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1. The present paper is devoted exclusively to the class of induction
motors which work under cyclically varying loads, as for example, induction
motors driving roll trains, reciprocating pumps and hoisting machines etc..
In these cases the resisting torque imposed upon the motor varies from
time to time; but, with the variations which are fairly definite in their
natwe’ and after some time, the’ torque cycle closes itself by the last
terminal conditions coinciding with the first starting point.

It is a well known fact that the capacity of an electric motor working
under these conditions is limited principally by the condition that the
greatest rise in temperature which the motor attains when working under
a certain load, should not exceed a certain presupposed aﬁmﬁnt of rise in
temperature. The rise in temperature of a motor depends on the amount
of internal losses, heat dissipated from the motor body, and heat absorbed
in the mass of the motor: The first varies in accordance with the variation
of the load on the motor, and the last depends on the time of the supply
of heat. Hence the rise in temperature of the motor, when load conditions
are unstable as in our case, depends not only on the amount of the
fluctuation of the load, but on the manner of variation with respect to
time. Thus the greatest rise in -temperature and therefore the capacity of
the induction motor under consideration must be determined from the time
characteristic of the load which is to be imposed upon it.
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When the induction motor is 'applied to certain services where load
conditions are very unstable, the rotor having considerable inertia becomes
sometimes of great advantage. As is well known, the use of a fly-wheel
attached to the rotor shaft of the motor changes, when load conditions are

variable, the characteristic of the load imposed on the motor; the effect is
that it takes up the peaks and equalizes the unsteady loads thrown on the

motor. In this case, therefore, the capacity of the induction motor must be
determined from the nature of the resisting torque and the amount of
inertia of the rotating parts of the system. ' .

In what follows the author intends, in the case of a cyclically varying
load with a given characteristic, firstly to solve some dynamical problems
concerning the induction motor with rotor possessing a considerable inertia
and secondly to take up some problems on heating of the motor which

lead to determining the capacity of the motor.

I. The Effect of Inertia on Induction
Motor Operation.

2. The effect of a fly-wheel attached to the rotor shaft on the induction
motor operation under “cyclically varying loads has been investigated by
various authors such as Ph. Ehrlich,? L. Kallir,» H. C. Sprecht® and F. G.
Gasche,” in cases when the resisting torque is a sine function of time or
varies intermittently from one constant value to other constant values. The
purpose of this part of the present paper is to obtain more general solutions
of the problem, the resisting torque being taken as any real function of
time.

The characteristic of the resisting torque' of a working machine depends

on the nature of the work it performs and for the same class of work there

1) Elektrotech. u. Masch. XX VI Jahrg., Heft 9; S. 173. (1908).

2) TIbid., XXVI Jahrg.,, Heft 9; 8. 465. (1908).

3) Trans. of the A.I. E.E. Vol. XXVIII, Part 2; p. 869. (1909)
- 4) Ibid, Vol, XXIX, Part 2; p. 1385. (1910).
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is in general a well defined cycle of operations into which the machine
gravitates. Fhus we may obtain the resisting torque time relation of a
working machine either by direct experiment on an existing machine or
by caleulation from physical constants. Thus in the first place we assume
that by some means a definite knowlege of the resisting torque time relation

for a given working machine is available.

Making further assumptions that, (1) the rotor of the induction motor
and the fly-wheel are connected rigidly with the working machine, (2) the
resistance of the secondary winding is constant, and (3) the impressed E. M.
F. on the primary winding is kept constant, formule governing the propor-
tion of the fly-wheel and the induction motor will be developed from the

dynamics of the problem.

3. From the general assumption that under the above conditions the

torque of an induction motor is proportional to the slip we have

M= A(w,—®) ........conveunen. ST (L),

-

where

MM is the torque imposed on the motor at any time t,
@ is the angular velocity of the motor coiresponding to the torque M,
o, is the synchronous angular velocity of the motor,

A is a constant.
By differentiating (1) with respect to ¢ we get

dM do
R e 2).
ot dt ( )

The equation of motion of a motor attached with a fly-wheel is
represented by -

do
I—— = M—M.u..ccuvneniannnnnnnn. cevees &
ot ®),

where

I is the moment of inertia of the revolving part,

m is the resisting torque on the rotor shaft at any time t.



90 Setichird Noda.

Eliminating Cf;tu from (2) and (3) and putting
_:.} = o e, (4,
we obtain
dM 1 -
7 T ) SRENC)

This is the fundamental equation representing the motion of the

induction motor under consideration.

‘We can. easily see that the constant T« given in the above expression
has an analogous meaning as the time constant of an electric circuit con-
taining inductance. For further information on this constant the reader is

referred to F. G. Gasche’s valuable paper.?

Since, as given above, the resisting torque of the working machine e
is a known function of time ¢, eq.(5) can be at.once solved in the

form .
t

! t R — Jp—
M= 1( 1 Is 1“mdt+0),
P ‘

where C is a constant.

If M, is the torque of the motor at the beginning of the cyclical

operation the above equation becomes

3

/
Wee ','a(MOJr 1 feﬂ'amdt) ............... (6).
To g

4. To determine the initial toi'que of the motor M, and to calculate
the torque M at any instant ¢, it is necessary that the last term in the
bracket of eq. (6) should be integrable. Whether it is readily integrable
or not depends on the form of the function me. In certain cases it may
be expressed, throughout the whole period of the cycle, as a simple function,

but in many cases it is difficult unless we make use of a complex function

1) Loe, cit.
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of t. For technical purposes, to represent me in a single complex tunction
will be of little value, since we must obtain the solution in a_form which
is easily calculable. To enable the calculation in a simple form in the case
of a complex resisting torque time relation, we divide the whole period into
. a suitable number of divisions so that during each division the resisting

torque is represented or approximately represented by a simple function
t
- of time and it multiplied by e« is readily integiable.

Now assume that the complete period of the cycle is divided into »
divisions and let the time of each division be

respectively, which is related by
ittt byt anneenannens Fhodreiennnnn b, =1,

w}iere 7, is the period of the cycle.

Let the resisting torque during each division be represented by

respectively, each being a simple function of time ¢.

Further let the value of the torque of the motor at the beginning of
each division of time be

M, My, M,,............ . Wity eeeeerenen M,_,
respectively. Then the value of M at the end of each division will be

» My, My, M, ............ 7 A M,
respectively.

Now applying eq. (6) to each division from the Leginning to the end
of the time we obtain

t i
.. bt
Me *a = My+ -~ e tam, dt,

iy 1y d
MeTa = M+ L f e Tom, dt,
(]
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.............................................

where ¢ is the time counted from the beginning of each devision.

---------- 7y sseeescee

Eliminating M, M,, M, M, M._, from above equations

and remembering that M, = M, we get

where 7,_, is the time at the beginning of »th division counted from the

beginning of the cycle.

The torque of the motor at the beginning of any division, rth say,
is obtained from (7)

7! =" 11’)_1
M= (M b z J < Tim, dt) ...... ).

