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1. 'fhc present paper is devoted exclusively to the class of induction 

motors which work under cyclically varying foads, as for example, induction 

motors driving roll trains, reciprocating pumps and hoisting machines etc .. 

In these cases the resisting torque imposed upon the motor varies from 

tim~ to time ; hut, with the variations which are fairly definite in their 

nature· and after some time, the torque cycle closes itself hy the last 

terminal con_ditions coinciding with the first starting point. 

It is a well known fact that the capacity of an electric motor working 

under these conditions is limited principally by the condition that the · 

greatest rise in temperature which the_ motor attains when_ working under 

a certain load, should not exceed a certain presupposed amount of rise in 

temperature. 'J'he rise in temperature of a motor depends on the amount 

of internal losses, heat dissipated from the motor body, and heat absorbed 

in the mass of the motor; 'l'he first varies in accordance with the variation 

of the load_ on the motor, and the last depends on the time of the supply 

of heat. Hence the rise in temperature of the motor, when load condition,; 

are unstable as in our case, depends not orily on the amount of the 

fluctuation of the load, but on the manner of variation with respect to 

time. Thus the greatest rise in tem11erature and therefore the capacity of 

the induction motor under consideration must be determined from the time 

characteristic of the loa,d which is to be imposed upon it. 
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When the induction motor is applied to . certain services where load 

conditions are very unstable, the rotor having considerable inertia becomes 

sometimes of great advantage. As is well known, the use of a fly-wheel 

attached to the rotor shaft of the motor changes, when load conditions are 

variable, the characteristic of the load imposed on the motor; the effect is 

that it takes up the peaks and equalizes the unsteady loads thrown on the 

motor. In this case, therefore, the capacity of the induction motor must be 

determined from the nature of the resisting torque and the amount of 

inertia of the rotating parts of the system. 

In what follows the author intends, in the case of a cyclically varying 

load with a given characteristic, :firstly to solve some dynamical problems 

concerning the induction motor with rotor possessing a considerable inertia 

and secondly to take up some problems on heating of the motor which 

lead to determining the capacity of the motor. 

I. The Effect of Inertia on Induction 
Motor Operation. 

2. The effect of a fly-wheel attached to the rotor shaft on the induction 

motor operation under -cyclically varying loads has been investigated by 

various authors such as Ph. Ehrlich/> L. Kallir,2> H. C. Sprecht3> and F. G. 

Gasche,4> in cases when the resisting torque is a sine function of time or 

varies intermittently from one constant value to other constant values. The 

purpose of this J>art of the present paper is to obtain more general solutions 

of the problem, the resisting torque being taken as any real funct~on of 

time. 

'rhe characteristic of the resisting torque of a working machine depends 

on the nature of the work it performs and for the same class of work there 

1) Elektrotech. u. Masch. XXVI Jahrg., Heft 9; S. 173. (1908). 
2) Ibid., XXVI Jahrg., Heft 9; S. 465. (1908). 
3) Trans. of the A. I.E. E. Vol. XXVIII, Part 2; p. 869. (190!l). 
4) Ibid., Vol. XXIX, Part 2; p. 1385, (1910). 
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1s in, general a well ddined cycle of operations into which the machine 

gravitates. 'Fhus we may obtain the resisting torque time relation of a 

working machine either by direct experiment on an existing machine or 

by calculation from physical constants. Thus in the first place we assume 

that by some means a definite kno\vlege of the resisting torque time relation 

for a given working machine is available. 

Making fmther assumptions that, (1) the rotor of the induction motor 

and the fly-wheel are connected rigidly with the working machine, (2) the 

resistance of the secondary winding is constant, and (3) the impressed E. llf. 

F. on the primary winding is kept constant, formulre governing the propor­

tion of the fly-wheel and the induction motor will be developed from the 

dynamics of the problem. 

3. From the general assumption that under the above conditions the 

torque of an induction motor is proportional to the slip we have 

where 

JJ1 = A(co8 -(I)) ................................. (L), 

111 is the torque imposed on the motor at any time t, 

(I) is the angular velocity of the motor corresponding to the torque M, 

(/)8 is the synchronous angular velocity of the motor, 

A is a constant. 

By d1fferentiating ( 1) with respect to t we get 

dM = -A _ti!!!_ .. .............................. (2). 
dt dt 

'l'he equation of motion of a motor attached with a fly-wheel 1s 

represented by 

I dw = M-m .............................. (3), 
dt 

where 

I is the moment of inertia of the revolving part, 

m is the resisting torque on the rotor shaft at any time t. 
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dw Eliminating from (2) and (3) and putting 
dt 

I - '1' - - IX 
A ··················· .. ·•····· .. (4), 

we obtain 

dM +-i-(M-m) = 0 ........................ (5). 
dt TIX . 

'l'his IS the fundamental equation representing the motion of the 

induction motor under consideration. 

We can easily see that the constant TIX given in the above expression 

has an analogous meaning as the time constant of an electric circuit con­

taining inductance. For further information on this constant the reader is 

referred to F. G. Gasche's valuable paper.1> 

Since, as given above, the resisting torque of the working machine m 

1s a known function of time t, eq. (5) can he at. once solved in the 

form 

where C is a constant. 

If J.110 is the torque of the motor at the beginning of the cyclical 

operation the above equation becomes 

t I 

M = e- -,/'IX-( M0+ ~IX i 1

e-7'a.: m dt) ···············(6). 

