1 CLINICAL AND LABORATORY OBSERVATIONS

- 2 Use of cabozantinib to treat *MET*-amplified pediatric colorectal cancer
- 3
- 4 Sadahiro Fukui¹, Katsutsugu Umeda^{1*}, Hirohito Kubota¹, Atsushi Iwai¹, Ryo Akazawa¹,
- 5 Kiyotaka Isobe¹, Kuniaki Tanaka¹, Kagehiro Kouzuki¹, Naoko Kawabata¹, Satoshi Saida¹,
- 6 Itaru Kato¹, Hidefumi Hiramatsu¹, Yoshiro Itatani², Taro Funakoshi³, Souichi Adachi⁴, and
- 7 Junko Takita¹
- 8
- 9 Department of ¹Pediatrics, ²Surgery, and ³Clinical Oncology, Graduate School of Medicine,
- 10 Kyoto University, Kyoto, Japan
- ⁴Department of Human Health Sciences, Graduate School of Medicine, Kyoto University,
- 12 Kyoto, Japan
- 13
- 14 *Corresponding author:
- 15 Katsutsugu Umeda, Department of Pediatrics, Graduate School of Medicine, Kyoto
- 16 University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- 17 Phone: +81-75-751-3290; Fax: +81-75-752-2361
- 18 Email address: <u>umeume@kuhp.kyoto-u.ac.jp</u>
- 19 Word count: Abstract, 96 words; main text, 1,277 words
- 20 Number of tables and figures: 3 figures, 1 table
- 21 Running title: Cabozantinib for *MET*-amplified pediatric CRC
- 22 Keywords: colorectal cancer, pediatric, cancer gene panel testing, *MET* inhibitor,
- 23 cabozantinib
- 24

25 ABBREVIATIONS:

- 26 CA, cancer antigen; CEA, carcinoembryonic antigen; CRC, colorectal cancer; CT, computed
- 27 tomography; EGFR, epidermal growth factor receptor; FOLFIRI, fluorouracil, leucovorin,
- 28 and irinotecan; FOLFOX6, fluorouracil, leucovorin, and oxaliplatin; modified; TCGA, The
- **29** Cancer Genome Atlas.
- 30

31 CONFLICT OF INTEREST STATEMENT

32 The authors declare no conflicts of interest associated with this manuscript.

33

1 ABSTRACT

2	Pediatric colorectal cancer (CRC) is extremely rare, with little information about genetic
3	profiles compared with adult CRC. Here, a 13-year-old male with advanced CRC underwent
4	cancer gene panel testing, which detected four genetic abnormalities (MET amplification in
5	addition to TP53, SMAD4, and CTNNA1 mutations) that might be associated with a poor
6	prognosis. Based on high-level MET amplification, he received a multi-kinase inhibitor,
7	cabozantinib, after failure of first- and second-line chemotherapy, resulting in transient
8	disease stabilization. Tailored targeted therapy based on molecular profiling can be an
9	effective treatment strategy for rare cancers such as pediatric CRC.
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	

1 INTRODUCTION

2	Colorectal cancer (CRC) is very rare in the pediatric population, accounting for only 1% of			
3	all pediatric malignancies. ¹ The predominance of high-grade tumors and advanced stage			
4	suggest that the biology of pediatric CRC is different from that of adult CRC. ² In contrast to			
5	CRC associated with inherited cancer syndromes (e.g., familial adenomatous polyposis and			
6	Lynch syndrome) the genetics of pediatric non-inherited CRC remain to be elucidated.			
7	Whole-exome sequencing demonstrates that adolescent and young adult CRC patients have			
8	higher frequency of damaging mutations than adult CRCs, while very few data are available			
9	for pediatric CRCs due to lack of patients.			
10	In general, pediatric CRCs are treated in accordance with adult CRC treatment			
11	algorithms; ¹ however, treatment of refractory cases, especially the efficacy of molecular			
12	target therapy, remains unknown.			
13	Here, we report a pediatric case of advanced CRC who, based on the results of			
14	cancer gene panel testing, received the multi-kinase inhibitor cabozantinib after failure of			
15	first- and second-line chemotherapy.			
16				
17	CASE REPORT			
18	A 13-year-old male presented with recurrent abdominal pain and bloody stool. He did not			
19	have an identifiable family history of inherited cancer syndromes. Abdominal computed			
	_			