Therefore the torque of the motor at any time ¢ which is in #rth

division is given by

-t b ‘
M=e T (M,_l+ [ T m, @) e (10).
T o o
Now for the sake of simplicity let us write

1 ,,_r lp:]: lp It' ]
S, = ZeT“f e Ta 9, dt, l
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1 = et L _lg
- 1 T:
%=, Z_f o[ temga L (11).

and in general

1 ¢ ¢

1 e
S =8 _+——¢ T«f ¢ Tam, dt.
Ts 3

Then above equations become

1
T
e Ta _q

M = Sm

I‘;—l ......... (I).

M,._, = e_T“(M0+S,._,),

M=c¢ Ta(M+8).

93

The eq. (I) gives the means for calculating the torque of the motor at

any time during the complete period.

It will be easily seen that (I) also satisfies when the resisting torque

is expressed by a single function of time throughout whole cycle. In this

case Sy and § in (11) become

B TP
So=‘_—“ € “m'dt,

e
& o0

LI )

S = ;,a.[ ¢ Ta g dt.

5. The angular velocity and the slip of the induction motor at any

time are given by

1)
]
A
T

Il
1S

|
el
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and

= LTI (g, + 8).

where s is the slip of the motor at any time.

The values of M’s and S in the above expressions are given in (11)
and (I). Thus if the resisting torque is given as a function of time the

angular velocity and the slip of the motor at any time during the complete

period can be determined.

Next the angular displacement § of the induction motor is, as well

known, related by the equation

Hence by infegration we obtain

.........

0 = w‘,t-—mlj— {f‘ m,di+ T (M,_I—M)} cerreerennna(13),

where 6 is the angular displacement of the motor from the beginning of

rth division to any time ¢ in the same division.

The angular displacement of the motor during rth division is

. t
6 = w,tr—% { f m,dt+ T (M,.__I—M,.)}

If we denote the angular displacement counted from the beginning of

the cycle up to any time r lying in »th division by 6 we have

9=20

T=0

= wgr— _:I_{P +Ta (MO—M)}
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where . .

From the above equation the angular displacement during the whole

period -will become

&

0, = wo— %Z& .............................. (16),

where R, stands for

‘0

f MU eeeinniniiiiiiiii, (7).

It is evident that eqs. (IIT) and (16) also hold when the resisting
torque 2 is cxpressed by a single function of time during the whole
period.

The power developed by the induction motor at any instant is réadily

obtained by the well known relation

P=oM

= (a)8 - {}-IV)M.
A

in which P is the power of the motor.

oo (18),

The energy supplied by the motor can be obtained from the equations

o,
W=fMW
®

1

Ty

:f}w ere(19),

T

To

% wsf }th-—Al«f :Mgdt.
T

Tt

where ]V is the energy supplied by the motor while it makes the angular
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displacement from 6, to 6, or the interval between z; and 7, both limits

being taken arbitrarily.

6. The formulee deduced in the above paragraphs enable us to calculate
the torque, the angular velocity, the angular displacement, the power and
the energy of the induction motor, if the resisting torque time relation
during the whole period of the cyclical operation is given. It is sometimes
convenient, particularly when the resisting torque makes a complex- function
of time, to use the graphic method for calculating the above formulse. For
this purpose by usual graphic method we calculate §’s in (12) and R’s in
(15) and (17). Then by (1), (I1) and (III), M, @, s and @ at any time
will be obtained. From this (18) enables us to calculate P at any time.
Hence the energy supplied by the motor during any interval of time will

be found graphically from the second equation of (19).

7. Now let us apply the above general solutions to some special

cases.
Case 1. When the resisting torque is a potential series of time.

Let one complete period be divided into  divisions and during each

division the. resisting torque be represented by the following finite potential

series
m, = K+ K it+KH+...... + Kt +...... + I\rlml tm,
my = K+ Kot + Kopt* +...... + Kt ...... + Ko, tie,
my = K+ Kyt + Kt*+ ... + Kyt +...... + Kyng ta,
m, = K.+ K i+ Kt+...... + K "+ ...... + Ky e,
m, = K+ Kt+ Kl*+...... + K, t"+...... + Ky, ten

respectively, the interval of each division being
R fyyeeeenidy

respectively, where the K's are constants.
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In this case since
h—m
f mdt = _vh_tw
h+1
h=0
we have
p=n h-=m :
2 Z h+1 b
=1 h=0
p=r—1 h=mp K
- SR TYR -
B, = Z Tl 2 (ETTEceeey (20),
p=l  J=0
hmm
B= R_1+2 Lot i,
h+1
J
and since
S 5 \
K [ ottt = (1P Eu B 12 Z( (o) 1)
o - = lq T«
8’ in (11) become
p=n 1:,,_1 _tp—,anh
Si=Ne e Z( 14K |1 23 T W=ty L () -1, 1
lg T«
p=1 0 7
y=r—1 'rp_.l . 0 )
Z T 2( 1K, | b T‘{ A Z( 1L ( )—1}, .(21).
[ T

=1

Tr——l"

s=sar TP B o L)

h=1

From the above we know the values of the R’s and the S’s in terms

of t. Therefore by means of equatlons given in the preceeding paragraphs

we can determine the M, o, s, etc..

Case 2. When the resisting torque varies with eonstant values.
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Let the resisting torques during each n division of the cycle be all
constant and denoted by

My, My, Mgy eueee My oeniss m,
respectively.
Then we have
P
R, = Zmpt,,,
p=1
pr { eeerenn (22),
R, = Ymyg,
p=1
R =nR_+mit.
and
p=n T Tp—t ]
S, = Zm,,(e Ta ¢ Tﬁ) ,
p=1
p-=f—l [ Tp—t
S, = Zm”(e Ta ¢ Ta), ......... (23).
p=i
T Tr—1
S =84+ mr(e To _ ¢ T“) .

Therefore from (1)

1 =n T Tp—1
Mo = Ty Z an,(e To _ € T« ) ,
&€ Ta —1 pe=1
L Sr—t ot Tp L NN
M_=¢ Ta {Mﬁ-X m,,(e Ta ¢ Ta)} A S ...(24),

T Tp—1

T
M = e—_ﬂ‘—{]’[u‘-l— S,~,+mr(s To ¢ Tu )}

or from (10)
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. -t |
MH=m,—m,—M_)e Ta’

e ST (25)
t = Talog m =M,

m,.— M

The angular velocity and the slip at any instant are respectively
obtained from (II)

1 o )
©= w,— —A_{m, —(m,—M,_)e I« }

i
T Tr—1

= w,— %S—T;{M +8, i+ mr(e—T;—-e—Tz)} ,

and ' R (26).
1 L
= m,—(m,—M,. Ta}
: Aw, { ( )¢
| - 5 e
=~ ¢ Ta {]P]0+S,‘,_1+m,(s To —¢ T )} .
Aew,

The angular displacement of the motor is from (13)

[E3 7”7
g :( a._i’f’!',)t LIS I NSRS 27),
.w Y + i ( 1) ( )
or eliminating ¢
- ' v.~M, ., M~M._)
6 =1 {( o= Y log M My =l 23).
"W 4 )% T 4 ) 29)

The angular displacement during the time ¢, is

- m, m,— M,_ M. -M,_ .
01, = _la. {((08 —_ a1 ) ll)g mr_..]”r‘ + 4 1 } ...... (29)

The angular displacement from the beginning of the cycle up to any

time 7 is given by
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pe=r-1

6= w,r——il—{z byt b+ Ta(Uy= DD oo (30),

Pp=1
-and the total angular displacement during the whole ‘period is

p=n
1 . "
6, = w‘%——jx L% PP (31).

pract
The power of the motor at any time is given by
P =ol
where M and o are given in (24) and (26).

