1 ORIGINAL ARTICLE

- 2 Clinical outcomes of patients with osteosarcoma experiencing relapse or
- 3 progression: A single-institute experience
- 4
- 5 Katsutsugu Umeda, MD^{1*}, Akio Sakamoto, MD², Takashi Noguchi, MD², Yoshinori
- 6 Uchihara, MD¹, Hirokazu Kobushi, MD¹, Ryo Akazawa, MD¹, Hideto Ogata, MD¹,
- 7 Satoshi Saida, MD¹, Itaru Kato, MD¹, Hidefumi Hiramatsu, MD¹, Megumi Uto, MD³,
- 8 Takashi Mizowaki, MD³, Hironori Haga, MD⁴, Hiroshi Date, MD⁵, Takeshi Okamoto,
- 9 MD⁶, Kenichiro Watanabe, MD⁷, Souichi Adachi, MD⁸, Junya Toguchida, MD⁹,
- 10 Shuichi Matsuda, MD², Junko Takita, MD¹
- ¹Department of Pediatrics, ²Orthopedic Surgery, ³Radiation Oncology and Image-
- 12 Applied Therapy, ⁴Diagnostic Pathology, and ⁵Thoratic Surgery, Graduate School of
- 13 Medicine, Kyoto University, Kyoto, Japan
- ⁶Department of Orthopedic Surgery, Otsu Red Cross Hospital, Otsu, Japan
- ⁷Department of Hematology and Oncology, Shizuoka Children's Hospital, Shizuoka,
- 16 Japan
- ⁸Department of Human Health Science, Graduate School of Medicine, Kyoto
- 18 University, Kyoto, Japan
- ⁹Department of Cell Growth and Differentiation, Center for iPS Cell Research and
- 20 Application, Kyoto University, Japan
- 21
- **22** *Corresponding author:
- 23 Katsutsugu Umeda, Department of Pediatrics, Graduate School of Medicine, Kyoto
- 24 University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- **25** Phone: +81-75-751-3290; Fax: +81-75-752-2361
- 26 Email address: <u>umeume@kuhp.kyoto-u.ac.jp</u>
- 27 Word count: Abstract, 198 words; main text, 1,823 words
- 28 Number of tables and figures: 3 tables, 3 figures
- 29 Running title: Outcomes after osteosarcoma relapse/progression
- 30

31 Abbreviations:

- 32 CBDCA, carboplatin; CDDP, cisplatin; CI, confidence interval; CR, complete response;
- 33 CT, computed tomography; DOC, docetaxel; DXR, doxorubicin; ETP, etoposide; GEM,

34	gemcitabine; HD-MTX, high-dose methotrexate; IFM, ifosfamide; IRI, irinotecan; OS,
35	overall survival; PD, progressive disease; PFS, progression-free survival; PR, partial
36	response; RFI, relapse-free interval; R/P, relapse or progression; SD, stable disease;
37	TMZ, temozolomide.
38	
39	CONFLICT OF INTEREST
40	The authors declare no potential conflicts of interest.
41	
42	ABSTRACT
43	Background:
44	Patients with osteosarcoma who experience relapse or progression (R/P) have a poor
45	prognosis.
46	Methods:
47	Data from 30 patients who experienced R/P among 59 with a diagnosis of high-grade
48	osteosarcoma, who were younger than 40 years old between 2000 and 2019, were
49	retrospectively analyzed to identify prognostic and therapeutic factors influencing their
50	outcomes.
51	Results:
52	The 5-year overall survival (OS) rates after the last R/P of patients experiencing first (n
53	= 30), second (n = 14), and third (n = 9) R/P were 50.3%, 51.3%, and 46.7%,
54	respectively. Multivariate analysis did not identify any independent risk factors
55	affecting OS. The 5-year PFS rate of the 30 patients after first R/P was 22.4%, and
56	multivariate analysis identified histological subtype and curative local surgery as
57	independent risk factors influencing PFS. Long (> 6 months) partial response was
58	observed in three patients treated using temozolomide+etoposide,
59	irinotecan+carboplatin, or regorafenib.
60	Conclusions:
61	OS rate in the patients with osteosarcoma experiencing R/P included in this study was
62	markedly higher than that reported previously, mainly due to the surgical total removal
63	of tumors, even after subsequent R/P. The recent establishment of salvage
64	chemotherapy or molecular targeted therapy may also increase survival rates in a
65	subgroup of patients.

