS(S)^-$ is a unimodular lattice, that is, the absolute value of the determinant of the Gram matrix equals one. Then the following holds.

Theorem 3.1 (See [16], [19, Theorem 3]). Keep the notation and assumptions as above. Then

$$\mathcal{J}_{\mathcal{F}}(\mathbb{K}) \simeq \mathrm{NS}(S)/T.$$

Let L be the orthogonal complement $(T^-)^{\perp} \subset NS(S)^-$. Then the dual lattice

$$L^* = \{ \mathfrak{x} \in L \otimes \mathbb{Q} \mid \langle \mathfrak{x}, \mathfrak{y} \rangle_{L \otimes \mathbb{Q}} \in \mathbb{Z}, \quad \forall \mathfrak{y} \in L \}$$

is isomorphic to MWL(f).

4 Main Theorem

THEOREM 4.1. Let S be a smooth rational surface of $\rho(S) = d^2 + 1$ for any integer $d \geq 3$ and $f: S \to \mathbb{P}^1$ a relatively minimal fibration of plane curves of degree d. Assume that f has no multiple fibres when d = 3. Then f has at least one (-1)-section, and the following four conditions are equivalent.

- (1) The Mordell-Weil group of f is trivial.
- (2) f has a reducible fibre whose dual graph corresponds to the graph as in Figure 1.

Figure 1.

Here, a double circle denotes a (-d+1)-curve and the other circles denote (-2)curves. The numbers indicated outside the circles denote the multiplicities of components in the degenerated fibre.

- (3a) $f: S \to \mathbb{P}^1$ can be obtained from \mathbb{P}^2 by eliminating the base points of the following pencil Λ : Let L be a line on \mathbb{P}^2 . Take a curve C_0 of degree d which has a contact of order d with L at one smooth point. Then the pencil Λ is generated by C_0 and dL.
- (3b) $f: S \to \mathbb{P}^1$ can be obtained from \mathbb{P}^2 , after performing a projective transformation, by eliminating the base points of the following pencil Λ : Let (X:Y:Z) be homogeneous coordinates of \mathbb{P}^2 and L a line defined by Y=0. For $t \in \mathbb{C}$, each member of Λ is defined by

$$(4.3) tY^d = X^d + YZ^{d-1} + \sum_{i=1}^{d-1} c_{i,1} X^i YZ^{d-i-1} + \sum_{j=2}^{d} \sum_{i=0}^{d-j} c_{i,j} X^i Y^j Z^{d-i-j},$$

where $c_{i,j}$ are complex numbers. The member of Λ corresponding to ∞ is dL.

In order to show Theorem 4.1, we prove some lemmas. As a first step, we show that the conditions (2), (3a) and (3b) are equivalent. As a second step, we deduce (2) \Rightarrow (1). As a final step, we conclude (1) \Rightarrow (2).

LEMMA 4.2. Let S be a smooth rational surface of $\rho(S)=d^2+1$ for any integer $d \geq 3$ and $f: S \to \mathbb{P}^1$ a relatively minimal fibration of plane curves of degree d. Assume that f has no multiple fibres when d=3. If f has a reducible fibre F_{∞} whose dual graph corresponds to the graph as in Figure 1, then there exists a birational morphism $\nu: S \to \mathbb{P}^2$ such that the images by ν of the fibres of f forms the pencil Λ as in (3a) of Theorem 4.1.

PROOF. Let Θ_k , $k = 0, 1, \dots, d^2 - 1$ be components of the reducible fibre F_{∞} that satisfy the following condition:

$$(\Theta_{i-1}.\Theta_{j-1})_{1 \le i,j \le d^2 - 1} = \begin{pmatrix} -2 & 1 & 0 & \cdots & 0 \\ 1 & -2 & 1 & \ddots & \vdots \\ 0 & 1 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & -2 & 1 \\ 0 & \cdots & 0 & 1 & -2 \end{pmatrix},$$

 $\Theta_{d^2-1}.\Theta_{d^2-d-1}=1,\ \Theta_{d^2-1}^2=-d+1$ and $\Theta_{d^2-1}.\Theta_k=0$ for $k\neq d^2-d-1,d^2-1$. We know that f has a (-1)-section E_{d^2} by the last assertion of Corollary 2.3. Since Θ_0 is a unique component whose multiplicity in F_{∞} is one, E_{d^2} intersects with Θ_0 . Let ν be the birational morphism contracting $E_{d^2},\Theta_0,\Theta_1,\ldots,\Theta_{d^2-2}$ in turn. Then $(\nu_*\Theta_{d^2-1})^2=1$. Since $\rho(S)=d^2+1$, the image of S by ν is \mathbb{P}^2 with a line $L=\nu_*\Theta_{d^2-1}$. Furthermore,