Energy from the motor during ¢=o0 to any time ¢ is given by
¢ 1 t
W= o, f Mdt—— f Medt

= m,0— T (M~ MT_‘){% _ % (M+ M,._l)‘} ......... (32).
P

The energy of the motor during the time ¢, is

1 '
94

W, = f6,— T (m;_M,_,){w, Lo+ M,._,)} ......... (33).

Therefore energy developed by the motor from the beginning of the

cycle np to the end of »th division is

P feay - N
Z ”;, 22 ""-pdp— T« (]”7_ Mi){wa - "212‘ (]’]r + Z'IO)} "'(34)’
=1

p=1

and energy during the whole period is

=0 re=n
Z W, = 2 O (35),
p=1 p=1

the result obvious from the function of the fly-wheel in the case of

negligible windage loss.

In the present case, if we put the resisting torques during a series of
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the alternate divisions all equal, we will obtain the case treated by F.G.

"Gasche® of the induction motor driving roll trains.

Case 3. When the resisting torque is a trigonometrical series.

As an example of the resisting torque expressed by a single function
of time during the complete period let ns take the case which occurs when
induction motors drive reciprocating pumps, compressors etc.. In this case
the resisting torque can be expressed by a series of trigonometrical functions
of time. Here we will take a finite ‘trigonometrical series, because in
practice a periodic function can only be analysed into a series of finite
terms and such is also the case here.

Now between the limits pt= —= and pt=n, let the resisting torque be
expressed by
m = my+ mysin(pt+ ¢1) + M, S0Pt + @5) + ...
+m, sin(rpt+¢,)+...... +m, sin(apt +¢,) ...(36),

~where the m’s are constants, p the angular velocity of the fundamental

wave and the ¢’s the phase displacements.

In this case 'we have

=N

t ¢
f ¢ % mdt = Toe Ta {m0+2m, cosd, sin(a-pt+a,.)} ,
3

where

Therefore since

t 12
M=¢ Ta (——1, fe Ta mdt+0) )

we obtaln

1) -Loc. eit..
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re=m l \
M= m(,—{-z m, cosd, sin(rpt +6,) + Ce To,

=l
where O is a constant. .

In this case the torques of the motor when pt=m and when pl=—x

are equal. Therefore we get

¢ =0.
Hence
M =m,+ Zmr cosdr, sin(Ipt+6,)  cevriniiiinnin, (38),

r=t

and the torques of the motor when pt =0 and pt =7 or —=z are

respectively
My = 711/0+Zm,. cos, sind,,
re=1
Mo=M_. b -..(39).

re=i

= M, + Z( —1ym,. cosg, sing,.

re=l
Thus we see that in the permanent state, the torque of the induction.
motor varies harmonically with the same frequency as that of the resisting

torque.

The amplitude of each harmonic wave of the torque of the motor can
be deduced from (38), i.e. its value is '

e, cosd!, = KU PR TRN (40).

T VL4 (rpla)?

It shows that the inertia of the rotor diminishes the amplitude of each
wave and the effect is more marked for the higher harmonics than for the
lower. Thus we see that though the resisting torque varies much from the
fundamental wave, the effect of the fly-wheel is to make the motor develope

a torque of smoother form. Hence when the time constant 7% is sufficiently
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large, the torque of the motor, working under a resisting torque of more
or less irregular form, may be taken as a simple harmonic wave of lesser

amplitude.

The phase difference between each harmonic wave of the resisting torque
and the torque of the motor ¢, is given in (37). It shows that, by virtue
of the inertia effect, the phase of each harmonic wave of the torque of the
motor lags behind that of the resisting torque and, the larger the time
constant 7w the more the effect becomes marked. This effeet has more

influence on higher harmonics than on lower.

Next the angular velocity and the slip at any time are

M
W= W,— ——
4
1 Pe=it . '
= @,— 7{m0 + Z m, cos¢, sin(rpt + 3,,)} )
=l ]
M
Ao

L1

F=n

=1 .{mo + Z m,. cosep, sin(rpt + 5r)} .
Aew,

r=1

Therefore the values of @ and s when t=0, and pt=7 or pt=-—=

become
: r=n
, 1 .
W) = Oy——r My+ ), cosd, sing, ),
r=1
r==mn
, 1 .
8 = m,+ ) m, cosg, sing, |,
Ao,
pe==1
Wy = W-nx

T==2

1 .
= w,— 7{m0+ Z(— 1)y m, cosy, sin&,} )
o=l

8 = S
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) 1 Cpe=n i .
- _ATa‘):{m" + Z(_ 1y m, cos¢, sm&r} .
r={

Now since

¢

=y t+ T Zm, cot«,b,.{cosgor —cos(rpt + gor)} .

=1

the angular displacement of the motor from ¢ =0 up to any time ¢ is
from (13)

6= wp— %{R+ T, (MO—M)}

= (a)8 — ”;0 ) t— —Z} Z m,. coteh, cos¢,{cosd, — cos(rpt + 0,)}
=1
Ta r=n .
= wyt— v z m, coty, cosg,{cosd, —cos(rpt+0,)} ..uurennenn. (42),
r=1

where w, is the ‘angular velocity of the motor corresponding to the torque
m,.
From above the total aﬁgular displacement of the motor during the

complete period is

0=(a)— m0)2_71'
0 s A »

= 2D e (43).
2

In the above case, if we put
m, = ”'3_ T oeseen = mn = 0,
and

(‘2% =O)
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(36) becomes
M = M+ M, 8NPt oo, ,...(44);
i.e. the resisting torque makes a simple harmonic wave.
In this case\the above expressions: become
M = my,+m, cos¢ sin(pt— ),
- M, = my,—3m,sin2g, verreenen(45),

Mz = m,+im, sin2¢.

and
w — ws__}I{n10+ m, cosg sin(pt— @)},
s= 1 {m,+m, cos¢ sin(pt— )},
Aw,
_ m, - Ta
0={w,- y t— y - My cotih cosg {cosd — cos(pt— &)},
5 ...(46).
0[,:((0,——«_-'"0)_2_5. . r ( )
y o .
o= 27f “o )
p
where .
¢ = t&n_‘z)Ta'

Thus we see that the amplitude of the fluctuation of the torque of the
induction motor becomes smaller than that of the resisting torque in the
ratio -

cosp = LI

and it lags in phase by the amount (.

The power of the motor at any time is
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P=owM

= 0, — 220 ) 4 o, cong{,— 2200 ) sin(pt—y)

~ _12 (M COSPY? SINH(PE— ) vvevrerererrenen, .(47).

The average power of the motor becomes -

P, = mo(w,, - ’Z" ) — —21? (M cosP) cunannnnnns (48).

