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2 Preliminaries

We briefly review basic notation and results on fibred rational surfaces. Here, a fibred
rational surface means a smooth projective rational surface X /C together with a relatively

minimal fibration f : X — P! whose general fibre F' is a smooth projective curve of
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genus g > 1. In particular, any fibre of f is connected and contains no (—1)-curves as
components. Since X is rational, the first Betti number of X equals zero. The second
Betti number of X is equal to the Picard number p(X) since the geometric genus of X is

zero. Hence, we see that
(2.1) p(X)=10— K% =4g+6 — (Kx + F)?

by virtue of Noether’s formula. The adjoint divisor (Kx + F)) is nef when g > 2 (See
[5, Lemma 1.1]). Thus we have that p(X) < 4¢ + 6. By means of slope inequalities
9, Corollary 4.4], we also have that (Kx + F)? > g — 2 and p(X) < 3g + 8 if F is
non-hyperelliptic (See [13, Proposition 2.2]).

LEMMA 2.1 (See [5, Lemma 1.2]). Let C' be an irreducible curve on S such that (Kg+
F).C =0. If (Ks+ F)? > 0, then C is a smooth rational curve satisfying one of the
following:

(i) C is a (—2)-curve contained in a fibre.
(ii) C is a (—1)-section, i.e., a (—1)-curve with F.C' = 1.

From now on, we assume that f : S — P! is a relatively minimal fibration of genus g >
2 such that (Ks+F)? > 0. Suppose that there exists a (—1)-curve E with (Kg+F).E =0
and let uy 1 S — ) be its contraction. Since F.E = 1, F| := (u1).F is smooth on S;.
Furthermore, we have uj(Kg, + F1) = Kg + F. If there exists a (—1)-curve E; with
(Ks, + F1).Ey = 0, then, by contracting it, we get the pair (Sy, Fy) with F» smooth and
Kg, + F, pulls back to Kg + F. We can continue the procedure until we arrive at a
pair (S, F},) such that we cannot find a (—1)-curve E,, with (Kg, + F,,).E, = 0. We put
W :=S5,and G := F,. If u: S — W denotes the natural map, then pu*(Ky+G) = Kg+F
and G = pu,F is a smooth curve isomorphic to F. The original fibration f : S — P!
corresponds to a pencil Ay C |G| with at most simple (but not necessarily transversal)
base points. From the assumption (Kg+F)? > 0, Kg+ F is nef and big. This implies that,
W is the minimal resolution of singularities of the surface Proj(R(S, Ks+F')), which has at
most rational double points by Lemma 2.1, where R(S, Ks+F) = @, -, H°(S, n(Ks+F)).
Therefore, such a model is uniquely determined. We call the pair (W, G) the reduction of
(S, F).

As a corollary of [6, Theorem 2.3], we have the following.
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THEOREM 2.2. Let S be a smooth rational surface and f : S — P! a relatively minimal

fibration whose general fibre F' is a smooth plane curve of degree d > 4. Then
p(S) < d*+1.

Let (W, G) denote the reduction of (S, F). If p(S) = d* + 1, then W = P? and G is a
curve of degree d. In particular, f has at least one (—1)-section. Furthermore, f has at

most d* (—1)-sections, which are disjoint from each other.

COROLLARY 2.3. Let S be a smooth rational surface of p(S) = d* + 1 for any integer
d>3and f : S — P! a relatively minimal fibration of plane curve of degree d. Assume
that f has mo multiple fibres when d = 3. Then there exists a birational morphism v :
S — P? such that the pull-back to S of a (—1)-curve contracted by v intersects with F at
just one point. In particular, v, F' is a smooth plane curve of degree d and f has at least

one (—1)-section.