multiplicity of Θ_{d^2-1} in F_{∞} implies that $\nu_*F_{\infty}=dL$. Let C_0 be the image by ν of $f^{-1}(0)$. By the Shioda-Tate formula (3.2) and its non-negativity, C_0 is an irreducible curve of degree d. The original fibration $f:S\to\mathbb{P}^1$ corresponds to a pencil Λ generated by C_0 and dL. From the configuration of $E_{d^2},\Theta_0,\Theta_1,\ldots,\Theta_{d^2-1}$ and $f^{-1}(0)$, we see that the intersection point of C_0 and L is a smooth point of C_0 , and we also deduce that C_0 has a contact of order d with L at the intersection point.

LEMMA 4.3. Let S be a smooth rational surface of $\rho(S) = d^2 + 1$ for any integer $d \geq 3$ and $f: S \to \mathbb{P}^1$ a relatively minimal fibration of plane curves of degree d. Assume that f has no multiple fibres when d = 3. Then the conditions (2), (3a) and (3b) of Theorem 4.1 are equivalent.

PROOF. Lemma 4.2 states $(2) \Rightarrow (3a)$. It suffices to show $(3a) \Rightarrow (3b)$ and $(3b) \Rightarrow (2)$. $(3a) \Rightarrow (3b)$: Let (X : Y : Z) be homogeneous coordinates of \mathbb{P}^2 and

$$\sum_{j=0}^{d} \sum_{i=0}^{d-j} c_{i,j} X^{i} Y^{j} Z^{d-i-j} = 0$$

the defining equation of C_0 for some complex numbers $c_{i,j}$. We may define the line L by Y=0 and assume that the unique tangent point of C_0 for L is (0:0:1). Then we have $c_{0,0}=c_{1,0}=\cdots=c_{d-1,0}=0$, $c_{d,0}\neq 0$ and $c_{0,1}\neq 0$. Furthermore, we may put $c_{d,0}=c_{0,1}=1$ without loss of generality.

 $(3b) \Rightarrow (2)$: We consider a pencil Λ on \mathbb{P}^2 defined by (4.3), namely, each member C_t in Λ is defined by (4.3) for $t \in \mathbb{C}$ and the member C_{∞} in Λ corresponding to ∞ is dL, which is defined by $Y^d = 0$. Then C_t is smooth at the point (0:0:1) for all $t \in \mathbb{C}$. Furthermore, C_t has a contact of order d with L at the smooth point (0:0:1). Thus any two members in Λ are disjoint on $\mathbb{P}^2 \setminus \{(0:0:1)\}$. In particular, the d^2 base points of Λ consist of the point (0:0:1) and its infinitely near points. Therefore, we obtain a relatively minimal fibration $f: S \to \mathbb{P}^1$ of smooth plane curves of degree d from $\Phi_{\Lambda} : \mathbb{P}^2 \dashrightarrow \mathbb{P}^1$ by eliminating the base points of Λ as follows:

Let $\nu_1: W_1 \to \mathbb{P}^2$ be the blow-up at the point (0:0:1) with the exceptional curve E_1 , i.e., $\nu_1(E_1) = (0:0:1)$. Let P_2 be the intersection point of E_1 and the strict transform to W_1 of L. The strict transform to W_1 of C_t has a contact of order d-1 with that of L at P_2 for all $t \in \mathbb{C}$. Next let $\nu_2: W_2 \to W_1$ be the blow-up at the base point P_2 with $E_2 = \nu_2^{-1}(P_2)$. Let P_3 denote the intersection point of E_2 and the strict transform to W_2 of L. For all $t \in \mathbb{C}$ the strict transform to W_2 of L has a contact of order L with that

of L at P_3 . In the same way, for i = 3, 4, ..., d - 1, after the blow-up $\nu_i : W_i \to W_{i-1}$ at the base point P_i with $E_i = \nu_i^{-1}(P_i)$, the strict transform to W_i of C_t has a contact of order d - i with that of L at P_{i+1} . Denote the pull-back of curves by the same symbols for simplicity. Then we get the irreducible decomposition

$$C_{\infty} - E_1 - E_2 - \dots - E_{d-1} = d(L - E_1 - E_2 - \dots - E_{d-1}) + \sum_{i=1}^{d-2} i(d-1)(E_i - E_{i+1}).$$