- 67 Key Words: osteosarcoma, relapse, progression, chemotherapy, molecular targeted
- 68 therapy

69 INTRODUCTION

70	Osteosarcoma is the most frequent malignant bone tumor in children, adolescents, and
71	young adults, representing approximately 30% of bone sarcomas. Introduction of first-
72	line multidrug neoadjuvant and adjuvant chemotherapy, including doxorubicin (DXR),
73	cisplatin (CDDP), and high-dose methotrexate (HD-MTX), with or without ifosfamide
74	(IFM), has led to markedly improved patient outcomes; however, 30-40% of those with
75	localized osteosarcoma and up to 70% of those with metastatic osteosarcoma experience
76	relapse or progression (R/P). ^{$1-3$} The prognosis of these patients is extremely poor, with
77	a long-term survival rate of less than 20%. ^{3–6} Time of R/P, number of lesions, and
78	curative local surgery and/or salvage chemotherapy after R/P are strong prognostic
79	factors for survival in patients with recurrent or refractory osteosarcoma. ³
80	The effects of salvage chemotherapy regimens, such as IFM+etoposide (ETP)
81	and gemcitabine (GEM)+docetaxel (DOC), ^{7,8} as well as that of molecular targeted
82	therapies, such as pazopanib and sorafenib, are unsatisfactory for recurrent or refractory
83	osteosarcoma.9-12 Recent clinical trials have demonstrated the superior anti-tumor
84	activity of the novel multi-kinase inhibitors, regorafenib and apatinib. ^{13–15} We recently

85	demonstrated the efficacy of temozolomide (TMZ)+ETP for some patients with
86	frequently recurrent osteosarcoma. ¹⁶ In the current study, we retrospectively analyzed
87	the clinical outcomes of patients with osteosarcoma who recently experienced R/P and
88	received these novel treatments to evaluate the prognostic and therapeutic factors that
89	influence patient outcomes.
90	
91	MATERIALS AND METHODS
92	Study design and data collection
93	This study was approved by the institutional ethics committee of Kyoto University
94	Hospital. Data from 66 patients with a diagnosis of high-grade osteosarcoma who were
95	younger than 40 years old between 2000 and 2019 and treated at our hospital were
96	extracted. Of these, seven patients were excluded due to a lack of data on survival
97	status. In total, data from 59 patients were analyzed, including one patient with bilateral
98	retinoblastoma who developed osteosarcoma as a secondary malignancy.
99	Chemotherapy response was evaluated by the degree of necrosis following
100	neoadjuvant chemotherapy as follows: grade 1, < 50%; grade 2, \geq 50% and < 90%;

101	grade 3, \geq 90%; and grade 4, no viable tumor cells, according to a previous report. ¹⁷
102	Patients were defined as good responders if their chemotherapy response was grade 3 or
103	4, or poor responders if it was grade 0–2. During 2000 and 2009, ETP was preferably
104	added to the conventional MAP (CDDP, DXR, and HD-MTX) ¹⁸ or
105	CDDP+pitarubicin+HD-MTX regimen for good responders (type A regimen). Since
106	2010, the MAP regimen has been preferably used as neoadjuvant and adjuvant
107	chemotherapy (type B regimen). For both regimens, IFM was added to adjuvant
108	chemotherapy for poor responders. GEM, DOC, irinotecan (IRI), TMZ, pazopanib, and
109	regorafenib were used after receiving approval for the use of unapproved drugs from the
110	Patient Safety Unit of Kyoto University Hospital,
111	Radiological response to chemotherapy was evaluated according to the
112	RECIST guidelines (version 1.1). ¹⁹ R/P was generally confirmed in all patients by
113	imaging, including computed tomography (CT), magnetic resonance imaging, or
114	positron emission tomography-CT. Relapse-free interval (RFI) was defined as the time
115	from initial diagnosis or R/P to subsequent R/P, and a cut-off value of 18 months for
116	first RFI (between initial diagnosis and the first R/P) was set, as previously reported. ^{3,5}

118 Statistical analysis

119 The probabilities of overall survival (OS), defined as the duration of survival between

120	the first R/P and ei	ther death or the	last follow-up, and	l that of progre	ssion-free survival

- 121 (PFS), defined as the duration of survival between the diagnosis and either disease
- 122 progression, death, or the last follow-up, but not the development of secondary

123 malignancy, were estimated using the Kaplan-Meier method. The log-rank test and the

- 124 Cox proportional hazard model were used for univariate and multivariate analyses,
- 125 respectively. Factors included in the analyses were sex, patient age group, primary
- 126 tumor site, site of metastasis, number of lesions, histological subtype, type of first-line
- 127 chemotherapy, year of first R/P, time to R/P, degree of necrosis, year of first R/P, time
- 128 of R/P, R/P site, salvage chemotherapy after first R/P, and curative local surgery after
- 129 first R/P. Year of diagnosis was not included in this analysis, since type A and type B
- regimens were preferably used between 2000 and 2009 and since 2010, respectively.
- 131 Factors with P < 0.1 in univariate analysis were included in the multivariate analysis.
- 132 All statistical analyses were performed using EZR (version 1.32, Saitama Medical