4. To determine the initial torque of tho motor 1110 and to calculate 

the torque .~1 at any instant t, it is necessary that the last term in the 

bracket of eq. (6) should be integrable. Whether it 1s readily integrable 

or not depends on the form of the function m. In certain cases it may 

be expressed, throughout tho whole period of the cycle, as a simple function, 

but in many cases it is difficult unless we make use of a complex function 

1) Loe, cit. 
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of t. For technical purposes, to rcpre8ent ni in a single complex function 

will be of little value, since we must obtain the solution in a form which 

is easily calculable. 'ro enable the calculation in a simple form in the case 

of a complex resisting torque time relation, we divide the whole period into 

a suitable number of divisions so that during each division the resisting 

torque is represented or approximately represented by a simple function 
t 

of time and it multiplied by e 2:X is readily integ1ahlc. 

Now assume that the complete period of the cycle 1s divided into n 

divisions and let the time of each division he 

respectively, which is related by 

t1+t2+ta+ •····•••••••+tr+•·••••••···· +tn=•o, 

where r 0 is the period of the cycle. 

Let the resisting torque during each division he represented hy 

respectively, each being a simple function of time t. 

Further let the value of the torque of the motor at the beginning of 

each division of time be 

respectively. Then the value of M at the end of each division will lie 

respectively. 

Now applying eq. (6) to each division from the beginning to the end 

of the time we obtain 

l 
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......... (7), 

where t is the time counted from the beginning of each devision. 

Eliminating M,_, M2, M3, ••••••••• 11[,., ......... M_ __ 1 from above equations 

and remembering that M,. = M0, we get 

where 'r-i is the time at the beginning of rth division counted from the 

beginning of the cycle. 

The torque of the motor at the beginning of any division, rth say, 

1s obtained from (7) 

'fherefore the torque of the motor at any time t which is in rth 

division is given by 

__ t_( l it _t_ ) 
M = E 1.'ix Jlf,._t + Tix 

O 
E 1.'ix nir dt ............... (10). 

Now for the sake of simplicity let ns write 

l p~-•· ~p--tiip _t 
S = -- E Tix E 1.'a. 1n dt 

r '1.'ix • p ' 
p-1 l 
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~ ......... (11 ). 

ttnd in general 

Then above equations become 

:t'r-1 ......... (I). 
M..-1 == e Trx (Mo+S,._1), 

't' 

1.1f= e-'T;(Mo+S). 

'l'he eq. (I) gives the means for calculating the torque of the motor at 

any time during the complete period. 

It will be easily seen that (I) also satisfies when .the resisting torque 

is expressed by a single function of time throughout whole cycle. In this 

case 8 0 and S in (11) become 

. 1 -ro_l_ . 

So = 'l'rx J. e 'l'rz m. dt, 

1 'r _t_ 

S = --J. e 'l'rz mdt. 
Trx • 

l 
I· 1 ......... (12). 

J 

5. 'l'he angular velocity and the slip of the induction motor at any 

time are given by 

M 
(I)= (I) -­• A 

't' 

1 -'F = w,--e ix (Mo+S), 
A 

1 
I 
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and 
......... (II), 

M 
8=--

Acl). 

where s is the slip of the motor at any time. 

The values of 1.H's and S in the above expressions are given m (11) 

and (I). 'l'hus if the resisting torque is given as a function of time the 

angular velocity and the slip of the motor at any time during the complete 

period can be determined. 

Next the angular displacement o' of the induction motor is, as well 

known, related by the equation 

dO 
llJ=-. 

. dt 

Hence by integration we obtain 

where (J is the angular displacement of the motor from the beginning of 

·i-th division to any time t in the same division. 

The angular displacement of the motor during 1·th division is 

If we denote the angular displacement counted from the beginning of 

the cycle up to any time -r lying in rth division by 0 we have 
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where. 

R= J."mdt ................................. (15). 

From the above equation the angular displacement during the whole 

period will become 

where R0 stands for 

"O 

.[ 'Ill, dt .................................... (17) . 
. 

It 1s evident that eqs. (III) and (16) also hold when the resisting 

torque 'In is expressed by a single function of time during the whole 

period. 

The power developed hy the induction motor at any instant is readily 

obtained by the well known relation 

P={l)M 

} ........ (18), 

in which P is the power of the motor. 

'l'he energy supplied by the motor can be obtained from the equations 

......... (19), 

.. ., 1 ... , 
= ltJ, J ~lf dt -A-J M2 dt. 

' t't 't't 

where W 1s the energy supplied by the motor while it makes the angular 
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displacement from 01 to 82, or the interval between :-1 and r-2, both limits 

being taken arbitrarily. 

6. The formulre deduced in the above paragraphs enable us to calculate 

the torque, the angular velocity, the angular displacement, the power and 

the energy of the induction motor, if the resisting torque time relation 

during the whole period of the cyclical operation is given. It is sometimes 

convenient, particularly when the resisting torque makes a complex· function 

of time, to use the graphic method for calculating the above formulre. For 

this purpose by usual graphic method we calculate S's in (12) and R's in 

(15) and (17). Then by (I), (II) and (III), M, cl), s and f:J at any time 

will be obtained. From this (18) enables us to calculate P at any time. 

Hence the energy supplied by the motor during any interval of time wi)l 

be found graphi~lly from the second equation of (19). 

7. Now let us apply the above general solutions to some special 

cases. 

Case I. When the resisting torque is a potential series of time. 

Let one complete period he divided into n divisions and during each 

division the- resisting torque he represented by the following finite potential 

series 

m 1 = K10 +H1/+K,2t2 + ...... +K11.th+ .....• +lt1m.1 tm1, 

m,2 = K20 + K21t + IC22t2 +.,,,. • + K2hth +,.,, .. + K~m2t 1112, 

'J'fia = K.~o + K.~1t + K3J2 + ...... + K:v.t'' + • ..... + K.~m3 tm3, 

respectively, the interval of each division being 

respectively, where the K's are constants. 
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In this case since 

we have 

......... (20), 

and since 

S's in (11) become 

... (21). 