1	tomography (CT) revealed moderate ascites and global wall thickening in the splenic flexure
2	(Fig. 1A), and colonoscopy revealed a circumferential mass in the descending colon (Fig.
3	1B). Serum cancer antigen (CA)19-9 and CA125 were elevated to 161.8 U/mL (normal upper
4	limit, 37.0 U/mL) and 335.3 U/mL (normal upper limit, 35 U/mL), respectively, but
5	carcinoembryonic antigen (CEA) was within the normal range (3.6 ng/ml; normal upper
6	limit, 5.0 ng/mL). There were no physical findings suggestive of inherited cancer syndromes.
7	He underwent left hemicolectomy, during which broad peritoneal dissemination was
8	observed (Fig. 1C). He was diagnosed histogenetically as RAS/BRAF wild type,
9	microsatellite stable signet ring cell carcinoma (Fig. 1D). First-line (fluorouracil, leucovorin,
10	and irinotecan; FOLFIRI) and second-line (fluorouracil, leucovorin, and oxaliplatin; modified
11	FOLFOX6) systemic chemotherapy in combination with the anti-epidermal growth factor
12	receptor (EGFR) antibody panitumumab maintained stable disease for 10 months. However,
13	the tumor became refractory to chemotherapy, resulting in progressive peritoneal
14	dissemination and intestinal obstruction, with a gradual increase in CEA (10.8 ng/mL),
15	CA19-9 (111.2 U/mL), and CA125 (194.1 U/mL) levels (Fig. 2).
16	Due to the advanced stage (pT4aN0M1c, stage IV), the patient underwent cancer
17	gene panel testing (Foundation One®) during first-line chemotherapy, which revealed that
18	the tumor harbored pathogenic mutations in CTNNA1, SMAD4, and TP53, as well as a MET
19	amplification (106 copies/cell). No secondary germline findings linked to CRC were found

1	(Table). Due to the high-level MET amplification, the patient received cabozantinib (60
2	mg/day), after approval for the use of unapproved drugs was received from the Patient Safety
3	Unit at Kyoto University Hospital. Three weeks after cabozantinib treatment, his symptoms
4	(abdominal pain, nausea, and vomiting) improved transiently, which allowed him to spend
5	time at home and maintain a certain quality of life with the aid of analgesics and sedatives.
6	Cabozantinib treatment had no severe adverse effects. However, 1 month after initiation of
7	cabozantinib, his disease exacerbated and he succumbed 13 months after the initial diagnosis.
8	
9	DISCUSSION
10	Due to aggressive histology and tumor behavior, the present case underwent cancer gene
11	panel testing, which detected pathogenic mutations in TP53, SMAD4, and CTNNA1, as well
12	as MET amplification.
13	TP53 mutation is the most common genetic alteration found in human cancers. In
14	CRC, TP53 mutations are associated with advanced stage, and mutations with loss of
15	transcriptional activity are associated with a poor prognosis. ³ The <i>TP53</i> R196P mutation was
16	found recurrently in CRC patients from the COSMIC database
17	(http://cancer.sanger.ac.uk/cosmic). ⁴ This mutation has 1% of the transcriptional activity of
18	the wild type, and has a dominant-negative effect. ⁵ Therefore, the <i>TP53</i> R196P mutation is
19	considered pathogenic and associated with a poor prognosis. SMAD4 mutations are common

1	in a variety of cancers. Loss of SMAD4 expression and loss of heterozygosity at the SMAD4
2	locus are associated with a poorer prognosis for CRC. ^{6,7} In particular, the proportion of
3	SMAD4 mutations is higher in signet ring cell carcinoma than in other histological types.
4	SMAD4 R361H, recurrently found in adult CRC patients, ⁴ drives tumor progression by down-
5	regulating TGF- β signaling. ⁸ CTNNA1 is a protein related to cell adhesion, and epithelial
6	mesenchymal transition caused by loss of CTNNA1 function is closely related to cancer
7	invasion and metastasis. A report showing that downregulation of CTNNA1 expression is
8	associated with a poor prognosis for CRC ⁹ suggests that CTNNA1 S349fs, which is likely a
9	loss-of-function mutation, may contribute to tumor aggressiveness. MET amplification, found
10	in about 1.7% of all CRCs, is a well-known poor prognostic factor. ¹⁰ While less common in
11	primary CRC, up to 22.6% of adult CRCs that are refractory to anti-EGFR drugs harbor MET
12	amplification. ¹¹ To explore the characteristics of the mutational profile of this case, we
13	compared the mutation patterns of the four genes (TP53, SMAD4, CTNNA1, and MET) with
14	mutation and copy number data from 212 patients/samples in The Cancer Genome Atlas
15	(TCGA) cohort, which were obtained from cBioPortal (<u>https://www.cbioportal.org/</u>). ¹²⁻¹⁴ We
16	found no adult CRC cases harboring all four mutations concurrently (Fig 3A), which may
17	reflect the aggressive clinical behavior of the case reported herein.
18	The present case, who experienced disease progression after multiple courses of
19	panitumumab-containing chemotherapy, was thought to be resistant to other EGFR