Furthermore, $C_t-E_1-E_2-\cdots-E_{d-1}$ has a contact of order (d^2-d+1) with the other members at P_d for all $t\in\mathbb{C}$. Denote by $\nu_d:W_d\to W_{d-1}$ the blow-up at the base point P_d with $E_d=\nu_d^{-1}(P_d)$. Let P_{d+1} be the intersection point of E_d and the strict transform to W_d of C_d . In fact, P_{d+1} corresponds to a tangent direction of $C_t-E_1-E_2-\cdots-E_{d-1}$ at P_d on W_{d-1} by ν_d , and $C_t-E_1-E_2-\cdots-E_d$ has a contact of order (d^2-d) with the other members at P_{d+1} for all $t\in\mathbb{C}$. In the same way, for $i=d+1,d+2,\ldots,d^2-1$, after the blow-up $\nu_i:W_i\to W_{i-1}$ at the base point P_i with $E_i=\nu_i^{-1}(P_i), C_t-E_1-E_2-\cdots-E_i$ has a contact of order (d^2-i) with the other members at P_{i+1} . Let $\nu_{d^2}:S\to W_{d^2-1}$ be the blow-up at the base point P_d with $E_{d^2}=\nu_{d^2}^{-1}(P_{d^2})$. Put $f=\Phi_\Lambda\circ\nu_1\circ\nu_2\circ\cdots\circ\nu_{d^2}$. Then $f:S\to\mathbb{P}^1$ is a relatively minimal fibration whose general fibre F is $C_t-E_1-E_2-\cdots-E_{d^2}$ for general $t\in\mathbb{C}$ and $f^{-1}(\infty)=C_\infty-E_1-E_2-\cdots-E_{d^2}$ is a reducible fibre. We remark that the irreducible components of $f^{-1}(\infty)$ consist of one (-d+1)-curve $L-E_1-E_2-\cdots-E_d$ and (d^2-1) (-2)-curves $E_i-E_{i+1}, i=1,2,\ldots,d^2-1$. Furthermore, we see that the dual graph of the reducible fibre $f^{-1}(\infty)$ corresponds to the graph as in Figure 1.

As a corollary of Theorem 3.1, we have the following.

LEMMA 4.4. The Mordell-Weil group of f is trivial if and only if the zero section (O) and the irreducible components of the fibres of f generate NS(S).

$$(2) \Rightarrow (1)$$

LEMMA 4.5. Let S be a smooth rational surface of $\rho(S) = d^2 + 1$ for any integer $d \geq 3$ and $f: S \to \mathbb{P}^1$ a relatively minimal fibration of plane curves of degree d. Assume that f has no multiple fibres when d = 3. If f has the reducible fibre F_{∞} whose dual graph corresponds to the graph as in Figure 1, then the Mordell-Weil group of f is trivial.

PROOF. We use the same notation as in Proof of Lemma 4.3. The irreducible components of F_{∞} are $L - E_1 - E_2 - \cdots - E_d$ and $E_i - E_{i+1}$, $i = 1, 2, \dots, d^2 - 1$. These and E_{d^2} , which is a (-1)-section of f, generate L and E_j , $j = 1, 2, \dots, d^2$, and form a \mathbb{Z} -basis of NS(S). Therefore the Mordell-Weil group of f is trivial by Lemma 4.4.

Proof of Theorem 4.1. Combining Lemmas 4.3 and 4.5, it suffices to show $(1) \Rightarrow (2)$ to prove Theorem 4.1. Let S be a smooth rational surface of $\rho(S) = d^2 + 1$ for any integer $d \geq 3$ and $f: S \to \mathbb{P}^1$ a relatively minimal fibration of plane curves of degree d. Assume that f has no multiple fibres when d = 3. We denote by F a general fibre of f. Let $\nu: S \to \mathbb{P}^2$ be a birational morphism as in Corollary 2.3 and E_i , $i = 1, 2, \ldots, d^2$ the pull-back to S of d^2 (-1)-curves contracted by ν . Assume that the Mordell-Weil group of f is trivial. Then a section of f is unique. We shall denote by E_{d^2} the (-1)-section of f. Furthermore, in the process of contracting by ν , we may assume that E_{i+1} corresponds to an infinitely near point of the point corresponding to E_i for $i = 1, 2, \ldots, d^2 - 1$. Since (d^2-1) (-2)-curves $E_i - E_{i+1}$, $i = 1, 2, \ldots, d^2-1$ are connected, a reducible singular fibre F_{∞} of f contains all of them. However, they do not generate F_{∞} . By the Shioda-Tate formula (3.2) and $\rho(S) = d^2 + 1$, another component of F_{∞} is unique, where we denote it by Θ , and all other fibres of f are irreducible.