From the above we know the values of the R's and the S's in terms 

of t. 'J.1herefore by means of equations given in the preceeding paragraphs 

we can determine the M, cu, s, etc .. 

Case 2. When the resisting torque varies with eonsta:nt values. 
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Let the resisting torques during each n (li vision of the cycle be all 

constant and denoted by 

respectively. 

'fhen we have 

1'-n 

R0 = L mip, 
71-1 l 

p .... -1 

Rr-1 = Lm/p, 
p-1 

} ......... (22), 

I 
R = H,._1 + m,i., J 

and 

p-r-1 Tv 'P-1 

S = ~ m (err;- err;) 
r-1 f..J p ' } ·········(23). 

p-1 

'l'herefore from (1) 

......... (24), 

or from (10) 



On the Induction .ll1oto1· under Cyclical Operation. 99 

t 
lf ( ~r. ) - '1.'d , J . = ,n,.- m-,.- Jr ,._1 e 

I.e. ......... (2.5). 

The angular velocity and the slip at any instant are respectively 

obtltined from (II) 

' ';' 't' 't'r-1 

=co,-~ e--p;{Mo+S,._1 +m,.(e-p; _e-'t-;)}, 

and ......... (26). 

'l'he angular displacement of the motor is from ( 1:3) 

11•. 

or eliminating t 

(} = 1,°' {(,o, _ .1A1~,. ·) ll)!! 1n,. -M,._1 + J.lf--llf,._ 1) (')S) 
~ mr-J.11 - A J ...... :.. . 

'l'he angular, displacement dming the time t,. is 

f} _ '1' {( ·n·1,,. ) l . 1n ,.- 11!,._1 + llf,. -M..-1 } (29) 
,. - IX (1}6 - -- og------ ··---- • •.,., , 

A m,.-M,. A 

'l'he angular diAplacement from the beginning of the cycle up to any 

time , is given by 
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·aml the total angular displacement during the whole •period is 

,,_,. 
80 = w;r0 - ~ ~ m,,t,, ......................... (31). 

1,=l 

'l'he power of the motor at any time is given by 

P=wM, 

where 111 and w aYe given in (24) and (26). 

Energy from the motor during t=o to any time t is given by 

t 1 t 

ff'= w,J. Mdt-----.[M~dt 
• A • 

= m,.O-T,,,(M-M,._1){cu,- - 1-(M+ M,._1)} ......... (32). 
• 2A 

'l'he energy of the motor <luring the time tr is 

Therefore energy developed hy the motor from the beginning of the 

cycle up to the end of rth di vision is 

r=r 11-.r .. 

~ 11·~, = ~ n,.1,tl11 - T,,_ (.lrl,.-11.J;,){ <u8 - -lA (Jlir+ ilf0) l ... (34), 
11~L 1,-l 

and energy during the whole period is 

p=n r=n 

~ 11~, = ~ rnA, ........................... (35), 
p-1 p-1 

the result obvious from the function of the fly-wheel m the case of 

negligible windage losR. 

In the present case, if we put the resisting torques during a series of 
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the alternate divisions all equal, we will obtain the case treated by F. G. 

· Gasche1l of the induction motor driving roll trains. 

Case 3. When the resisting torque is a trigonometrical series. 

As an example of the resisting ton1ue expressed by a single function 

of time during the complete period let us take the case which occurs when 

induction motors drive reciprocating pumps, compressors etc.. In this case 

the resisting torque can be expresse.d by a series of trigonometrical functions 

of time. Here we will take a finite ·trigonometrical series, because in 

practice a periodic function can only be analysed into a series of finite 

terms and such is also the case here. 

Now between the limits pt= -rr and pt=rr, let _the resisting torque be 

expressed by 

m = m.0 + m 1 sin(pt + <p,) + m 2 sin(2pt + <p2) + ..... . 

+ mr sin(1pt + <p,) + ...... + mn sin( npt + 'Pn) .•• (36), 

. where the 1n's are constants, p the angular velocity of the fundamental 

wave and the <p's the phase displacements. 

In this case ·we have 

t t ~» f e-1•~- mdt = T°'e-i•;_-{m0 + ~mrcos¢,.sin(1L1t+a,.)}, 
r=l 

where 

l ..................... (37). 

'l'herefore smce 

we obtain 

1) -Loe. cit .. 
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1·=11, ' ' 

~ ) -1~ JI = 111 0 + LJ 111,. uos¢,. si11(1·11t + r,,. + Ge , 
1"'=-1 

where O is a constant. • 

In this case the torques of the motor when pt= ;r and when pt= -1r: 

are equal. 'l'herefore we get 

0=0. 

Henue 
r-n 

111 = 111 0 + ~m,. cos¢1,. sin(i:pt+ ,,,.) ............... (38), 
1·--~ l 

and the torques of the motor when pt = 0 and pt = ;r or - ;r are 

respectively 

r-n 

JJ10 = 1n0 + ~ m ,. cos,/Jr sin<J,, 
,,.,,. ... 1 

......... (39). 

J'=Jl. 

= '1'n0 +}: ( -1 )"m,. co"'¢,. sine~, .. 
r-1 J 

'l'hus we see that in the permanent state, the torque of the induction. 

motor varies harmonically with the same frequency as that of the resisting 

torque. 