Now the condition when the power of the motor is a maximum or a

minimum is

4P _ o,

dt

But since in practice the greatest slip of an induction motor is generally

smaller than 50 9 we have

2m,

m,—

>0,

A(ws _ 2m, ) .
4 :

> 1.
2m, cos¢

and

Therefore from above expression we can easily see that
cos(pt—¢) =0
gives the condition of the maximum or the minimum power and that

P is the maximum when pt—¢ = %,

i.e. when J is the maximum,

and
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3

P is the minvimum when pt—¢ = s

i.e. when M is the minimum.

Hence we get

Pose, = (14 mm cosg) o, - 2ot ),

A4
R SRPIRYN (49),
Py, = (my—m; cosg) o, — =20 ),
and the fluctuation of power of the motor is
2m, cosgb(ws—- 2m0)
I)max._-l)mln. —_ A ~
P, - my\ 1, e (.’)O).

mo(w S > - —21A (m, cosg)?

Iixample. An induction motor drives a machine whose resisting torque
varies in sinusoidal manner with respect to time making two cycles per
revolution of the motor with

m, = 500 M Ky. ,
m, = 400 M Ky. .
Assuming the synchronous velocity of the induction motor 450 s. p. m.,.

it is required to calculate the necessary amount of inertia and the power

of the motor to limit the maximum fluctuation of the torque of the motor
to 400 M Kyg.

In this case

2:.450

= —— " = 47124
w 60 y
A — ]’-lmax._
W= Wyppx,
M

= — “lwax,

w

max. 8
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where @, and sy, are the angular velocity and the slip of the motor
corresponding to the maximum torque M, respectively.

We take
smax, = 100/” b

the value within the common practice.

Hence
“ 700 ¢
= e— = 148'54 y
01, 47124 g
W, = w,— od
— 47124 — 0%
148-54
= 43758
From (46)
6, =9 ==
p
P = 2w,
= 87-516.
From (475)
My = M+ "
T T T (pTay
400
700 = 500+ ___
V' 1+(pTay
Hence
PToc = 1/”,_97 .

To=_ V'3 — 00198 Sec
87-516
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But
Ty = _AL ,
I=00198.14854.9-8
=288 M Ky.S.
Now

tang = pTa =1/73 .

fo= T
=73

Therefore (45) gives

«

M = 500+200 sin<87'516 i )

The maximum and the minimum power of the motor are from (49)

s, = (500 +-200) (47-124_ M_)
14854

= 29688 Ky M. per Sec.
= 395-8 H.P.,

14854
= 13530 Kg M . per Sec.
= 180-4 H.P.

II. The Rati'ng of the Induction Motor.

8. In what follows the problem of the heating of induction motors
running under cyclically varying loads will be considered. In the usual

method of treating the problem of heating anelectric motor, the assump-
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tion is made that the motor is a homogeneous body, and that a certain
amount of heat .per unit time is generated in it uniformly throughout the
body. This assumption is of course not correct except in the case of
totally enclosed motors, in which the assumption approximately holds. The

present part of the paper also starts from this approximate hypothesis.
With the above assumption let

W be the amount .of heat developed per unit time in the motor,

u be the temperature of the motor, assumed uniform, at any

time ¢, measured above that of the room,

a be the heat stored in the body per degree rise in temperature

of the motor, it being assumed constant,

b be the amount of heat dissipated from the body per unit

time per degree rise in temperature of the motor.
Then we have

du

——bu =W iiiiiriiiiiiini I).
- +bu (D

This is the well known equation employed by various authors for
treating the problem of heating an electric motor. But it must be noticed
that W in eq. (1) is not in our case, as in the case of previous investi-
gators, a constant value, but it is a known function of time characterized
from the nature of the service of the motor. HEven under the above
general assumption, b in (1) is not a constant unless the motor runs with
a constant speed or we use forced ventilation. It varies with the change
of the speed of the motor which in turn depends on the variation of the
load of the motor. "Therefore it is a function of time. In this general
case, where J/ and b are any function of time, the above equation can
be solved, provided they are known functions: of time.” But in practice, (
even when the motor works under very unstable resisting torque, the
variation of the speed is limited within a certain not large amount so
that its effect on the value of b is not greatly appreciable. From the

above consideration, together with the ambiguity involved in the fundamental



On the Induction Motor under Cyclical Operation. . 1

equation (1), we may take, when the variation of load on the motor is

moderate, b as a constant.

Assuming now @ and b constants and 17 a given function of time ¢

the equation (1) is at once solved in the form
L 1 ¢ b .
v=c¢ 18 (uo-i—;f e 13 Wdt) .................. (2),
where u, is the temperature of the motor at the beginning of the cycle

and T3 stands for —?—.
)

Tg is a constant known as the time constant of the motor. It is a
constant so far as the speed of the motor and therefore the load on it is

constant or is ventilated with constant air velocity.

To determine the initial temperature w,, let the period of the cycle be

7, Then putting
w=u, and ¢=r7,

in the above equation we have

.

: |
Uy = e ‘—lf e T8 Wdteuuuonnnvann..... (3).
L a o
. el —1

9. When the integrals of the above expressions arc difficult or the
speed of the motor varies much, so that 7% can not be taken as constant,
we divide the period of the cycle into a suitable number of divisions and
treat as in the preceeding chapter, during each division 73 being assumed
" constant. _

Assume, as in the preceeding chapter, that the complete period of the
cycle is divided into » divisions and let the time of each division be

respectively, which is related by

bttty e, Ftod vereett, =7,
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Let the values of W and 7% during each division be represented by
Wy Wi Wiyeennnn |/ 2P W,
and

T, Tg, T, ...... Toryeeneen T

A}

respectively, where the W’s are known functions of time and the 7§’s are
constants.

Further, let the values of » at the beginning and the end of each

division be

and
Uy, Uy Uy eeross Uy vosens Uy

respectively.

Then applying (2) to each division from the beginning to the end of

the time we get

ty H t

T
%, € =uo+-l—fs B IV, dt,
a +/o
b _t_
2 T2
Uy & B :ul-}-lfs B W, dt,
. a 0

ts L
: T'as
Uy £ B =uz+}—fs g W, dt,
a éo

.......................................

lr tr_t
Tar . Tar
we ¥ o=+ 1 e W, dt
(2]
tn tn !
. e
t,e P _u,,_1+—-1-— B w, dt,
a oo
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where the time ¢ is counted from the beginning of each division.
Now eliminating w,, w,, u; etc., w,_, from the above equations we get

ren g s 1/=1“_;—1 tL i

y o 2 7 ¥
2 T 1 ST -
wye T = g — Ze p=l fs W, dt.
a
=1

0

But since for cyclical operation

un = u07
we have
e PR Ml oy b
1 1 p:l 131" 1 gr
Uy = i = Y fs W, dt......(4).
o a o
2‘ qe. . r=1
r=1 9 .