133	Center, Jichi Medical University), which is a graphical user interface for R (the R
134	Foundation for Statistical Computing). ²⁰
135	
136	RESULTS
137	Patient characteristics and clinical outcomes after initial diagnosis
138	The characteristics at initial diagnosis and the treatments of the 59 patients included in
139	the study are presented in Table 1. Median age at initial diagnosis was 14 years (range,
140	5–39 years). Type A and B regimens were administered to 32 and 26 patients,
141	respectively.
142	The 5-year OS and PFS rates of the entire cohort were 82.2% [95%
143	confidence interval (CI), 69.3–90.0%] and 51.9% (95% CI, 38.4–63.8%), respectively.
144	Treatment-related death was observed in one patient with refractory disease who died
145	due to systemic fungal infection after autologous stem cell transplantation. Another
146	patient, who received type A regimen treatment and developed acute myeloid leukemia
147	9 months after initial treatment for osteosarcoma, survived and was free from disease
148	after bone marrow transplantation.

149	

150	Characteristics of patients experiencing first R/P
151	The characteristics of the 30 patients experiencing first R/P are shown in Table 2.
152	Median first RFI was 22.8 months (range, 1.4–85.3 months). Of the 30 patients, eleven
153	experienced first R/P within < 18 months. Twenty-seven patients (90.0%) received
154	various first-line salvage regimens. Twenty-two patients (73.3%) underwent curative
155	local surgery for primary lesion and metastases, one of whom also received local
156	radiotherapy, after first R/P.
157	
158	Clinical outcomes of patients after first R/P
159	Among the 59 patients, six experienced first progression on therapy, whereas
160	24 experienced first relapse. The clinical outcomes of the 30 patients experiencing first
161	R/P are presented schematically in Figure 1. Of the 6 patients experiencing first
162	progression, one survived and five died. Of the 24 patients experiencing first relapse,
163	one died during treatment and nine survived and were in second remission. The

165	were obtained by surgical total removal of tumors, except for one, who obtained a fifth
166	remission during IRI+carboplatin (CBDCA) treatment. Two patients underwent curative
167	surgery after obtaining partial response (PR) to salvage chemotherapy (Fig. S1). Median
168	(range) RFI between the first and second R/P, second and third R/P, and third and
169	fourth R/P were 1.06 (0.57–2.20), 1.14 (0.22–3.16), and 0.44 (0.19–1.05) years,
170	respectively (Fig. 1). One patient survived without disease for > 6 months after second
171	R/P. At the time of writing, 13 patients were alive and free from disease, and four were
172	alive with disease.
173	The 5-year OS rates after last R/P of patients experiencing first ($n = 30$),
173 174	The 5-year OS rates after last R/P of patients experiencing first (n = 30), second (n = 14), and third (n = 8) R/P were 50.3% (95% CI, 28.1–68.9%; Fig. 2A),
174	second (n = 14), and third (n = 8) R/P were 50.3% (95% CI, 28.1–68.9%; Fig. 2A),
174 175	second (n = 14), and third (n = 8) R/P were 50.3% (95% CI, 28.1–68.9%; Fig. 2A), 51.3% (95% CI, 21.4–74.9%), and 46.7% (95% CI, 7.1–80.3%), respectively. In
174 175 176	second (n = 14), and third (n = 8) R/P were 50.3% (95% CI, 28.1–68.9%; Fig. 2A), 51.3% (95% CI, 21.4–74.9%), and 46.7% (95% CI, 7.1–80.3%), respectively. In univariate analysis, time of R/P, R/P site, histological subtype, and curative local
174 175 176 177	second (n = 14), and third (n = 8) R/P were 50.3% (95% CI, 28.1–68.9%; Fig. 2A), 51.3% (95% CI, 21.4–74.9%), and 46.7% (95% CI, 7.1–80.3%), respectively. In univariate analysis, time of R/P, R/P site, histological subtype, and curative local surgery after first R/P were identified as risk factors affecting OS; however, multivariate