1'he am11litude of each harmonic wa,"e of the torque of the motor can 

he deduced from (38), i.e. its value is 

It shows that the inertia of the rotor diminishes the amplitude of each 

wave and the effect is more marked for the higher harmonics than for the 

lower. 'l'hus we see that though the resisting. torque varies much from the 

fundamental wave, the effect of the fly-wheel is to make the motor clevelope 

a torque of smoother form. Hence when the time constant 1'"- is sufficiently 
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large, the torque of the motor, working under a resisting torque of more 

or less· irregular form; may be taken as a simple harmonic wave of lesser 

amplitude. 

The phase difference between each harmonic wave of the resisting torque 

and the torque of the motor 'fr is given in (37). It shows that, by vfrtue 

of the inertia effect, the phase of each harmonic wave of the torque of the 

motor lags behind that of the resisting torque and, the larger the time 

constant T(1,, the more the effect l)ecomes marked. 'l'his effect has more 

influence on higher harmonics than on lower. 

Next the angular velocity and the slip at any time are 

]}J 
(I)= (t),--

A 

= (I).- ~ {mo+! m,. cosif'r sin(rpt+ar)}' 
1•=-l 

......... (41). 
11.1 

8=--
A(t). 

'l'herefore the values of co and s when t=O, and pt=rr or pt= -'Ir 

booome 

(I)/= (I),- ~(mu+! 'lnr COS/fr sinar), 
r-1 

r=n 

so'= A~,_., ( m 0 + ~ m,. cos¢, siuar), 
t·=l 

(!)'It = (I) - 'It 

r-n 

= (I).- ~ {mo+ ~(-l)'m,cos<J,,sina,}, 
r""=l 

Stt = 8-TC 
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·r=n 

= A~u • { m 0 + E ( -1 Y mr cos¢ r sirn~r} . 
r-1 

Now since 

t 

R = i mdt 

r=n 

=mot+ T(J. Em,. cot¢,-{cosfr-COS(rpt+fr)}' 
1·=1 

the angular displacement of the motor from t == 0 up to any time t 1s 

from (13) 

0 = w,t- ~ {R+ T"(llfo-M)} 

· · r=n 

= ((u,- : 0
) t- ~ E mrcot¢,.cos¢r{cosar-cos(rpt+or)} 

'l'=l 

r=n 

= Wot- ~(J. E mr cot¢,. cos¢r{cosa,.-cos(rpt+ar)} ............ (42), 
r=l 

where Wo is the angular velocity of the motor corresponding to the torque 

mo. 

From above the total a~gular displace:rnent of the motor during the 

complete period is 

= 2,r~ .................................... (43). 
p 

In the above case, if we put 

and 

'Pi =0, 
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(36) becomes 

m, = m 0+m1 sinpt ........................ (44), 

i.e. the resisting torque makes a simple harmonic wave. 

In this case the above expressions become 

and 

where 

Mo = m 0 -½ m1 sin2¢, 

M1t = m 0 + ½m1 sin2¢. 

s = - 1-{m0 +m1 coscp sin(pt-¢)}, 
A(I), 

} ......... (45), 

l 

... (46). 

'l'hus we see that the amplitude of the fluctuation of the torque of the 

induction motor becomes smaller than that of the resisting torque in the 

mtio 

cos¢= 1 
,/1 + (p'l',;f 

and it lags in phase by the amount ¢. 

'l'he power of the motor at any time 1s 
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P= wll1 

The average, power of the motor becomes · 

.Po= 1n0(w,- fflo )--
1-(m1 cos<J,)2 

............ (48). 
A 2A 

Now the condition when the power of the motor is a maximum or a 

minimum is 

1. e. 

But since in practice the greatest slip of an induction motor is generally 

smaller than 50 % we have 

and 

2nio O (I)----> 
' A ' 

A(w,- 2;o) 
------>l. 

2m,1 cos<J, 

'rherefore from above expression we can easily see that 

cor,,,(pt-¢) = 0 

gives the condition of the maximum or the minimum power and that 

Pis the maximum when pt-¢= ; , 

1. e. when 11f is the maximum, 

and 
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P . h .. h ' 3r. 1s t e mrn1mum w en pt-r.p = -·-, 
2 

1. e. when M is the minimum. 

Hence we get 

1~ ( ')( ,m,0 +1ni_cos¢) max. = m 0 + m 1 cosy, (I}• - A , l ·········(49), 

and the fluctuation of power of the motor is 

.Example. An induction motor drives a machine whose resisting torque 

varies in sinusoidal manner with respect to time making two cycles per 

revolution of the motor with 

m,0 = 500 MKg., 

m 1 = 400 JJIKg .. 

Assuming the synchronous velocity of the induction motor 450 1·. p. m.,. 

it is required to calculate the necessary amount of inertia and the power 

of the motor to limit the maximum fluctuation of the torque of the motor 

to 400 MKg. 

In this case 

2::. 450 = 47·124, 
60 

A JJJmax. =--~-

= __ .J_f._ma_x~. _ 

8mnx. (I}• 
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where «>max. and slllRX. are the angular velocity and the slip of the motor 

corresponding to the maximum torque Mmax. respectively. 

We take 

the value within the common practice. 

Hence 

From (46) 

From (45) 

Hence 

.A= 700 
g = 148·54 g, 

O·l. 47·124 

Wo = w - mog 
s .A 

= 47· 124- _ 5_o_o_ 
148·54 

= 43·758. 

w 
(JO = 2,r_O_ = ,r 

p 

= 87·516. 

400 
700 = 500+ _/ 

V l+(pTot)2 
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I T,x=-. 
A 

I= 0·0198. 148·54. 9·8 

= 28·8 'M. Kg. S. 