Let L be the pull-back by $\nu: S \to \mathbb{P}^2$ of a line. Then $\Theta = \alpha L - \sum_{i=1}^{d^2} \beta_i E_i$ for some non-negative integers α , β_i . Since $\Theta.E_{d^2}$ and $\Theta.(E_i - E_{i+1})$ are non-negative, we have $0 \le \beta_{d^2} \le \beta_{d^2-1} \le \cdots \le \beta_2 \le \beta_1 \le \alpha$. Lemma 4.4 implies $\alpha = 1$. These and $\Theta.F = 0$ provide $\Theta = L - E_1 - E_2 - \cdots - E_d$. Here, Θ and $(d^2 - 1)$ (-2)-curves $E_i - E_{i+1}$, $i = 1, 2, \ldots, d^2 - 1$ form a singular fibre whose dual graph corresponds to the graph as in Figure 1.

This completes the proof of Theorem 4.1.

In [1], Beauville pointed out that the minimum number of singular fibres is two over \mathbb{P}^1 , if $f: S \to \mathbb{P}^1$ is not a trivial fibration. There are many interesting arithmetic and geometric properties in this extreme case (see [3]).

EXAMPLE 4.6. Let $f: S \to \mathbb{P}^1$ be as in (3b) of Theorem 4.1. Consider the case where $c_{i,j} = 0$ for the defining equation (4.3), and recall the proof of (3b) \Rightarrow (2). Let C_t be a curve on \mathbb{P}^2 defined by $tY^d = X^d + YZ^{d-1}$. Then C_t is smooth unless $t = 0, \infty$, namely, the number of singular fibres of f is two.

References

[1] A. Beauville, Le nombre minimum de fibres singulieres d'une courbe stable sur P¹, Séminaire sur les Pinceaux de Courbes de Genre au Moins Deux, Astérisque, 86 (1981), 97–108.

- [2] Y. Fujimoto, On rational elliptic surfaces with multiple fibers, Publ. Res. Inst. Math. Sci. **26** (1990), 1–13.
- [3] C. Gong, J. Lu and S.-L. Tan, On families of complex curves over \mathbb{P}^1 with two singular fibers, Osaka J. Math., **53** (2016), 83–99.
- [4] C. Gong, S. Kitagawa and J. Lu, Extremal trigonal fibrations on rational surfaces, to appear in J. Math. Soc. Japan.
- [5] S. Kitagawa and K. Konno, Fibred rational surfaces with extremal Mordell-Weil lattices, Math. Z. **251** (2005), 179–204.
- [6] S. Kitagawa, Maximal Mordell-Weil lattices of fibred surfaces with $p_g = q = 0$, Rend. Sem. Mat. Univ. Padova **117** (2007), 205–230.
- [7] S. Kitagawa, Extremal hyperelliptic fibrations on rational surfaces, Saitama Math. J. 30 (2013), 1–14.
- [8] K. Kodaira, On compact analytic surfaces II, Ann. of Math. 77 (1963), 563–626.
- [9] K. Konno, Clifford index and the slope of fibered surfaces, J. Alg. Geom. 8 (1999), 207–220.
- [10] K. Konno, On certain fibred rational surfaces, Kodai Math. J. 31 (2008), 21–37.
- [11] R. Miranda and U. Persson, On extremal rational elliptic surfaces, Math. Z. 193 (1986), 537–558.
- [12] I. Naruki, Configurations related to maximal rational elliptic surface, *Complex analytic singularities*, Adv. Studies in Pure Math. 8 (1986), 315–347.
- [13] K. V. Nguyen and M.-H. Saito, On Mordell-Weil lattices for nonhyperelliptic fibrations of surfaces with zero geometric genus and irregularity. Izv. Ross. Akad. Nauk Ser. Mat. 66 (2002), 137–154.
- [14] K. Oguiso and T. Shioda, The Mordell-Weil lattice of a rational elliptic surface, Comment. Math. Univ. St. Paul. 40 (1991), 83–99.
- [15] M.-H. Saito and K.-I. Sakakibara, On Mordell-Weil lattices of higher genus fibrations on rational surfaces, J. Math. Kyoto Univ. **34** (1994), 859–871.

- [16] T. Shioda, On the Mordell-Weil lattices, Comment. Math. Univ. St. Pauli **39** (1990), 211–240.
- [17] T. Shioda, Mordell-Weil lattices of type E_8 and deformation of singularities, Proc. Japan Acad. Ser. A Math. Sci. **69** (1993), 10–12.
- [18] T. Shioda, Generalization of a theorem of Manin-Shafarevich, Lecture Notes in Math. **1468**, Springer, Berlin (1991), 177–202.
- [19] T. Shioda, Mordell-Weil lattices for higher genus fibration over a curve, New trends in algebraic geometry (Warwick, 1996), 359–373.

Shinya Kitagawa,
General Education (Natural Sciences),
National Institute of Technology, Gifu College,
2236-2 Kamimakuwa, Motosu, Gifu 501-0495, Japan
e-mail: kit058shiny@gifu-nct.ac.jp