1	inhibitors. Furthermore, the objective response rate of other salvage therapies, such as multi-
2	kinase inhibitor regorafenib or trifluridine and tipiracil, is extremely low for such refractory
3	cases. ¹⁵ Cabozantinib, an oral multi-kinase inhibitor with activity against MET, RET, AXL,
4	VEGFR2, FLT3, and c-KIT, was approved recently for unresectable or metastatic renal cell
5	carcinoma, and for refractory hepatocellular carcinoma. ¹⁶ To date, several MET inhibitors
6	with different kinase selectivity have been developed and used as monotherapy, or in
7	combination with other drugs, in a variety of clinical trials for advanced solid tumors.
8	Regarding CRC, MET inhibitors have excellent anti-tumor effects in tissues refractory to
9	EGFR inhibitors, and subgroup analysis revealed that they are effective in patients with a
10	high MET copy number. ^{17,18} In a phase II study, approximately 10% of patients who were
11	resistant to EGFR inhibitors and had a high MET copy number showed an objective response
12	to combined treatment with the MET inhibitor tivantinib and the anti-human EGFR antibody
13	cetuximab. ¹⁹ Taken together, we considered <i>MET</i> amplification as a possible actionable
14	molecular target in this case, and the patient received cabozantinib as third-line therapy,
15	which had a transient therapeutic effect. The MET copy number in the present case was very
16	high when compared with that of 157 tumors (including five CRCs) with MET amplification
17	(a genomic copy number of five or higher) in the International Cancer Genome Consortium
18	cohort from the COSMIC database (Fig. 3B). ⁴ Therefore, the limited therapeutic effect of
19	cabozantinib in the present case was probably due to MET hyper-amplification-associated

1	MET inhibitor resistance, as previously described. ²⁰ Other possible explanations include
2	involvement of other genetic mutations (TP53, SMAD4, and CTNNA1) in resistance to
3	treatment, and poor absorption of cabozantinib due to decreased gastrointestinal function
4	resulting from ileus or peritoneal dissemination. If cabozantinib had been started earlier, or
5	used in combination with other chemotherapies and molecular targeting drugs, it may have
6	had a greater effect in terms of inhibiting tumor growth.
7	In conclusion, we experienced a rare case of pediatric CRC that had four genetic
8	abnormalities associated with a poor prognosis. To clarify the pathogenesis and to improve
9	the prognosis of pediatric CRC, it will be necessary to perform comprehensive genomic
10	analysis immediately after histological confirmation of the disease.
11	
12	FUNDING
13	This research received no specific grant from funding agencies in the public, commercial, or
14	not-for-profit sectors.
15	
16	ETHICS STATEMENT
17	The patient's legal guardians provided written informed consent to publish photographs
18	under the guidelines of the Kyoto University Graduate School and Faculty of Medicine
	under the guidelines of the Ryoto Oniversity Oraduate Senoor and Faculty of Wedeline

1 **REFERENCES**

2 1. Poles GC, Clark DE, Mayo SW, et al: Colorectal carcinoma in pediatric patients: A 3 comparison with adult tumors, treatment and outcomes from the National Cancer Database. J 4 Pediatr Surg 51:1061-6, 2016 5 2. Hill DA, Furman WL, Billups CA, et al: Colorectal carcinoma in childhood and 6 adolescence: a clinicopathologic review. J Clin Oncol 25:5808-14, 2007 7 3. Nakayama M, Hong CP, Oshima H, et al: Loss of wild-type p53 promotes mutant 8 p53-driven metastasis through acquisition of survival and tumor-initiating properties. Nat 9 Commun 11:2333, 2020 10 4. Tate JG, Bamford S, Jubb HC, et al: COSMIC: the Catalogue Of Somatic Mutations 11 In Cancer. Nucleic Acids Res 47:D941-d947, 2019 12 5. Monti P, Perfumo C, Bisio A, et al: Dominant-negative features of mutant TP53 in 13 germline carriers have limited impact on cancer outcomes. Mol Cancer Res 9:271-9, 2011 14 6. Isaksson-Mettävainio M, Palmqvist R, Forssell J, et al: SMAD4/DPC4 expression 15 and prognosis in human colorectal cancer. Anticancer Res 26:507-10, 2006 16 7. Itatani Y, Kawada K, Fujishita T, et al: Loss of SMAD4 from colorectal cancer cells 17 promotes CCL15 expression to recruit CCR1+ myeloid cells and facilitate liver metastasis. 18 Gastroenterology 145:1064-1075.e11, 2013 19 8. Lim SK, Hoffmann FM: Smad4 cooperates with lymphoid enhancer-binding factor 20 1/T cell-specific factor to increase c-myc expression in the absence of TGF-beta signaling. 21 Proc Natl Acad Sci U S A 103:18580-5, 2006 22 9. Raftopoulos I, Davaris P, Karatzas G, et al: Level of alpha-catenin expression in 23 colorectal cancer correlates with invasiveness, metastatic potential, and survival. J Surg 24 Oncol 68:92-9, 1998 25 10. Zhang M, Li G, Sun X, et al: MET amplification, expression, and exon 14 mutations 26 in colorectal adenocarcinoma. Hum Pathol 77:108-115, 2018 27 11. Raghav K, Morris V, Tang C, et al: MET amplification in metastatic colorectal 28 cancer: an acquired response to EGFR inhibition, not a de novo phenomenon. Oncotarget 29 7:54627-54631, 2016 30 12. Cerami E, Gao J, Dogrusoz U, et al: The cBio cancer genomics portal: an open 31 platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401-4, 2012 32 13. Gao J, Aksoy BA, Dogrusoz U, et al: Integrative analysis of complex cancer 33 genomics and clinical profiles using the cBioPortal. Sci Signal 6:pl1, 2013 34 14. The Cancer Genome Altas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487:330-7, 2012 35 36 15. Xie YH, Chen YX, Fang JY: Comprehensive review of targeted therapy for 37 colorectal cancer. Signal Transduct Target Ther 5:22, 2020.