In a similar way the temperature at the beginning of sth division
is obtained by

. iu’;‘q_,]’_ p=r—1 q?‘_l,_,_ifl_ iy ,ﬁtg
p:l -,l'B P 1 g=1 1 B 1'@)1
Uy = ¢ Plug+=Ye [E W,,dt) ceereee(B).
[41 o
p=1

Hence from (2) the temperature of the motor at any time ¢ in any
division rth, say, will be given by

L ¢t
“Tar Tar
w=c¢ “<u,_l+l < P H-’,.dt) N (2}
, -,

Now, for the sake of simplicity let us write

- 9'=7"_‘1 tg tp B '15‘_‘ W
" =t T »
N, = %25 =t T j:e B v, dt,

pr LB . ,
Nr-——l ='_]:-Zs =t qufslﬁp u/pdt, --..-....(7).
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P=r—1 (p f {

<, T Tgr
N=N_+Lem 3”fe ¥ w, dt.
a o
Then the above expressions become

U =~y Ny

<1 Tgp
Upy = € ? B (u()'*-l\rr——l):
p=r—1 /p t
N T
u=g¢ "8 Br(u0+N).

If the time constant 7%’s may be assumed equal during the complete
period, the above expressions become

pe=n _':;3—_1 ip ¢ )

1
N, = —a—stﬁ fe s W, dt,
p=t

1 p=r—1"p=1 Ip —_t_
Noy=— Zs s fs s W, dt, ceeneenn(9),

a

p=i

T—1 ( #

N= 1\7,._1-!-%6 Ts fs T3 W, dt.

and

Uy = —‘—1 lvo;
_To_
3 T8 _ 1
e A D (10).
Uy g = € Tﬁ (uo+ M—l);

u=¢c T8 (u+N). J

10, When the motor runs continuously with a constant load, the
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internal losses are constant. Therefore in this case putting ¥ constant
in (2) we get

Let now wu=U when ¢ = o0,
then we have

b’

......... au).
ot
w=U—(U—uye Ty,

If %, =0, i.e. the temperature of the motor be initially equal to that
of the room

. t
w=U(l—e T8) i, (12).
This is the well known formula used for treating the problem of
heating a motor. Here U is the maximum temperature or the temperature

of the continuous running when the internal losses are equal to 7.

" 11.  All formule deduced in’th(.e‘preceeding paragraphs hold true for
any electric motor. Now let us apply the above propositions to the case
of induction motors running under cyclical loads.

Heat generated in the motor per unit time W is due to its internal
losses. When the induction motor with constant secondary resistance runs
under constant voltage and frequency, W can be very approximately ex-

pressed by
W= We+BM? ..cc.ccovveviiininnnnnnnn (13),

where W, is the no load losses of the motor excluding friction loss and B

is a constant standing for

L ntn
A ry

in which
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7y is the resistance of the primary winding per phase,
7, 18 the resistance of the secondary winding per phase, reduced
to the primary. '
The above equation shows that the internal losses of an induction
motor with secondary winding of constant resistance working under con-
stant impressed E. M.F. and frequency varies with the second power of

the torque.

12. Now let us take the case where the induction motor works under
cyclically varyving loads, during the complete period the motor being never

stopped.

Substituting (13) into (3) and (2) we get

W,
+. 2
b

7112 dt,

Uy = -

¢ TB —1
(14).

o ; Lt

: 0 — —
, . . |
1 f <My f e o dt}.
To o ]

b a —0_
e T8y

ot
W B, JTE»{

Thus we see that in this case the variation of temperature of the
motor during the cycle depends upon the variation of the torque of the

motor and the greatest rise in temperature of the motor occurs when

.t T _t t bt
1?{ 1 fs Ty Mﬂdt+fe 13 ﬂﬁlt}
_To_ o o

sTﬁ——l

is a maximum. The above expression does not depend upon the construc-
tion of the motor, except the time constant, and therefore the condition
of the greatest rise in temperature is found from the manner of variation
of M, provided the time constant 7% is known. But since M is a known

function of time depending upon the nature of service the condition can
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be met. Let is occur when ¢ = ¢, . Then the greatest rise in temperature

becomes

|1
LD

fmax. ‘ bmax, ——
; vy _l
Unmax. = T’ +Jg_e B {_Tol_jo'e : u“dt+f s dt} (15).

€ 15—1

Now from (11) the temperature of a motor running continuously
under a constant load. is

U=

b

or substituting (13), in the case of an induction motor we have

U= B e

........................... 16).
b b ( )
f;et
U= uyex, when M= M,..,
then we get
W, ) '
oz, = Mme,,,, .................... (17D
u, ) 4 5 (17
Now equating (15) and (17) we get
_ fmax, . To tmax. t 1
Ml%nean = 117 € [ﬁ {'—T_l——f 1B ME dt'i'f TB M3 dt}
7 To_ o ’
oF ely —1
or : , p (D).
/ lmax T ’ tmax. t
Mmenn = ~/ 1 & ‘ _‘l_‘f;{-————l—-«f PB]’I' dt+f ?']M2 dt] .
T, = 0
i B_.1

Mppean in the above equation means the torque which, if applied con-
tinuously on the same induction motor, would give the same greatest rise
in temperature as it does when running under the given cyclically, varying
load. Hence for this class of service an induction motor is to be selected
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which would develope M., continuously with the rise in temperature not
exceeding a certain presupposed amount.

For calculating formule given in this paragraph the graphic method

similar to that given in §6 will be convenient.

In the above if the period of the cycle 7, iy very small compared to

the time constant 7', (I) reduces to

M = /iif}j? dt (18)
mean N TO 7T rrereeeseeseeneeneenee .
In this case the M., can be determined independent of Ts.

13. When the torque cycle is divided into n divisions, in the case of

an induction motor if we put

--1 Y
Py q=3' ’ll’q yt'l’
- -1 [

AD:X Tppsq g (E 37}_1)’
p=1
pe=r—1 M 2'—17}9_ _1?’ -

. =1

K_ = Z T,,e ™ B (e Br_ 1),
¥
Pl
p=r—1 Ip ¢

.K= Arr_l_l_TBrEﬂ:l Tﬂp(e.’[’r—l)’

and

P=l

p-=1:—1 f@; ¢ t

L=1L_+e™ '® f < e an,

0

(7) gives
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N, = L Ko+£“Lo;
a a
No= U K, + £~ L,
a a
N=Th g, By
a a
Therefore from (8)
2ty = W, K + B Ly
a r=n {. a r=n_f.
= _pr . == r
e ey
et
4, = W, ( K, + I(r—«l) c pe1 TBP
a St
Eral TBr _1
7;-=-r'—l—_tp‘
2 1 T
+ B ( LO + Lr 1) € = ﬁ?’ b
a Ir
ernl Tﬁr _1
Ly N
o ( E— If) ¢ = T T
a r—n_tL
st Ty .
ST
e
+£ ( L, +L\e ™ Top  Tgr
a r-v (1‘
er—l Tpr _1

» Now in (16) let

U=U, when M=M,.
“Then
U, = W, B

o T3

x

119

------------------------
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where b, is the value of b corresponding to the torque M.

Equating « in (20) and U, in (21) we get

i L L
ME = IIIL {W_l___ L K, +K\e p=1 Tap Tor —J.}
& B TBI ’“”1" ’1‘ .
sf—l Tpr . 1
Kl S
‘ 1 L = Tgp T
+ T 1'?? tro K + Le »
. g 1;1_73’3:
€ v 1
where
P
B,
Now put

‘W, = ABM?,-
where 4 is a constant.