181	and curative local surgery were identified as risk factors for OS. Multivariate analysis
182	identified histological subtype and curative local surgery after first R/P as independent
183	risk factors (Table 3).
184	
185	Radiological response to first-line or subsequent salvage chemotherapy
186	IFM- or GEM-based regimens were mostly administered for first R/P, whereas TMZ- or
187	IRI-based regimens, or pazopanib, were used for a considerable proportion of patients
188	experiencing subsequent R/P (Table S1). Of the 11 patients evaluable for radiological
189	response to first-line neoadjuvant chemotherapy, six had stable disease (SD) and five
190	had progressive disease (PD), with an objective response rate [complete response
191	(CR)+PR] of 0% (Fig. 3A). Of the 14 patients receiving adjuvant therapy, six were in
192	continuous remission, whereas eight patients experienced a second R/P (Fig. 3B). Fifty-
193	two courses of salvage chemotherapies, consisting of 31 neoadjuvant and 21 adjuvant
194	chemotherapies, were administered to 19 patients for subsequent R/P. Among 29
195	courses of neoadjuvant chemotherapies evaluable for radiological response, there were
196	one CR, three PR, three SD, and 22 PD, with an objective response rate of 13.8% (Fig.

197	3C). Long (> 6 months) PR was obtained in three patients treated with TMZ+ETP,
198	IRI+CBDCA, or regorafenib. Among 15 courses of neoadjuvant chemotherapies, two
199	were in continuous remission, whereas 13 experienced subsequent R/P (Fig. 3D). There
200	was no significant difference in response according to the type of chemotherapy.
201	
202	DISCUSSION
203	The OS rate in patients with osteosarcoma experiencing R/P in the current
204	study was markedly higher than that reported previously (< 20%), particularly in those
205	experiencing subsequent R/P. ⁴⁻⁶ Multivariate analysis identified curative local surgery
206	as an independent risk factor affecting PFS after first R/P; however, these data should
207	be interpreted with caution since an expected poor prognosis tended to be a
208	contraindication for curative local surgery. Nonetheless, aggressive local surgery even
209	after subsequent R/P, achieved by cross-department collaboration, is a major factor
210	contributing to the relatively superior survival.
211	Compared with previous reports, in the current study, median RFI between the
212	first and second R/P (1.06 years vs. 0.8 years) and the second and third R/P (1.14 years

213	vs. 0.54 years) were relatively long. These observations suggest that recently established
214	chemotherapy or molecular targeted therapy result in longer OS, despite low objective
215	response rates. Furthermore, these salvage treatments contribute to long-term
216	stabilization of disease or bridge to surgical remission in some patients. Osteosarcoma
217	is characterized by widespread and recurrent somatic copy number alterations and
218	structural rearrangements, with few recurrent point mutations, suggesting the
219	heterogeneity of targetable driver pathways. ^{21,22} Hence, multi-gene panel testing is
220	required to tailor personalized molecular targeted therapy against recurrent or refractory
221	osteosarcoma.
221 222	osteosarcoma. Multivariate analysis also demonstrated that fibroblastic subtype was an
222	Multivariate analysis also demonstrated that fibroblastic subtype was an
222 223	Multivariate analysis also demonstrated that fibroblastic subtype was an independent prognostic factor for PFS, as reported previously. ²³ By contrast, time of
222 223 224	Multivariate analysis also demonstrated that fibroblastic subtype was an independent prognostic factor for PFS, as reported previously. ²³ By contrast, time of R/P, number of lesions, and salvage chemotherapy after first R/P did not retain
222 223 224 225	Multivariate analysis also demonstrated that fibroblastic subtype was an independent prognostic factor for PFS, as reported previously. ²³ By contrast, time of R/P, number of lesions, and salvage chemotherapy after first R/P did not retain significance for survival, partly because of the paucity of available data.

229	the higher cost of medical care) may have influenced clinical outcomes. Finally, the
230	follow-up period was too short for evaluation of final clinical outcomes. Nonetheless,
231	our data demonstrate that the survival rate of osteosarcoma patients experiencing R/P
232	has been increasing recently due to aggressive local surgery and, to a lesser extent,
233	introduction of novel treatments. Further prospective studies are required to establish
234	personalized targeted therapies, based on comprehensive molecular profiling.
235	
236	ACKNOWLEDGMENTS