3 Mordell-Weil lattices

Via f, we can regard S as a smooth projective curve of genus g defined over the rational
function field K = f*C(P'). We assume that it has a K-rational point O. Let J7/K be
the Jacobian variety of the generic fibre F/K of f. The Mordell-Weil group of f is the
group of K-rational points Jx(K). It is a finitely generated Abelian group, since S/C is a
rational surface. The rank rkJ7z(K) of the group is called the Mordell-Weil rank. There
is a formula, often referred as the Shioda-Tate formula, relating the Mordell-Weil rank

and the Picard number:

(3.2) kJr(K) = p(S) =2 - Y (v, — 1),
tep!

where v; denotes the number of irreducible components of the fibre f~1(¢). There is a
natural one-to-one correspondence between the set of K-rational points F(K) and the set
of sections of f. For P € F(K), we denote by (P) the section corresponding to P which
is regarded as a horizontal curve on S. In particular, (O) corresponding to the origin O
of Jr(K) is called the zero section. Shioda’s main idea in [16] and [19] is to view the
free part of Jx(K) as a Euclidean lattice with respect to a natural pairing induced by
the intersection form on H?(S). The lattice is called the Mordell-Weil lattice of f and
is denoted by MWL(f). In fact, by describing the Néron-Severi group NS(S), we can
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explicitly determine the structure of MWL( f) as follows: Let T" be the subgroup of NS(S)
generated by (O) and the irreducible components of the fibres of f. When we equip
NS(X) and T with the bilinear form which is (—1) times of the intersection form, we
call them the Néron-Severi lattice NS(S)~ and the trivial lattice T~ respectively. Since
S is a rational surface, NS(S)~ is a unimodular lattice, that is, the absolute value of the

determinant of the Gram matrix equals one. Then the following holds.

THEOREM 3.1 (See [16], [19, Theorem 3]). Keep the notation and assumptions as

above. Then
T#(K) ~ NS(S)/T.
Let L be the orthogonal complement (T~)+ C NS(S)~. Then the dual lattice

L'={reLl®Q| {&9ieo€% "elL}

is isomorphic to MWL(f).

4 Main Theorem

THEOREM 4.1. Let S be a smooth rational surface of p(S) = d*> + 1 for any integer
d>3and f: S — P! a relatively minimal fibration of plane curves of degree d. Assume
that f has no multiple fibres when d = 3. Then f has at least one (—1)-section, and the

following four conditions are equivalent.

(1) The Mordell-Weil group of f is trivial.

(2) f has a reducible fibre whose dual graph corresponds to the graph as in Figure 1.

d
2(d— 1) (d/—_\l)Q 4 —/%— 1
- - - —
d—1 dj—%Jr 2 ~ d(d\—Jl) ~ d? —Qd_—2 2 1
Figure 1.

Here, a double circle denotes a (—d + 1)-curve and the other circles denote (—2)-
curves. The numbers indicated outside the circles denote the multiplicities of com-

ponents in the degenerated fibre.



(3a) f:S — P! can be obtained from P? by eliminating the base points of the following
pencil A: Let L be a line on P?. Take a curve Cy of degree d which has a contact of
order d with L at one smooth point. Then the pencil A is generated by Cy and dL.

(3b) f: S — P! can be obtained from P2, after performing a projective transformation, by
eliminating the base points of the following pencil A: Let (X :'Y : Z) be homogeneous
coordinates of P? and L a line defined by Y = 0. Fort € C, each member of A is

defined by
d—1 d d—j

(43) tyd — Xd + de—l + Zci,lXiYZd_i_l + Zcivaiyjzd—i—j’
i=1 j=2 i=

where ¢; ; are complex numbers. The member of A corresponding to oo is dL.

In order to show Theorem 4.1, we prove some lemmas. As a first step, we show that
the conditions (2), (3a) and (3b) are equivalent. As a second step, we deduce (2) = (1).
As a final step, we conclude (1) = (2).

LEMMA 4.2. Let S be a smooth rational surface of p(S) = d*> + 1 for any integer
d>3and f: S — P! a relatively minimal fibration of plane curves of degree d. Assume
that f has no multiple fibres when d = 3. If f has a reducible fibre F, whose dual graph
corresponds to the graph as in Figure 1, then there exists a birational morphism v : S — P?

such that the images by v of the fibres of f forms the pencil A as in (3a) of Theorem 4.1.

PROOF. Let Oy, k = 0,1,--- ,d> — 1 be components of the reducible fibre F,, that

satisfy the following condition:

-2 1 0 0
1 =2 1
<@i71-@j71)1§i,j§d271 = 0 1 . .0 )
: -2 1
0 0o 1 =2

Op 10z 41 =10%  =—-d+1land Op 1.0, =0for k #d*—d—1,d*—1. We
know that f has a (—1)-section Ez by the last assertion of Corollary 2.3. Since 0y is
a unique component whose multiplicity in F,, is one, Fg intersects with ©y. Let v be
the birational morphism contracting Eg2, ©g, Oy, ..., 04 _s in turn. Then (1,O42_;)? = 1.