Then the above expression becomes

LT S
( 3 +,,) . T Ty
TR ¢,
Ty
= e F 1
N =71 gy ¢
Tl Tay  Tar
(1+2)Tz_2(_r;7L+K )s =1 1gp B
r=11'7'
s —

A in the above expression is a constant depending upon the design of
the motor. It shows that the no load losses of the motor are 4 times the

variable loss corresponding to M.

Now assume the value of 4 corresponding to the torque M, and obtain
the greatest value of the above expression. Then it will give the M2,
looked for. Let ¢, be the time in that case, then we get
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_7"""—1 iy _ tmax.
: = T Tar
(._.'.,.;‘.A).._ ........ "+Lmax.) e =1 L@r g
P
2 T
: r=1 ‘37'
o € -1
Zl[a:zean = -
' _)_)—r—l ip _ Linax.
( | -1 T 1'ar
(L42) P2 ( —. +K) e 71w
er—l Tlar _1
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(IT),

where K. and L, are respectively the values of K and L correspond-

ing to ¢ = t,ax, and 1'8,.,, is the time constant corresponding to M,

mean *

In the above expression if we put A =1, i e. if the motor is designed

so that the no load losses are equal to the variable loss when the torque is

M, en, We have

_7:'=r,_1 tp _ tmax.
LO p=1 Tap Tgr
(«A ;?WI; '"'"‘“‘+Lmnx.) € B ¥
=1 Tﬁr . l_
72— —
J-lmexm - !
. __7":";—1_‘[7‘)___ ! max.
K, 1 Tgp Ty
"m Ao
21[3,,,%,, B + K x| € B
r
2 T
r=1 143y
€ " =1

If it is permissible to put all the T4's equal we get -

,{igy ]
K, = Ty(e B 1),
.Tr—-l.
(e 18
Kr——l = 'Iﬁ (5 _-1)’

T

K= 1T, T -1),

and

(LT1).
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pem Tt fp b
L,= EeTﬁfs Ts y2 g,
p=l ’
porol Tt fp b
L., :Z ¢ 13[5 lﬁMzdt,
= ‘ ,
S bt
L=1,,+¢ fﬁfe T8 a2 at.
0
and
v Moy BV g
b a T
T8 1
Tl
oy = D04 B LB A AP
booa |
< T8 1
_ T
w = IV(} +_:‘_ 1 L0+L c 1’13.
boa} R
e "8 _1

In this case #,,. can be readily found. Assume that it occurs when

T = Tpmax., then

Tmax,

B 'e'— T{;

a

1

Ty
7D

e B _1

=W

umnx. - b LO + Lma*.

where L., 1is the value of L when v = 7, .

Again equating (17) and (24) we: obtain

Tmax.
M?nean - 1 ( LO + Lmax ) € TB
],ﬁ T ..
e Ty -1

.........

.........
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+ anx.) €

-1 J

e

The induction motor working under the given cyclical load should be

rated for continuous load by the formula given above.

14. We will now apply the above solutions to some special cases.

Case 1. When the induction motor having a rotor attached with a
fly-wheel works under a cyclically varying load in which the resisting
torque varieé with constant values successively and without stopping as
given in Case 2 of §7. In this case, using the same notation as in the
preceeding, the torque of the motor at any instant is given by

t
M= my—m,—M, ) e 2% o, (25).

Since in this case we may without much error assume that the 7%'s

are all equal, substituting (25) into (22) we have

3

o T _ :
L, = Tﬁz [e T { :L 1‘B o (m, M)— . — M,,)ﬂ}
=1 Ta. l Ta,,. —
Tt ,
—c B {m,:,+ “p 2 1 m,(n,— M, )~ '—'_I'SLT(”"'"—M"‘)}J ,

2 1 2
L= 32[ { 1 1mp(7n,,—zllp)—m(,n.p_zup)}

qv“ ‘ 7 ya (2 6).
Tp—1
T 1
—e B {m +- m,(m,— M, ) T, (m, 1)}]
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L=1IL_+ T{{s s {m,+ —;{%ﬂl,(m,.— My— .. T‘,,'l'”” :--(m,.— M )2}
1 2t~ 1
Tr—1 ]
—¢ s {mf 4+ - Tﬁg"f m,(m,—M,_)— ”'Tﬁl“" -~ (m,— ]llp_l)ﬂ}] .
£ S ]

Let %, occur when r = 7., and designate

L= 1,1/,

L= T@ L,

Fmax,:
T, 2 2
L’ll)!\x. = LIT—1+ ¢ B {1"7' + rﬂ?’ h ))1/1‘(1n1'—Mm{lx.)
T,
e ~~(mT-M.m,.>ﬂ} _
o 8 _ 1 7)1 (27),
T,
Tr—i

T 2 2 ‘
—c 8 {m,.+ AT;;:' et (0, — M,_3)

T,

_— m,— M, _ )‘3} .
23&-1( '
T, J

%

where M, stands for M when 7 =1, .

Then from (IV) we obtain

- ) o Tinax. .
Mmcan = /\/ Llu e o L,mnx.) £ Tﬁ ............ (28).
o

¢ Ts _

In the above case if we put the resisting torques in a series of alter-

nate divisions all equal we will obtain from (28) the continuous rating of
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an induction motor with a rotor having

“roll trains.

125

considerable inertia which drives

Case 2. In Case 1 when the motor has no fly-wheel.

In this case since the M's are all constants (18) becomes

pn =t ly b
= T T .
K, = T@ps g=1 1Igg (e ﬁp-——l),
=1
T
-1 Tgq Ty
Kr—l = ZT‘@))e B (S B _1)7
=1 '
Pt
B . = T T,
K=K, _ +T,"" "8 ("1, -
and (29)
S U '
i=t Tgg , Tgp 2
Ly= ) T4 ¢ S CRRE §Y
. p=i
Precgr=-t q=—))'—1 ,[q_ . i
e R Y T . a
L= )Ty ¥ (710,
p=1
i O
S T T
L=TL . +Tge"™ "¥ (¢7¥—1) 0.
Hence from (II) and (III) |
g7 by tmax. ]
L = Ty Ty
(W ren 1(1‘» o +Lmux.\) ¢ ” e B
[y ——
. ¢ r:=1 T, rjr _ .I.
Miean = s
_ pergt by tmax.
P . K vt Tgp T
(1 + 1) T8mean—4 ( o ,TO_ + Kmnx.) € 8 :
< Pl T@r . J.
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when 2 =1 .
¢ . .. (30),
1,7_7{‘_1—;’:’ _ Lmax,
L frad} T T
(_-r_vn—vll*'*_‘ + anx.) & ! Bp ﬁr
s |
il Tler 1
‘Z'Il‘fle&ll =
_7)“":,_1 ip _ linnx
K p';l T(jp Tir
2 T@m“n - (ﬁ:{‘o—ﬁd + Kmnx.) € : :
vl
=1 Tﬁr 1

where K., and L,,. are respectively the values of K and L when ¢=t,,,
which are determined as in (II) and (III).

When we may put all the 7%'s equal, from (29)

= P21 b 3
1 Tﬁ Tﬁ 1 2
Ly=Tg) ¢ "(¢ " — YM,,
p=1
p=r--1 I”j __’L P
Ts T I S 31).
Ly=T,Ye P _1ym, } B
=L
vt
T T .
L=L,_1+Tﬂe N CHREES § .