237 The current study was supported by grants from the Children's Cancer Association of

238 Japan.

REFERENCES

240	1.	Marina N, Gebhardt M, Teot L, Gorlick R. Biology and therapeutic advances for
241		pediatric osteosarcoma. Oncologist. 2004;9:422-441.
242	2.	Kager L, Zoubek A, Pötschger U, et al. Primary metastatic osteosarcoma:
243		presentation and outcome of patients treated on neoadjuvant Cooperative
244		Osteosarcoma Study Group protocols. J Clin Oncol. 2003;21:2011-2018.
245	3.	Bielack SS, Kempf-Bielack B, Branscheid D, et al. Second and subsequent
246		recurrences of osteosarcoma: presentation, treatment, and outcomes of 249
247		consecutive cooperative osteosarcoma study group patients. J Clin Oncol.
248		2009;27:557-565.
249	4.	Ferrari S, Briccoli A, Mercuri M, et al. Post relapse survival in osteosarcoma of the
250		extremities: prognostic factors for long-term survival. J Clin Oncol. 2003;21:710-
251		715.
252	5.	Kempf-Bielack B, Bielack S, Jürgens H, et al. Osteosarcoma relapse after
253		combined modality therapy: An analysis of unselected patients in the Cooperative
254		Osteosarcoma Study Group (COSS). J Clin Oncol. 2005;23:559-568.

255	6.	Leary SE, Wozniak AW, Billups CA, et al. Survival of pediatric patients after
256		relapsed osteosarcoma: the St. Jude Children's Research Hospital experience.
257		Cancer. 2013;119:2645-2653.
258	7.	Gentet JC, Brunat-Mentigny M, Demaille MC, et al. Ifosfamide and etoposide in
259		childhood osteosarcoma. A phase II study of the French Society of Paediatric
260		Oncology. Eur J Cancer. 1997;33:232-237.
261	8.	Navid F, Willert JR, McCarville MB, et al. Combination of gemcitabine and
262		docetaxel in the treatment of children and young adults with refractory bone
263		sarcoma. <i>Cancer</i> . 2008;113:419-425.
264	9.	Grignani G, Palmerini E, Dileo P, et al. A phase II trial of sorafenib in relapsed and
265		unresectable high-grade osteosarcoma after failure of standard multimodal therapy:
266		an Italian Sarcoma Group study. Ann Oncol. 2012;23:508-516.
267	10.	Umeda K, Kato I, Saida S, Okamoto T, Adachi S. Pazopanib for second recurrence
268		of osteosarcoma in pediatric patients. Pediatr Int. 2017;59:937-938.
269	11.	Longhi A, Paioli A, Palmerini E, et al. Pazopanib in relapsed osteosarcoma patients:
270		report on 15 cases. Acta Oncol. 2019;58:124-128.

271	12.	Lagmay JP, Krailo MD, Dang H, et al. Outcome of patients with recurrent
272		osteosarcoma enrolled in seven phase II trials through Children's Cancer Group,
273		Pediatric Oncology Group, and Children's Oncology Group: learning from the past
274		to move forward. J Clin Oncol. 2016;34:3031-3038.
275	13.	Duffaud F, Mir O, Boudou-Rouquette P, et al. Efficacy and safety of regorafenib in
276		adult patients with metastatic osteosarcoma: A non-comparative, randomized,
277		double-blind placebo-controlled, phase 2 study. Lancet Oncol. 2019;20:120-133.
278	14.	Davis LE, Bolejack V, Ryan CW, et al. Randomized double-blind phase II study of
279		regorafenib in patients with metastatic osteosarcoma. J Clin Oncol. 2019;37:1424-
280		1431.
281	15.	Xie L, Xu J, Sun X, et al. Apatinib for advanced osteosarcoma after failure of
282		standard multimodal therapy: An open label phase II clinical trial. Oncologist.
283		2019;24:e542-550.
284	16.	Akazawa R, Umeda K, Saida S, et al. Temozolomide and etoposide combination for
285		the treatment of relapsed osteosarcoma. Jpn J Clin Oncol. 2020;50:948-952.
286	17.	Marina NM, Smeland S, Bielack SS, et al. Comparison of MAPIE versus MAP in

287		patients with a poor response to preoperative chemotherapy for newly diagnosed
288		high-grade osteosarcoma (EURAMOS-1): an open-label, international, randomized
289		controlled trial. Lancet Oncol. 2016;17:1396-1408.
290	18.	Iwamoto Y, Tanaka K, Isu K, et al. Multiinstitutional phase II study of neoadjuvant
291		chemotherapy for osteosarcoma (NECO study) in Japan: NECO-93J and NECO-
292		95J. J Orthop Sci. 2009;14:397-404.
293	19.	Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in
294		solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer.
295		2009;45:228-247.
296	20.	Kanda Y. Investigation of the freely available easy-to-use software 'EZR' for
297		medical statistics. Bone Marrow Transplant. 2013;48:452-458.
298	21.	Sayles LC, Breese MR, Koehne A, et al. Genome-informed targeted therapy for
299		osteosarcoma. Cancer Discov. 2019;9:46-63.
300	22.	Suehara Y, Alex D, Bowman A, et al. Clinical genomic sequencing of pediatric and
301		adult osteosarcoma reveals distinct molecular subsets with potentially targetable
302		alterations. Clin Cancer Res. 2019;25:6346-6356.