7r 
¢=-. 

3 

Therefore ( 45) gives 

1W= 500+200sin(87·516t-; )· 

'l'he maximum and the minimum power of the motor are from ( 49) 

P = (500+200)(47·124- 500 + 200 ) 
max. 148•54 

= 29688 Kg M. per Sec. 

= 395·8 H.P., 

P.,,,111 = (500-200)(47·124- 500- 200) 
. . 148·54 

= 13530 K,q M. per Sec. 

= 180·4 H.P. 

II. The Rating of the Induction Motor. 

8. In what follows the problem of the. heating of induction motors 

running under cyclically varying loads will be considered. In the usual 

method of treating the problem of heating ai-1 electric motor, the assump-



110 Seiichiro Noda. 

tion 1s made that the motor is a homogeneous body, and that a certain 

amount of heat per unit time is generated in it uniformly throughout the 

body. 'rhis assumption is of course not correct except in the case of 

totally enclosed motors, in which the assumption approximately holds. 'l'he 

present part of the paper also starts from this approximate hypothesis. 

With the above assumption let 

W be the amount .of heat developed per unit time in the motor, 

n be the temperature of the motor, assumed uniform, at any 

time t, measured above that of the room, 

a be the heat stored in the body per degree rise m temperature 

of the motor, it being assumed constant, 

b be the amount of heat dissipated from the body per unit 

time per degree rise in temperature of the motor. 

Then we have 

ct d1
t +bu= fV .............................. (1). 

dt 

'l'his is the well known equation employed by various authon, for 

treating the problem of heating an electric motor. But it must be noticed 

that W in eq. (1) is not in our case, as in the case of previous investi­

gators, a constant value, but it is a known' function of time characterized 

from the nature of the service of the motor. Even under the above 

general _assumption, b in (1) is not a constant unless the motor runs with 

a constant speed or we use forced ventilation. It varies with the change 

of the speed of the motor which in turn depends on the variation of the 

load of the motor. 'l'herefore it is a function of time. In this general 

case, where fV and b are any function of time, the above equation can 

be solved, provided they are known functions· (if time. But in practice, 

even when the motor works under very unstable resisting torque, the 

variation of the speed is limited within a certain not large amount so 

that its effect on the value of b is not greatly appreciable. :From the 

above consideration, together with the ambiguity involved in the fundamental 
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equation (1), we may take, when the variation of load on the motor lS 

moderate, b as a constant. 

Assuming now a and b constants and JV a given function of time t 

the equation (1) is at once solved in the form 

where u0 is the temperature of the motor at the beginning of the cycle 

and T~ stands for ~- . 
b 

T'{, is a constant known as the time constant of the motor. It is a 

constant so far as the speed of the motor and therefore the load on it 1s 

constant or is ventilated with constant air velocity. 

'l'o determine the initial temperature 110, let the period of the cycle be 

, 0• 'l'hen putting 

u = u0 and t = , 0 

lll the above equation WC have 

~o t 
l f. -1_,- , • 

- - s ti TV dt .................. (.3). 
a • 

9. When the integrals of the above expressions arc difficult or the 

speed of the motor varies much, so that Tfi can not be taken as constant, 

we divide the period of the cyule into a suitable number of divisions and 

treat as in the preceeding chapter, during each division T~ being assume<l 

· constant. 

Assume, as in the preceeding chapter, that the complete period of the 

cycle is divided into n divisions and let the time of each division be 

respectively, which is related by· 

t1 +t~+fs+ .•.... +tr+•••••• +t,,.::::;: , 0• 
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Let the values of W and T~ during each division be represented by 

and 

respectively, where the W's are known functions of tinie and the T~'s are 

constants. 

Further, let the values of u at the beginning and the end of each 

division be 

and 

respectively. 

'l'hen applying (2) to each division from the beginning to the end of 

the time we get 

In tn I 
-~T~,. 1 J. T~,. 

1tne =U,._1+- e T¥,.dt, 
a • 
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where the time t is counted from the beginning of each division. 

Now eliminating it1, tt2 , tt3 , etc., un-i from the above equations we get 

w;.dt. 

But smce for cyclical operation 

we have 

Ir __ t_ 

i T~r 
e TVr dt ....•. (4). 

In a similar way the temperatm-e at the beginning of 1th division 

1s obtained by 

Hence from (2) the temperature of the motor at any time t m any 

division rth, say, will be given h~, 

II~. dt) .................. (6). 

Now, for the sake of simplicity let us write 

1 
t 

......... (7). 
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'l'hen the above expressio~s become 

l 

I ......... (8). 

j 
If the time constant 'l'f8 may he assumed equal during the complete 

period, the above expressions become 

1 
.......... (!J), 

"r-1 t I 
N - N,._1 + e e 1f r dt. _ _!_ 1rif. -'[•~ T 

a • J 

and 

't'r-1 

Ur-1 = e - T~ ( Uo + Nr-1), 

l 
1 ·········<10). 

J 

10, When the motor rnns continuously with a constant load, the 
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internal losses are constant. Therefore in this case putting W constant 

in (2) we get 

Let now it= U 

then we have 

when t = -:x;, 

w Tl=-, 
b 

. I 

it = U- ( U - u0) $ --T~ . 

} ......... (11). 

If u0 = 0, i.e. the temperature of the motor be initially equal to that 

of the room 

t 

u = U(l-$- 1'~) ................................. (12). 

This is the well known formula used for treating the problem of 

heating a motor. Here U is the maximum temperature or the temperature 

of the continuous running when the internal losses are equal to W. 