From (24) the greatest rise in temperature is

Tax.

Ty

+ L max.) €

Umax, = +
b a T
g

€

B _1

b

_w, . B ( L, -

where L,,, is the value of L when » is greatest.

Finally the mean torque of the motor is obtained from (IV)

Moy = / (_LJ, L’mnx.)‘s T (32),
To

s:T‘8 —1
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where
Li=_L 1, )
T, .|
......... (33).
L’mnx. = '1— Lmax. .
Ty

I B
If the period of the cycle 7, is very small compared to the time con-

stant Tﬁ, the above equation reduces to

. P=n A
2
Mmean = JZM,%‘ .............................. (34).

Ppe=l
In this case M, becomes independent of the time constant of the
motor.
As a more special case of the above, let the cycle be completed with
two constant torques M, and A/, working during the time ¢, and .
In this case since n = 2, from (29)

{3 lg il

L 't 4 lo N

T, |+ Tﬁg TB—l

K, = Tﬁ'(ETﬁ'—l)i-TaZ(s ? —& ")
4
K, = T (s ¥ —1),
b eeenna (35).
& T
o= Ta( P DU+ T ™ "F - P )mp,
o |
L o= T ® —1)Me.
Hence if we put
hoy b v |
T T _ Ty
€ —¢& — k.,
h 4 b
e M Tm—l
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b
N
e P T
4 ty -
c .[’[31 1(32 —~1 ]

we get

u, = (ky T + k. T'g2) W, + (b Tt MP+E, T -sz)f. .
a

a .

Let us assume that M, is greater than M, and that the maximum

temperature occurs when ¢=1¢,, i.e. % is the maximum. Then (30)

becomes
. — k, TB‘ ME+k, TB'3 ME . N
o (’1+l) Tamen—4 (B4 TB' +k2.Tp._,)
or if A=1, eneennia. (37).
M — ky ”ﬁ‘ M2+ k, TB‘-‘ M} -
X 2 Tﬁmean - (kl -,11[51 + 7""2 17@2) ’

If we niay put

1"31 = Tﬁ2 = Tﬁmean = 2157
we have
{1+t ty W
. e B _. s
{1 - Iy +1lo !
T,
e B 1
......... (38),
ly
1'
b — e "—1
2 ti4to
= -1
T,
c B
\
and

Mo = VI IETT TEE oorvreererrersensnn(39).
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Again if #+¢ is very small compared to T the above formule

become approximately

¢ _
k, = L ]
e (40)
3 b
to+t,
so that
e = ~/ LML M e een (4.
ti+t;

Numerical example.

In the above case let Ty =1 hour, and the tofque and the time

during each division be respectively

M, = 500 MKy. t, = 5 minutes
M,= 20 =3
M, = 400 ,, t, =10
M= 20 ,, t,= 5
M, = 600 ,, tt= 5
M= 20 , th=-7
M, = 400 ,, t,=15
M,= 20 , t, =10

the cycle being completed with 8 divisions.

Now since
g m
8 = 1.08690, e T 114963,
e | 2
¢ T8 — 1-34986, e 18 = 146717,
5 ’ TG
7 S

B = 1-59467, e 78 _ 170200,
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7 %o

¢ "B — 2:30098, ¢ '8 — 271808,
from (31) 4
L, = 500" (1-08690—1) = 21726,
L} = L/+20" (114263 —1-08690) = 21748,
L! = Ly +400° (134986 — 114263) = 54905,
L} = L!+20° (1-46717—~1-34986) = 54952,
L7 = L/ +600° (1-59467 —1-46717) = 100852,
I = L7 +20" (1'79200—1-59467) = 100930,
L/ = L, +400° (2-30098 —1:79200) = 182370,
L) = L/ +20° (271828—2-30098) = 182537.
L/ _ 182537  _ oe0ss.
S 1771828
€ Ts —1
Denote
X, = ( L +r)e ’%,
T
€ o —1
then we have
X, = 117728, X, = 112006,
X, = 119374, X, = 109861,
X, = 129861, X, = 115604,
X, = 125426, X, = 106233.

Since X; is the largest we may consider that the greatest rise

temperature occurs at the end of the fifth division.

Hence from (32)

in
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Mpean = 1/75‘
= 1/ 129861
— 360 MKy

If the induction motor should develope the maximum torque at 39

slip of the synchronous velocity, 720 r.p. m. say, we have

w, =27 120 _ 7540
60

' 600
A = ——_—— . = 265'2 .
003 x 7540 6

The angular velocity corresponding to M,

nean 18

Dpean = Wy—

* Mmean
4

360

. =T7540—_""— _
265-26

=740
Hence the slip is

Wy — Opyeqy x 100

W,

= 1829

8nean =

The power of the motor is

Pmenn = Jumean Wppean

_ 360X 740
5

= 355 H.P.

Case 3. When the induction motor works intermittently with constant
loads making a cycle. -
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Let the constant torques on the motor be respectively

M, My, M, ...... M, ... M,
each working during the time
By fas tay eenens | A [
with the values of the 7%'s
‘ Tonr Tgoy Ty eeinne Ty voeneeTgn

respectively, and let the interval of pause after each load be

tlla t2’, 13,7 f, ...... t !

77 n

------

respectively, during which the value of the time constant being 7%o.

In this case (19) becomes

L VR Ip ]
N, A Tet T, Te
I(o = TB]) 3 -t B Bl (S ﬁp—l) ’
=1
e TE T
K,_ = XTBPE'H Be Lo (e‘ ﬁ?’_l),
Pt
g=r—1L tq T’r—~l t N
< Ty ' T, Tgr
K=Kr—l+Tler€ql Be ge (e ﬁ_l),
and [
L, = Z Ty e B TR (TR 1y,
p=l
i A
L= 3 1™ T T (TR,
=] '
q=7;—l__1_q_+ T’r—l 3
< T T Tar
=L+’ 77 7% (7F ~1) M. J

...(42),
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where

P e
=y ( s +K)e o=t Ty T T
St T )
a T g0
et ﬂpr T‘go -1
R S T S e
+ B Z sZ)e = T e Ty
) a b y.50
e Tﬁ_r '1’0_1

where .