303 23. Wadhwa N. Osteosarcoma: Diagnostic dilemmas in histopathology and prognostic

factors. *Indian J Orthop*. 2014;48:247-254.

305 FIGURE LEGENDS

306	FIGURE 1 Outcomes of 30 patients with osteosarcoma experiencing first R/P. REM,
307	remission; MFU, median follow-up; yr, years; R, relapse; P, progression; R/P, relapse
308	or progression; RFI, relapse-free interval.
309	
310	FIGURE 2 (A, B) OS (A) and PFS rates (B) of 30 patients with osteosarcoma who
311	experienced first relapse or progression (R/P).
312	
313	FIGURE 3 (A–D) Radiological response to salvage chemotherapy for the first (A, B)
314	and subsequent (C, D) R/P, as adjuvant (A, C) and neoadjuvant (B, D) chemotherapy,
315	grouped by type of chemotherapy. CR, complete response; PR, partial response; SD,
316	stable disease; PD, progressive disease; R/P, relapse or progression; REM, remission;
317	IFM, ifosfamide; GEM, gemcitabine; TMZ, temozolomide; CDDP, cisplatin; DXR,
318	doxorubicin; IRI, irinotecan.
319	

FIGURE S1 Timing curative local surgery for each R/P.

Characteristics	All patient	s (n = 59)
	No.	%
Gender		
Male	36	61.0
Female	23	39.0
Age at diagnosis, years		
Median (range)	14 (5–39)	
< 19 yr	44	74.6
$\geq 20 \text{ yr}$	15	25.4
Year of diagnosis		
2000–2009	32	54.2
2010–2019	27	45.8
Primary tumor site		
Extremity	53	89.8
Axial	6	10.2
Sites of metastasis		
No	48	81.4
Lung alone	9	15.3
Bone and lung	2	3.4
Histological subtype		
Osteoblastic	31	52.5
Fibroblastic	12	20.3
Chondroblastic	10	16.9
Telangiectatic	3	5.1
NA	3	5.1
Гуре of first-line chemotherapy		
Type A	32	54.2
Type B	26	44.1
Other	1	1.7
Local treatment for primary site		

Table 1. Patient characteristics and treatments after initial diagnosis

Surgery	51	86.4
Radiotherapy	2	3.4
Surgery and radiotherapy	3	5.1
No	3	5.1
Local treatment for metastasis		
Surgery	4	6.8
No	55	93.2
Degree of necrosis		
Grade 1	10	16.9
Grade 2	20	33.9
Grade 3	19	32.3
NA	10	16.9
Follow-up, days		
Median (range)	2,779 (203–7,343)	

NA, not available

	All p	atients
Characteristics	(n =	= 30)
	No.	%
Gender		
Male	19	63.3
Female	11	36.7
Age at diagnosis		
< 19 yr	19	63.3
$\geq 20 \text{ yr}$	11	36.7
Year of first R/P		
2000–2009	10	33.3
2010–2019	20	66.7
First RFI, months		
Median (range)	22.8 (1	.4–85.3
< 18	11	36.7
≥ 18	19	63.3
R/P site		
Local	3	10.0
Lung alone	21	70.0
Bone and lung	5	16.7
Extra	1	3.3
Number of lesions		
One	13	43.3
Two or more	17	56.7
Histological subtype		
Osteoblastic	16	53.3
Fibroblastic	6	16.7
Chondroblastic	7	23.3
Telangiectatic	1	3.3

Table 2. Patient characteristics of 30 patients experiencing first R/P

Type of first-line chemotherapy		
Type A	13	43.3
Type B	17	56.7
Salvage chemotherapy after first R/P		
Yes	27	90.0
No	3	10.0
Curative local surgery after first R/P		
Yes	22	73.3
No	8	26.7

R/P, relapse or progression; RFI, relapse-free interval

V		5yr OS,	Univariate analysis <i>P</i> -value	Multivariate analysis		5yr PFS,	Univariate analysis	Multivariate analysis	
Variables	Factors (n)	% (95% CI)		HR (95% CI)	P-value	% (95% CI)	P-value	HR (95% CI)	P-value
Age group	0–19 (19)	44.6 (19.8– 66.9)	0.156	N.E.	N.E.	15.3 (3.0– 36.6)	0.156	N.E.	N.E.
	≥ 20 (11)	62.3 (21.0– 86.7)				35.8 (8.8– 64.8)			
Gender	Male (19)	49.4 (21.0– 72.7)	0.623	N.E.	N.E.	17.1 (3.4– 39.8)	0.915	N.E.	N.E.
	Female (11)	51.9 (19.8– 76.7)				31.8 (7.8– 59.8)			
Year of first R/P	2000–2009 (10)	27.0 (4.1– 58.4)	0.294	N.E.	N.E.	40.0 (12.3– 67.0)	0.536	N.E.	N.E.
	2010–2019 (20)	62.9 (32.7– 82.5)				15.7 (3.1– 37.2)			