11. .All formulre deduced in ·the preceeding paragraphs hold true for 

any electric motor. Now let us apply the above propositions to the case 

of _induction motors running under cyclical loads. 

Heat generated in the motor per unit time W 1s due to its internal 

losseR. When the induction motor with constant secondary resistance rup.s 

under constant voltage and frequency, W can be very approximately ex­

pressed by 

JV= TV0+BM2 
.............................. (13), 

where W0 is the no load losses of the motor excluding friction loss and B 

is a constant standing for 

1 r 1+r2 ---, 
A 1·2 

in which 
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r 1 1s the resistance of the primary winding per phase, 

r 2 1s the resistance of the secondary winding per phase, reduced 

to the primary. 

'l'he above equation shows that the internal losses of an induction 

motor ,vith secondary winding of constant resistance working under con­

stant impressed E. )f. :F. and frequency varies with the second power of 

the torque. 

12. Now let u,i take the caAe where the induction motor works under 

cyclically varying loads, during the complete period the motor being never 

stopped. 

Substituting (13) into (3) and (2) we get 

(14). 
~o _t_ t _t_ 

1' 1' } ! , I M' di+ .[ , ' M' dt .

1 
Thus we see that in this case the variation of temperature of the 

motor during the cycle depends upon the variation of the torque of the 

motor and the greatt'st rise in temperature of the motor occurs when 

1s a maximum. The above expression does not depend npon the construc­

tion of the motor, except the time constant, and therefore the condition 

of the greatest rise in temperature is found from the manner of variation 

of M, provided the time constant 1'~ is kno-wu. But since M is a known 

function of time depending upon the nature of service the condition can 
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be met. Let is occur when t = tmnx.. 'l'hen the greatest rise in temperature 

becomes 

Now from (11) the temperature of a motor running continuously 

under a constant load. is 

w U=--, b . 

or substituting (13), in the case of an induction motor we have 

U = Wo +~ M2 
••••••••••••••••••••••••••• (16). 

b b 

Let 

ll = uruax. when 11:1 = JJI"ine,rn·, 

then we get 

_ W0 B M2 
ttmax. - -

6
- + b mean ........................ (17). 

Now equating (15) and (17) we get 

tmax. 

M 2 - 1 - Tf:l I 
mean - T~ e 

1 

or (I). 

Mmean in the above equation means the torque which, if applied con~ 

tinuously on the same induction motor, would give the same greatest rise 

in temperature as it does when running under the given cyclically. varying 

load. Hence for this class of service an induction motor is to be selected 
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which would develope l!fmean continuously with the rise m temperature not 

exceeding a certain presupposed amount. 

For calculating formulre given in this paragraph the graphic method 

similar to tha_t given in § 6 will be convenient. 

In the abiwe if the period of the cycle r-0 1i,i very Hmall compared fo 

the time comitant T~, (I) reduces to 

1'1mean = ,../ }_ (M 2 dl ........................ (18). 
''Y !'o Jo 

ln this case the l!fmenn can ·be determined independent of T~. 

13. ·when the torque cycle is divided into n divisions, in the case of 

an induction motor if we put 

and > ......... (19), 

, 1-•-:;---l tp t t 
l, -,- -,---

L = L + ,,_1 1.~p i .. T~•·.111,12 lt 
· r-1 € ..., f1 ( • 

0 

(7) gives 
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N= _ff~ K+J!_L. 
a· a 

'l'herefore from (8) 

1 

: ..... (20). 

J 

, Now in (16) let 

U= U., when M= M.,. 

· Then 

ll., - Wo + bJJ M,,2 
.............................. (2L), 

b,, "' 
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where b,, is the value of b corresponding to the torque M"'. 

Equating u in (20) and U., in (21) we get 

where 

Now put 

where· l is a constant. 

'rhen the above expreAsion becomes 

( 

Lo 
'7._f!:_ 
r::'.1 Tw· 

€ -1 
J1f; = -----------------------

l in the above expression 1s a constant depending upon the design of 

the motor. It shows that the no load losses of the motor are l times the 

variable loss corresponding to 11:f.,. 

Now assume the value of l corresponding to the torque Mmenn and obtain 

the greatest value of the above expression. Then it will give the JJ.1;,,.nn 

looked for. Let tmax. be the time in that case, the:n we get 
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(II), 

where K111ax. anll Lmnx. are respectively the values of .K and L correspond­

mg to t = truax., and 1'~m•nn ii;; the time constant correAponding to MmeRII. 

In the above expression if we put A = 1, i.e. if the motor is designed 

so that the no load losses are equal to the variable loss when the torque u1 

11/lllean we have 

(lll). 

If it 1s permissible to put all the T~'s equal we get 

't'r-1 

.Kr-1 = T~ (e: 1
'r:1 -1), l 

't' 

.K = 7'8 (e~ -1), 
I 

and 
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~ ......... (22), 

I 

and 

H~l + B l 
Lo, Uo = 

b a To -1,-
£ ~ -l l 

......... (23). 

-r 

In this case Umax. can be readily found. Asfmme that it occurs when 

r- = r-max., then 

. W, B ( 1 u = ~--o-+_ 
mnx. b a __:'!_ 

'l' 
e ~ -1 

't'max . 

Lo+Lmax-) ~-~ ......... (24), 

where Lmax. is the value of L when r- = r-max.• 

Again equating (17) and (24) we- obtain 

~ _l( L 0 

mean - ~ € :~ -l l 
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1. e. 
. ........ (IV). 

J 

'l'he induction motor working under the given cyclical load should lm 

rated for continuous load hy the formula given above. 