Since p(S) = d* + 1, the image of S by v is P? with a line L = 1,042_;. Furthermore,



multiplicity of ©4_; in F,, implies that v, F,, = dL. Let Cy be the image by v of f~1(0).
By the Shioda-Tate formula (3.2) and its non-negativity, Cy is an irreducible curve of
degree d. The original fibration f : S — P! corresponds to a pencil A generated by C
and dL. From the configuration of Eg,©0g,01,...,04,_; and f~1(0), we see that the
intersection point of Cy and L is a smooth point of Cy, and we also deduce that Cj has a

contact of order d with L at the intersection point. O

LEMMA 4.3. Let S be a smooth rational surface of p(S) = d*>+1 for any integer d > 3
and f: S — P! a relatively minimal fibration of plane curves of degree d. Assume that f
has no multiple fibres when d = 3. Then the conditions (2), (3a) and (3b) of Theorem 4.1

are equivalent.

PROOF. Lemma 4.2 states (2) = (3a). It suffices to show (3a) = (3b) and (3b) = (2).
(3a) = (3b): Let (X : Y : Z) be homogeneous coordinates of P? and

d d—j
XYz =0
=0

1=

J

the defining equation of Cj for some complex numbers ¢; ;. We may define the line L by
Y = 0 and assume that the unique tangent point of Cy for L is (0 : 0 : 1). Then we
have cpg = c10 = -+ = ca—10 = 0, cgo # 0 and ¢p; # 0. Furthermore, we may put
ca0 = co1 = 1 without loss of generality.

(3b) = (2): We consider a pencil A on P? defined by (4.3), namely, each member C; in
A is defined by (4.3) for t € C and the member C, in A corresponding to oo is dL, which
is defined by Y4 = 0. Then C} is smooth at the point (0 : 0 : 1) for all t € C. Furthermore,
Cy has a contact of order d with L at the smooth point (0 : 0 : 1). Thus any two members
in A are disjoint on P2\ {(0 : 0 : 1)}. In particular, the d* base points of A consist
of the point (0 : 0 : 1) and its infinitely near points. Therefore, we obtain a relatively
minimal fibration f : S — P! of smooth plane curves of degree d from ®, : P2 ——» P! by
eliminating the base points of A as follows:

Let vy : Wi — P? be the blow-up at the point (0: 0 : 1) with the exceptional curve E,
i.e., v1(E1) = (0:0:1). Let P, be the intersection point of E; and the strict transform
to Wy of L. The strict transform to W; of C; has a contact of order d — 1 with that of
L at P, for all t € C. Next let vy : Wy — W; be the blow-up at the base point P, with
Ey = vy '(P,). Let P3 denote the intersection point of E, and the strict transform to W,
of L. For all ¢t € C the strict transform to W5 of C, has a contact of order d — 2 with that



of L at P;. In the same way, for ¢ = 3,4,...,d — 1, after the blow-up v; : W; — W,
at the base point P; with E;, = v, 1(Pi), the strict transform to W; of C} has a contact of
order d — ¢ with that of L at P,;;. Denote the pull-back of curves by the same symbols

for simplicity. Then we get the irreducible decomposition

d—2
Coo—Ey—Ey— =By =d(L—E — By — - — E;q)+ Y _i(d—1)(E; — Eip).
i=1
Furthermore, C; — E; — Ey — - - — E4_1 has a contact of order (d* — d + 1) with the other

members at P, for all t € C. Denote by vy : Wy — Wy_1 the blow-up at the base point
P; with E; = V;l(Pd). Let P;,1 be the intersection point of E; and the strict transform

to Wy of Cy. In fact, Py, corresponds to a tangent direction of Cy — Ey — Fy —- -+ — FEy
at Py on Wy_1 by vy, and C; — E; — Ey — - - — E; has a contact of order (d? — d) with the
other members at P, for all t € C. In the same way, for i = d+1,d+2,...,d*>—1, after
the blow-up v; : W; — W;_; at the base point P; with E; = v; Y(P,), C;—E, —FEy—---— E;

has a contact of order (d?—i) with the other members at P, ;. Let vy : S — Wya_; be the
blow-up at the base point Pp with Epz = udgl(sz). Put f = ®poryo1n0---0vge. Then f:

S — P! is a relatively minimal fibration whose general fibre F is Cy, — E} — Ey—- - -— Ey2 for
general t € C and f~!(c0) = Co, — Ey — Ey —- - - — Eg is a reducible fibre. We remark that
the irreducible components of f~!(cc) consist of one (—d+1)-curve L—FE; — Ey—---— Ej

and (d* —1) (=2)-curves E; — E; 1,1 = 1,2,...,d* — 1. Furthermore, we see that the dual
graph of the reducible fibre f~!(oco) corresponds to the graph as in Figure 1. O

As a corollary of Theorem 3.1, we have the following.

LEMMA 4.4. The Mordell-Weil group of f is trivial if and only if the zero section (O)
and the irreducible components of the fibres of f generate NS(S).
(2) = (1)

LEMMA 4.5. Let S be a smooth rational surface of p(S) = d*>+1 for any integer d > 3

and f : S — P a relatively minimal fibration of plane curves of degree d. Assume that
f has no multiple fibres when d = 3. If f has the reducible fibre F,, whose dual graph
corresponds to the graph as in Figure 1, then the Mordell-Weil group of f is trivial.

PROOF. We use the same notation as in Proof of Lemma 4.3. The irreducible com-

ponents of F, are L — By — Fy — -+ — Egand E; — E; 11,1 =1,2,...,d*> — 1. These and
Eg4, which is a (—1)-section of f, generate L and E;,j =1,2,...,d?, and form a Z-basis
of NS(S). Therefore the Mordell-Weil group of f is trivial by Lemma 4.4. O
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Proof of Theorem 4.1. Combining Lemmas 4.3 and 4.5, it suffices to show (1) = (2)
to prove Theorem 4.1. Let S be a smooth rational surface of p(S) = d*+1 for any integer
d>3and f:S — P! a relatively minimal fibration of plane curves of degree d. Assume
that f has no multiple fibres when d = 3. We denote by F' a general fibre of f. Let
v : S — P? be a birational morphism as in Corollary 2.3 and E;, i = 1,2,...,d? the
pull-back to S of d? (—1)-curves contracted by v. Assume that the Mordell-Weil group of
f is trivial. Then a section of f is unique. We shall denote by Ez the (—1)-section of f.
Furthermore, in the process of contracting by v, we may assume that E;,; corresponds
to an infinitely near point of the point corresponding to E; for i = 1,2,...,d* — 1. Since
(d*—1) (=2)-curves E; — E;y1,1=1,2,...,d*—1 are connected, a reducible singular fibre
F of f contains all of them. However, they do not generate F,,. By the Shioda-Tate
formula (3.2) and p(S) = d* + 1, another component of F., is unique, where we denote it
by ©, and all other fibres of f are irreducible.

Let L be the pull-back by v : S — P? of a line. Then © = oL — Zil B; E; for some
non-negative integers a, ;. Since ©.FE; and ©.(E; — E;;1) are non-negative, we have

0 <PBp <Pp1<--<pP <P <a Lemma 4.4 implies « = 1. These and ©.F = 0

provide © = L — E; — By — -+ — E;. Here, © and (d*> — 1) (—2)-curves E; — E;,1,
i=1,2,...,d*> — 1 form a singular fibre whose dual graph corresponds to the graph as in
Figure 1.

This completes the proof of Theorem 4.1. O]

In [1], Beauville pointed out that the minimum number of singular fibres is two over
Pl if f: S — P!is not a trivial fibration. There are many interesting arithmetic and

geometric properties in this extreme case (see [3]).

EXAMPLE 4.6. Let f : S — P! be as in (3b) of Theorem 4.1. Consider the case where
¢;; = 0 for the defining equation (4.3), and recall the proof of (3b) = (2). Let C; be a
curve on P? defined by tY? = X% + Y Z49!. Then C, is smooth unless ¢t = 0, co, namely,

the number of singular fibres of f is two.
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