Table 3. Univariate and multivariate analyses of factors affecting overall survival after first R/P

Time of R/P	RFI ≥	64.8 (34.0–	0.001	Reference		29.2 (10.1–	0.001	Reference	
	18 months (19)	84.0)				51.6)			
	RFI <	20.8 (1.4–		1.51 (0.19–	0.697	NA (NA–		1.58 (0.40–	0.514
	18 months (11)	56.1)		12.24)	0.027	NA)		6.23)	0.01
Primary tumor site	Extremity (27)	56.4 (33.6–	0.259	N.E.	N.E.	23.2 (8.6– 41.9)	0.923	N.E.	N.E.
		74.1) NA (NA-				NA (NA-			
	Axial (3)	NA (NA– NA)				NA (NA– NA)			
R/P site	Lung alone (21)	62.7 (37.0– 80.3)	0.007	Reference		24.4 (8.4– 44.8)	0.027	Reference	
	Local (3)	NA (NA– NA)		1.29 (0.11– 15.40)	0.840	NA (NA– NA)		0.33 (0.04– 2.67)	0.297
	Bone and lung	NA (NA-		0.36 (0.04–	0.342	NA (NA-		0.51 (0.08–	0.477
	(5)	NA)		2.95)	0.542	NA)		3.25)	0.477
	Extra (1)	NA (NA-		1.15 (0.03–	0.939	NA (NA-		13.71 (0.45–	0.134
	Lxua (1)	NA)		39.20)	0.757	NA)		420.0)	0.134
		56.1				33.6			
Number of lesions	One (13)	(19.5– 81.5)	0.146	N.E.	N.E.	(10.4– 59.1)	0.113	N.E.	N.E.

	Two or more (17)	46.6 (20.5– 69.3)				16.3 (2.9– 39.5)			
Histological subtype	Osteoblastic (16)	66.8 (32.9– 86.4)	0.029	Reference		NA (NA– NA)	0.013	Reference	
	Fibroblastic (6)	62.5 (14.2– 89.3)		0.45 (0.04– 4.52)	0.497	66.7 (19.5– 90.4)		0.08 (0.01– 0.95)	0.045
	Chondroblastic (7)	14.3 (0.7– 46.5)		1.77 (0.32– 9.77)	0.511	NA (NA– NA)		2.03 (0.60– 6.90)	0.255
	Telangiectatic (1)	NA (NA– NA) 38.4		2.91e-9 (0–Inf)	0.999	NA (NA– NA) 36.9		2.07 (0.17– 24.91)	0.568
Type of first-line	Type A (13)	(12.2– 64.6)	0.609	N.E.	N.E.	(12.5– 62.0)	0.415	N.E.	N.E.
chemotherapy	Type B (17)	60.1 (24.2– 83.3)				NA (NA– NA)			
Degree of necrosis	Grade 1 (4)	NA (NA– NA)	0.218	N.E.	N.E.	NA (NA– NA)	0.37	N.E.	N.E.

		56.6				37.0			
	Grade 2 (12)	(20.1–				(11.5–			
		81.7)				63.4)			N.E. 0.025
		80.0				20.0 (0.9			
	Grade 3 (6)	(20.4–				20.0 (0.8–			
		96.9)				58.2)			
		23.4 (1.3–				NA (NA-			
	NA (8)	61.6)				NA)			
		52.6				25.2 (0.5			
Salvage	Yes (27)	(28.2–	0.630	N.E.	N.E.	25.3 (9.5–	0.487	N.E.	N.E.
chemotherapy		72.2)				44.8)			
after first R/P		33.3 (0.9–				NA (NA-			
	No (3)	77.4)				NA)			
		63.6				28.3			
Curative local	Yes (22)	(35.4–	< 0.001	Reference		(10.4–	< 0.001	Reference	
surgery		82.1)				49.5)			
after first R/P		NA (NA-		1.51e-08	0.005	NA (NA-		26.54 (1.50-	
	No (8)	NA)		(0–Inf)	0.995	NA)		468.4)	0.025

R/P, relapse or progression; OS, overall survival; PFS, progression-free survival; CI, confidence interval; HR, hazard ratio; N.E., not evaluated; RFI, relapse-free interval.