14. We will now apply the above solutions to some special cases. 

Case I. ,vhen the induction motor having a rotor attached with a 

fly-wheel works under a cyclically varying load in which the resisting 

torque varies with constant values successively and without stopping as 

given in Case 2 of § 7. In this case, using the same notation as in the 

preceeding, the torque of the motor at any instant is given by 

t 
--,1'-

J[ = m 1,-(mJ>-M;,__1) e °' ........................ (25). 

Since iu this case we may without much_ error assume that the 'l'~'s 

are all equal, substituting (25) into (22) we have 
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Let Umnx. occur when , = 'max. and designate 

L 0 = 'l'~Lo', 

l,._1 = T~ L',._1, 

't',nnx.· 

L'mnx. = L',._1 +$-'l.',f,- {111:+ -
1

,~
2 - .ni,.(1n,.-Mmax.) 

,y--1 
a. 

where lJJmnx. stands for JJJ when , = , max .• 

'rhen from (IV) we obtain 

...... (27), 

In the ahove case if we put the resisting torques m a series of alter­

nate divisions all equal we ,yill obtai~ from (28) the continuous rating of 
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an induction motor with a rotor having considerable inertia which drives 

roll trains. 

Case 2. In Case 1 wheu the motor haH no fly-wheel. 

In this case since the Jf_' s are all constants (18) becomes 

q~/l---l f f 
p. ,-1 ~· ___ q_ __J> . 

K = ~ T ~ q"=t :l'~q (~ .7•~)) -1) 
r-1 1..J ~})'"' .... , 

p-1 

and 

___f_z,___ 

t ......... (29). 

( e T(-sJJ - l)Jl:,, 

Hence from (11) and (III) . 

l 
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when ). = l, I 
> ... (:30), 

where KmAX, and Lmax. are respectively the values of Kand L wl1cn t=fmnx., 

which are determined as in (II) and (III). 

When we may put all the T~'s equal, from (29) 

1 
......... (:31). 

J 

From (24) the greatest rise in temperature is 

where Lmax. is the value of L when it is greatest. 

Finally the mean torque of the mot.or is obtained from (IV) 

: ........... (32), 
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where 

) 
I t ......... (33). 

If the period of the cycle r-0 is very small compared to the time con­

stant T~, the above equation reduces to 

In this case M.nean becomes independent of the time constant of the 

motor. 

As a more special case of the above, let the cycle be completed with 

two constant torques M;_ and ~ working during the time t, and t2• 

In this case since n = 2, from (29) 

1 
...... (35). 

11 

L1 = T~1 (e T~, -l)Jl,fi2. J 

Hence if we put 

l 

} ........• (36), 
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we get 

it1 = (k1T~• + lr2'1.'~2) Wo + (k1 T~• M/ + k~ '1'~2 M/)!!_. 
a a 

Let us assume that 1111 ii;; greater than ~ and that the maximum 

temperature occurs when t = t1 , i. e. u1 is the maximum. 'fhen (30) 

becomes 

or if A= I, ····••··· (37). 

If we may put 

we have 

l 
~ ....•.... (38), 

and 
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Again if t1 +t2 is very small compared to T~ the above formulm 

become approximately 

l 

t ......... (40), 

so that 

Numerical example. 

In the above case let T~ = 1 hour, and the torque and the time 

during each division be respectively 

M1 = 500 MKg. f1 = 5 minutes 

M2= 20 
" t2 = 3 

" 
Ma =400 " t3 = 10 " 
M4= 20 " . t4 = 5 

" 
Jl/5 = 600 " t5 = 5 

" 
1116 = 20 

" t6 = ·7 " 
M.; = 40Q " 

t; :t:::: 15 
" 

Ms= 20 
" 

t8 = 10 
" 

the cycle being completed with 8 divisions. 

Now since 

'tJ 

T 
e ~ = 1 ·08690, 

'ta 
. p,, 

e l' = l ·34986, 

't:; 

i T~ = 1·594671 

't2 

e~ = 1·14263, 

't4 

e 1'i = I ·46717, 

Tc 

e T~ = 1·79200, 
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from (31) 

Denote 

then we have 

Seiichiro Noda. 

'7 '0 

e T~ = 2·30098, 
T 

e ~ = 2·71828, 

L/ = 500
2 

(1 ·08690-1) - 21726, 

L/ = L/+20
2 

(1·14263-1·08690) = 21748, 

L/ = Lz' + 400
2 
(l ·34986 -1 ·14263) = 5490,5, 

Ll =La'+ 20
2 

(1·46717-1·34986) = 54952, 

L.' = L/ + 600
2 
(l · 59467 -1 ·46717) = 100852, 

Ll = Ll + 20
2 

(l ·79200 - 1 · 59467) = 100930, 

L/ = L 6
1 +400

2 
(2·30098-1·79200) = 182370, 

Lo' = Ll + 20
2 

(2·71828- 2·30098) = 182!>37. 

Lo' -----

X1 = 117728, 

Xs = 119374, 

X5 = 129861, 

X7 = 125426, 

182537 
1·71828 

= 106233. 

.X2 = 112006, 

x4 = 109861, 

x6 = 115604, 

X0 = 106233. 

Since X5 is the largest we may consider that the greatest rise in 

temperature occurs at the end of the fifth divisio~. 

Hence from (32) 
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= ,I 129861 

= 360 MKg. 

If the induction motor should develope the maximum torque at 3% 

slip of the synchronous velocity, 720 r.p.m. say, we have 

720 
w = 2,r -- = 75·40 8 

60 

A = --60_0 __ = 265·26. 
0·03 x7f>·40 

The angular velocity corresponding to Mm•an 1s 

= 75·40 360 
265·26 

= 74·0 

Henc_e the slip is 

8 - w,-wm•au X 100 
wean -

w. 