1

2 16. Tomita Y, Tatsugami K, Nakaigawa N, et al: Cabozantinib in advanced renal cell
3 carcinoma: A phase II, open-label, single-arm study of Japanese patients. Int J Urol 27:9524 959, 2020

5 17. Bardelli A, Corso S, Bertotti A, et al: Amplification of the MET receptor drives
6 resistance to anti-EGFR therapies in colorectal cancer. Cancer Discov 3:658-73, 2013

718.Eng C, Bessudo A, Hart LL, et al: A randomized, placebo-controlled, phase 1/2

8 study of tivantinib (ARQ 197) in combination with irinotecan and cetuximab in patients with
9 metastatic colorectal cancer with wild-type KRAS who have received first-line systemic

10 therapy. Int J Cancer 139:177-86, 2016

11 19. Rimassa L, Bozzarelli S, Pietrantonio F, et al: Phase II Study of Tivantinib and

12 Cetuximab in Patients With KRAS Wild-type Metastatic Colorectal Cancer With Acquired

13 Resistance to EGFR Inhibitors and Emergence of MET Overexpression: Lesson Learned for

14 Future Trials With EGFR/MET Dual Inhibition. Clin Colorectal Cancer 18:125-132 e2, 2019

15 20. Oddo D, Siravegna G, Gloghini A, et al: Emergence of MET hyper-amplification at

16 progression to MET and BRAF inhibition in colorectal cancer. Br J Cancer 117:347-352,

17 2017

1 FIGURE LEGENDS

2	FIGURE 1. (A) Abdominal computed tomography (CT) at onset. The arrow indicates
3	intestinal wall thickening at the splenic curvature. (B) Colonoscopy findings at onset.
4	(C, D) Macroscopic appearance (C) and hematoxylin and eosin staining (D) of the resected
5	specimen (magnification, ×400).
6	
7	FIGURE 2. Clinical course of the patient. He received fluorouracil, leucovorin, and
8	irinotecan; (FOLFIRI) (a), FOLFIRI plus panitumumab (b), and fluorouracil, leucovorin, and
9	oxaliplatin (modified FOLFOX6) plus panitumumab (c) for 10 months.
10	
11	FIGURE 3. (A) Oncoprint showing the frequency and co-occurrence of alterations in four
12	genes (TP53, SMAD4, CTNNA1, and MET) in our case and in 212 colorectal cancer patients
13	from The Cancer Genome Atlas (TCGA). TCGA data were downloaded from cBioPortal
14	(https://www.cbioportal.org/). The variant types are indicated in the color legend at the
15	bottom of the Oncoprint. (B) Genomic copy number of MET in this case compared with that
16	in the COSMIC database (https://cancer.sanger.ac.uk/cosmic). The red dot represents this
17	case relative to n=5 other colorectal cancers (green) and n=152 other cancers with MET
18	amplification (five or more copies) in the International Cancer Genome Consortium cohort
19	(black).

Figure 1

Figure 3

Biomarker findings			
Microsatellite status	stable		
Tumor mutational burden	1 Muts/Mb		
Genomic findings			
Short variants			
Gene	Alteration	Variant allele frequency	COSMIC ID (Frequency of occurence in colorectal cancer) #
SMAD4	R361H	0.3563	COSV61684056 (106)
<i>TP53</i>	R196P	0.3344	COSV52678297 (4)
CTNNA1	S349fs*10	0.318	None
KRAS	Wildtype	N.A	N.A
NRAS	Wildtype	N.A	N.A
Copy number variation			
Gene	Alteration	Copy number	
MET	Amplification	106	

 Table. Sequencing results from FoundationOne CDx

Abbreviation: N.A, not applicable

[#]Based on COSMIC database (v94)