To’ = tll +tgl 'l‘ts’ + cesves + i,.’-
Hence i(II) becomes

ﬁ"j‘_ip__ tmax. _ r—1
. LO +L e prel Tﬁp T@" rvao'
r=n g N o 'max. ‘
=1 T ar TBO
W= e = 43
mean ™ p=r—-1 4 ' ’ ( ),
\ ~ A Ty Ty Ty
1+ 2)Tpmmu_'j( S P + Kmﬁx.) e MUUpe pr g0
‘ "3t Ty
R Tpr Tﬁo 1

where L.y, and K., are respectively the values of I and K corresponding
to t =1¢

max, *

When 2 =1, (43) becomes

I TZ_ ! ‘Jt,p _ trfrllitx. _
0 p=1 Lgp r )
yrom]l T ﬁr T po
€ —1
anm\n= pr—— p = (44)
- 2 N m?x — 1
2Tpmoan'— ( KO +Kmax ) &€ # Tpp Br Tﬁo
I b 0 )
e Ty = Ty _
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If we may consider all the 78’s during the working time equal we

have
TR A |
K, = TBZE B T Ty,
p=1
S s~
Kr—1 = ‘32 B # ( 8 —1),
=1
Tr—1 i _t_
T, T,
K=K +Tge * "% (7?1,
and eenne(45),
p=n '211—1 + o, 1,:..1 tp
%_%Z B W@'_u
Pl
p=r—t _w_—_l ki PIH _1’?_
La=TyYe b PPy,
Pl
o I o G
Ty " T
b T T8 1y,

L= L +Tye

where 73 is the value of the time constant during the working time

and
T, = t+t+ ..., +t,,
Ty, =4L+bh+...... +1,
Hence (43) and (44) become
Tmax. Uy W
( Ly L ) e b
To v
Ty " Tg
[ e 8 8 _1
mean Tmax 1,7._1
(1 +1) Tﬁmean l ( I{" + Klmax ) ¢ Tﬂ Tao
Ty Go g 5
: TS Tgo
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when 4 =1, 1 (46),
— Tmax. _ 1
( I, LI ) e T8 Ta
. . , ax. .
Ty Ty
e P —1
M‘l‘f’leﬂ.ll =
. _. Tmax. _,1’1-—1
9 TBmean __ K/ + K\ e Tg T
T Tt Ty J
e ® 1
where
=1 g
Ty
. S (47).
I=-11. J'
T
Further if we may consider Ty =7 &
— Tmax, _ r—1
Llo 1+ I c TB Tﬁo
_TO_ _TO/_ max.
c Tﬁ + T‘go 1
Mg = —
mean K _ "max. vr—1
(l i z)—A ( To 1"‘()) + K’max. € Tp Tﬂo
-t
Tg ™ T4
when 2 =1, ...(48).
I’ o Tax, T'r—1
( To + :’0 +L,mnx.) ¢ TB TBO
Y o E Tg " Ty _q
menfx ’ _‘anx. _ Tr— °
2— _Tl. T(())’ + If’max. € Tg TBO
e Tg ™ Ty 1 ]

Moreover if we may put 717 =

TBO!
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pmn Tpit Ty
K, =Xs Ts (s TB—-I),
p=1

p=r—1 Tp—1 +T’p—1 tp

K, = Z € 8 (s Ty —1)’

and
pon To1+Upa  tp
, . :l’ 'Il'
r, = Ze (e -1) 3,
Pl
p=r—1 1+ p _ip
o, = Z e Ts (e B_l)M;,
p~i :
Tt et _ t_
L =1L _,+¢ o (e T —1) Mm:.
and
Tmax.+ Tr—1
LI O - ¥
(—#—- +L,max.) € 8
e I8 1
Mlguean = . Tmax. ¥ T r—1
KI A - D
(1+A)'—'2(_—‘E‘o+—‘f(%— +K’mnx.) € #
1’
€ B 1
when 4 = 1,
L _ Tmax. + Tr—1
T
(—'ﬁ‘— + leax.) € ﬁ
e 18 -1
M?uean = _ Tmax.+ 1 :
K’ T
2— 'ro+‘ro? +K’max. € B
—O

...(49),

..(50).
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In the above if the M’s are all equal from (45) we have
pen B Tt
K, = ﬁz TB 11@0( 1@ 1)
p—=1
pr—1 Tp—i Tp—i ,’7:
Ko=1T, )¢ "¢ (e 1r%_f1),
p=L
' Tr—1 + V1 v
K=Koi4T, Ty '~ Tgo (E T __1)’ «o(51).
and
L, =K,M?,
Lr-l - Kr—l 1”2 H
L = KM*.
Therefore the temperature of the motor at any time becomes
. — T
u = (%+ B 1112) KO, +K\e T8 Tp
@ _JT(’)_ +_110, 3 .
¢ B 1
" In thls case the time when # is greatest can be readily found. Let

it occur when 7 =r7,,, and K=K, ..

Then the M2, becomes

K/ o
( T ’(:‘0’ + K,max.) € B B M
M e b Ty
mean — max.  Tr—1
) T - T _1.0/- + A x| €
? Ty Ty
when =1,
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. Tmax. Ur—

(———K"' + Ky )s T ™ T ppe
_TO__‘__'EO/— max.
M?nmn ) _ Tinax. _’i’t-l
Q Tbmean (K g e g Tho
11(3 BN _"0/_ max.
Tg T B _1
where
k=1 k.
T
When we may put
7pmerm Tp’
K’ Tl;nx. _T,,rT—ol
( Ty ?‘0' + K max.) € B B a2
e_fl_’g _Téb__l
ngnoan _ o ’
]{’ Tv;?x. -1"—1
(1+4)-4 - + K x| P B
T T
TB Tﬁo;
when 1 =1,
' _ Tmax, v
Ky + K’ e o Ty
TO.- _TO,_ max.
L s
mean ~—
K - T';.‘ ~ T;ﬁ_l
2 ( 0 + K’ ) ¢ B 0
.ro ,ro/ max.
Tt
e P Tﬁo—l
If we may put Tﬁ = Tﬁo,
p=n 'l'p._1+1'/p——1 t_p
K/ = 25 1g (e 1y _.]_) s

»=1

per— Tp1ttp b
K’,._1= Z 3 lB (6 lp—l),

=1

’

.. (52).

... (53).
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Tr—1+Tr—1

t
K=K _,+¢ I8 (e Ty _1),

and
I, =K', M,
L =K' M,
I =K M
and
o _mex e
( B +K’m,x_)e O
M = e I8 _4 .
Tmax. 4+ r—
(1.+z)_z( K +K’m_) T
e B 4
when 2 =1,
K, . e rTrt
| (—TO?"T—+K'W,)5 e
My = — =] ‘

Tmax.+ 7 r—1

2— (i +Klmnx.) € Tp

To+s
e T8 —~1

When the period of the cycle is very small compared to
constant, the above formule (50) and (55) become respectively

1 p=n
M, = ————— 2
mean J o+ (1 +2)T0' th M,, s
=1 ,

~when 2 =1,
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L L..(54),

L (55).

the time
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and

‘]l]llleall = M J"'—‘E'O—— ?
7o+ (14 )y

when 1 =1, (55)". '

N c— o e !

Moy = M A'/__ﬁ_
To+27) °

Thus in these cases M,,,, can be approximately determined indepen-

dent of the time constant of the motor.

SUMMARY.

In Chapter 1 the interaction of the fly-wheel and the induction motor
under cyclically varying load of any given form was considered. The
motion of the induction motor during the whole period has been deter-
mined, and formule governing the proportion of the fly-wheel and the
motor have been developed. '

The general formule have been applied to some special cases of practical
importance.

Since when the resisting torque of an induction motor under cyclical -
operation is given, we can in general find the manner of variation of the
torque iinposed upon the motor, whether the rotor has or has not a fly-
wheel, in Chapter II formulee for determining the capacity of the induction
motor under cyclical operation of any form of load rated for continuous
running have been developed. ‘

The general formulée have been applied to some special cases.

In conclusion the author wishes to express sincere thanks to Prof. .
Aoyagi, at whose suggestion this work has leen undertaken, and to Prof.

K. Ogura for his kind suggestions.