The power of the motor is 

360 X 74•0 -
75 

::C: 355 H.P. 

Case 3. When the induction motor works intermittently with constant 

loads making a cycle. 
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Let the constant torques on the motor be respectively 

each working during the time 

with the Vl\lnes of the 'IVs 

respectively, l\nd let the interval of pause after each load he 

t/, t/, tl, ..... .t/, ...... t.,' 

respectively, during which the value of the time constant being 'J'~o. 

In this case (19) becomes 

' q-p-1 I I t 
1>-n J_' _q_+ 't" p-1 _P_ 

r.r - ~ T ~ q-1 T~q .'L'~o (~ T~p -1) 
.Li.0 - f..J ~1, w w , 

p-1 

u.nd ... (42), 
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where 

The temperature of the motor at any working time is from (20) 

where 

!" o' = ti' + t/ + ta' + ...... + i ,.1• 

Hence (II) becomes 

where· Lmax. and Kmax. are respectively the values of I, and K con-esponding 

to t = t,unx.• 

When A= 1, (43) becomes 

(44). 
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If we may consider all the T~'s during the working time equal we 

have 

l 

I 
I 

and t ...... (45), 

j 
where T~ 1s the value of the time constant during the working time 

and 

1',. = ti +t2+ ...... +tri 

1' o = ti + t2 + • • • .. , + t,.. 

Hence (43) and (44) become 

l 

( 

L'o 

e-;~+~-;-1 
M,!ean = -----------------------

'tmax. -t'r-1' 

1 ( I(.,' T?f ) -~- T~o 
A -----

1 
--+ Ll.: max. € 

~+~°-
eT~ T~o _ 1 
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when A= l, 

where 

K' = - 1
-K, 

Ta 
I 

L' = - 1-L. 
T~ 

Further if we may consider T,, = 'l'r.,, 
1-"lllf'SD ~ 

:when l = l, 

Moreover if we may put T~ = T~0, 

~ (46), 

l 
> ·········(47). 
I 
J 

I ••• ( 48). 
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and 

and 

when A= l, 

Sciichiro Noda. 

p~-1 ~1>-1;-r'p-l( !;: ) 
K'r-i = LJ e ~ e ~ -1 , 

p-,1 

-r,·-1 +-r'r-1 t 

K' = K'r-i +e T~ (e ~L•~ - 1), 

L'o 
P\i' 'rr,-1'1;T

1
p-1( !j: ) 

=:::: LJ e ~ e ~ -1 M;,, 
J)'--'-"l 

L'r-1 

~r-t+-r'r-1 t 

L = L,._1 +e 'L'r:1 (e -'L'13 _l) M;. 

+L'111nx.) E: 

'rmax.+-rr-1 
'L'~ 

M;nean = ----------------~-,,-rn-x.-=+--r':", r---1 

.K.'o 'L'~ 

l 

... (49), 

... (50). 

I 
I 
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In the above if the M's are all equal from (45) we have 

1 

••• (51). 

and 

L = l(M 2
• 

rrherefore the temperature of the motor at any time becomes 

In this case the time when it is greatest can be readily found. Let 

it occur when r = rm,.x. and K = Kmax .• 

Then the M1~ 0811 becomes 

when A.=l, 
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1 
... (52). 

M~n,an = -------------------'t,-oa_x_. -,T,,...r---1-' 

€- :1'~ - T~o 

where 

K l=_!_ K 
'P . 

f3 

J 

When we may put 

l 

when A.= I, 

Truax. -r' 

max. S + K' ) -1'f' - '.l'~o M2 

I 
J 

p-n Tp-1 +T' p-1 Ip 

~ '.l' (T ) Ko' = L/ ~ s ~ -1 , 
P-1 
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and 

and 

when ). = 1, 

.llf:Uean = 
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L'o = K'o M2' 

L',.-1 = l(',.-1 M2' 

L' = K' M 2
• 

~max.+-rfr-1 

+ K' max. e ~ · M 2 

) 

- 1.' 

't'mA
1X.+-r'r-'l 

T~ 

'tmax. +-r' r-1 

+ K'mnx.) e 
1.·~ 
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l ... (54), 

I 

l 

I 

I 1 ··-(55). 

I 

When the period of the cycle is very small compared to the time 

constant, the above formulre (50) and (55) become respectively 

when ). = 1, ... (50/, 
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and 

when A= l, 
l 
r 
J 

(55)'. 

'rhus in these cases 11.fmean can be approximately determined indepen­

dent of the time constant of the motor. 

SUMMARY. 

In Chapter I the interaction of the fly-wheel and the indm:tion motor 

under qyclically varying load of any given form was considered. The 

motion of the induction motor during the whole period has been deter­

mined, and formulre governing the· proportion of the fly-wheel and the 

motor have been developed. 

'fhe general formulre have been applied to some special cases of practical 

importance. 

Since when the resisting torque of an induction motor under cyclical • 

operation is given, we can in general find the manner of variation of the 

torque imposed upon the motor, whether the rotor has or has not a fly­

wheel, in Chapter II formulre for determining the capacity of the induction 

motor under cyclical operation of any form of load rated for continuous 

running have been developed. 

The general formulre have been applied to some special cases. 

In conclusion the author wishes to express sincere thanks to Prof. E. 

Aoyagi, at whose suggestion this work has lJeen undertaken, and to Prof 

K. Ognra for his kind suggestions. 