Regimen	First-line che	emotherapy		≥2nd-line chemotherapy			
	Neoadjuvant	Adjuvant	Total	Neoadjuvant	Adjuvant	Total	
IFM-based	7	10	17	4	3	7	
GEM-based	3	4	7	6	8	14	
TMZ-based	0	1	1	6	5	11	
CDDP+DXR-based	1	0	1	2	1	3	
IRI-based	0	0	0	4	0	4	
Pazopanib	0	0	0	4	3	7	
Regorafenib	0	0	0	3	0	3	
Others	0	1	1	2	1	3	

Supplementary Table 1. First and subsequent lines of chemotherapy for R/P

R/P, relapse or progression; IFM, ifosfamide; GEM, gemcitabine; TMZ, temozolomide; CDDP, cisplatin; DXR, doxorubicin; IRI, irinotecan.

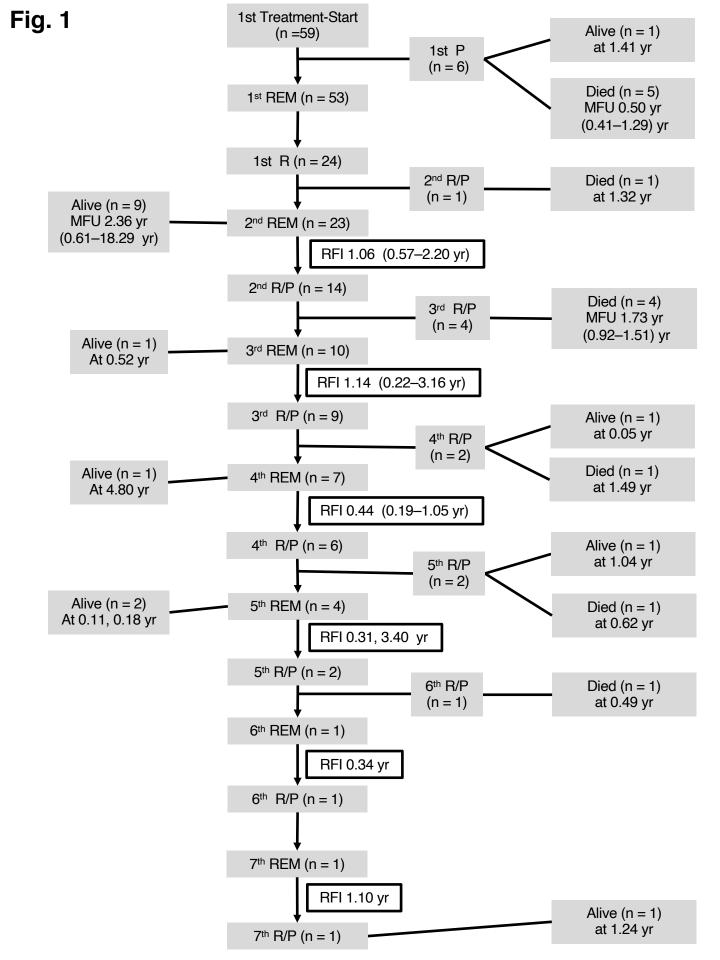
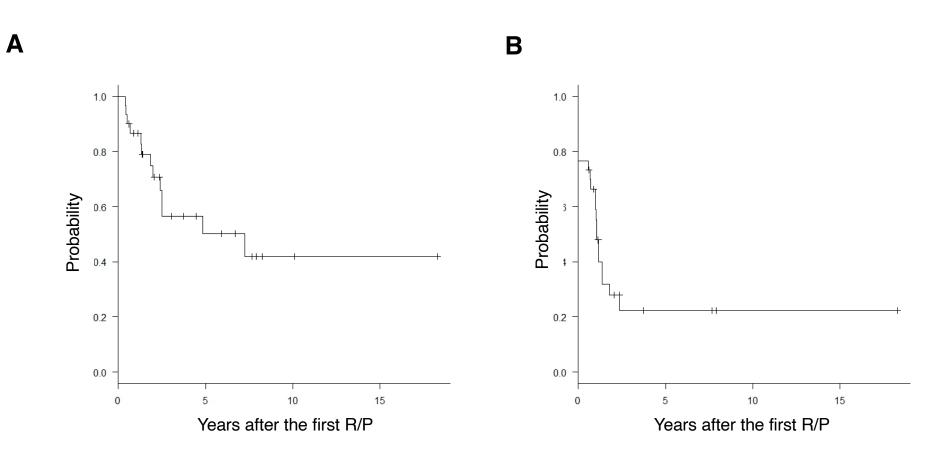



Fig. 2

