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I Introduction.

A wide region of unexplored ground of study is opened up to us by
the development of the aeroplane. Among the large number of interesting
problems concerning the aeroplane, the one to determine the motion at
flattening-out after a steep glide is worthy of close investigation.

This subject naturally involves two important problems: one the
determination of time required to restore the machine from a steep glide,
the other the determination of ¢ wing-loading”” set up during this motion.
The urgency of the first both for the practical aviator and for the designer
is obvious. The latter is of utmost importance to the designer of the
aeroplane, It is necessary to know the distributed loading due to the air
forces, generated by the movement through the air, before proper conside-
ration can be given to the stresses in structure. .

The working stresses in the wing structure and in the other parts of
the machine are generally calculated for the case of a horizontal flight in
still air, the normal loading on the wings in this case being equal to the
weight of the whole machine exclusive of the wings. This Ioading may be
increased by different conditions of flight to many times its normal value.
l‘hus,‘the effects of banking, sudden recovery from a steep glide, sharp or
irvegular gusts, landing, etc., all impose higher loadings upon the machine.
A. W. Judge® gives the following figures, as the ratios of the loadings

nnder the stated conditions to the normal loading upon the planes:

* AW. Judge, “Design of Aeroplane” P. 56,
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for banking 15
for Wind gusts 4 to 5
for flattening-out after steep glide 5to0 7.

He adds that the figures given for flattening-out after a steep dive represent
an extreme case, which would not be realized by a careful pilot; and that
the maximum abnormal loadings in practice could hardly exceed about
five times the normal. G. C. Leoning* says:—¢ careful observation indi-
cates that the forces of sharp puffs, or sudden changes in wind direction,
may easily give stresses three to four times the weight of the machine.”
Prof. I..B. Wilsont developed the theory of the longitudinal or symmetric
motion of the aeroplane under gusts, and investigated the motions of the
free and the constrained aeroplanes encountering gusts of different kinds,
and with various degrees of sharpness. He found that the upgusts, which
operate chiefly to lift the machine and accordingly impose the greatest
loading on the wings in comparison with others, do not seriously stress the
machine which is designed to stand upward accelerations of 6g to 8g in
manoeuvering. The stresses introduced by landing shocks are in a separate
class, requiring careful consideration. These stresses are minimized in good
designs of landing gear by employing the proper shock absorber. The
greatest source of danger in flying, due to imposing great stress on the
-wings, arises, without question, from flattening-out sharply after a long
steep dive.

The aeroplane should be so designed that the strength of its weakest
structural part will at least be great enough to withstand a possible
maximum stress. The usual method hitherto employed to allow for these
extra stresses has been to choose a ¢ factor of safety,” with referencs to
the normal flying load, determined by the weight of the machine. The
excess stress induced by conditions other than ordinary horizontal flight, is
taken account of in the ¢ factor of safety ” itself.

At present there is a tendency to apply a high factor of safety in the

* @.C. Leoning, ‘“Military Aeroplane,” P. 108.
t First Annual Report of the National Advisory Committee of U.S.A. for Aeronautics,
No. 1, 1915. , '
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design of aeroplanes. The British Government before the war accepted
aeroplanes with overall factors of safety not lower than 6, but stating that
the future machine accepted will require factors of safety of double this
figure. The memorandum' on the “ Military Aeroplane,” prepared in the
office of the Aviation Section of the Signal Corps, U.S.A., specifies a factor
of safety of 7.5 for military training aeroplanes, 6 for land pursuit machine,
and 7 for land gun-carrying machines. Judge advises a load factor of 5
to allow for the maximum abnormal loading and an actual factor of safety
of between "2 and 3 to allow for material strengih; the overall factor of
safety lying between 10 and 15.

It must be remembered, however, that there are ‘many features oppos-
ing the employment of a high factor of safety; for instance, there will
naturally result an increaged weight of the machine with consequent
difficulty in landing.

- If the stress caused by a sharp flattening-out is to determine the load
factor of an aeroplane, the designer must of necessity estimate the stresses
for possible extreme cases by calculations or determine them exactly by
experiments. .

In the present work we start from the general equations of rigid
dynamics, and the discussion will be confined to the symmetric motion of
the aeroplane. The first scheme is to solve the simultaneous differential
‘equations representing motions in a vertical plane. There are two possible
methods of attack :—one to confine the motion to small oscillations, to
simplify the mathematical analysis; the other to apply an approximate
calculation, which shall include all the complicated conditions which enter
in applying it to a definite movement.

The former method was applied by Bryan® to the dynamical investi-
gation of stability of motion of aeroplanes and extended by Bairstow.t
Bairtrow says,—* from preliminary calculations it appears that much of the
analysis can be applied to problems in which the mathematical assumption

that the oscillations are small is not made.”

¥ G.H. Bryan, “Stability in Aviation.” .
1 Technical Report of the Committee for Aeronautics for the year 1912-1913, No. 77.
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This theory is applicable with sufficient accuracy over a fairly great
range of movement of the aeroplane; particularly it applies when flying
at a high velocity. This does not hold good, however, in the case when
the pilot attempts to recover his machine sharply fromn a steep dive at
high speed. This problem must be solved by use of the second method,
i.e.. approximate calculation. The theory of small oscillation is, however,
*suitably applicable to the motion when the aeroplane approaches its final
steady attitude of flight from the violently disturbed condition caused by
sharp manoeuvering.

As numerical examples, the method of approximate calculation will be
applied - to various cases of extremely sharp flattening-out of a typical
military biplane tractor known as Curtiss JN2. A model with span of 18
inches representing this machine was tested in the wind tnunel of the
Massachusetts Institute of Technology; and the lift, drift, and pitching
moment were measured for a series of angles of incidence. The damping
of the pitching oscillations was also determined experimentally, For the
purpose of comparison with one case of the Curtiss plane a parallel calcula~
tion will be made of an equivalent case of another biplane tractor designed
by Captain Clark. A model of the latter aeroplane, % size, was tested in
the same wind tunnel of the Massachusetts Institute of Technologv. The
investigation of the inherent longitudinal stability of Curtiss JN 2 was
carried out by Dr. Hunsaker,” as a preliminary calculation to the ¢ Discus-
sion of the Effect of Wind Gusts” by Prof. Wilson. The longitudinal
and lateral stability of the Clark plane were fully discussed by Hunsakert

and its aeronautical properties were compared to those of Curtiss JN2.

II Derivation of the Dynamical Equation of Motion.

We take the centre of gravity of the aeroplane as origin and choose

three axes mutually at right angles, fixed to the aeroplane and moving

* J.C. Hunsaker, *“ Experimental Analysis of Inherent Stability for a Typieal Biplane,”
First Annual Report, U.S.A. No. 1, Part 1.

T J.C. Hunsaker “ Dynamical Stability of Aeroplane,’ Smithsonian Miscellaneous Collec-
tion, vol. 62, No. 5. ) ’
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with it in space. We use the same notation as that of Bairstow, viz:
0%, 0y, 0%.u....

moving axes directed, respectively, backward, to the left, and upward relative

to the pilot;

u, v, w, and p,q,7,......
linear and angular velocitiés, resolved along these axes;
X, Y,Z and L, M, N,......
forces and moments of forces measured per unit mass of the aeroplane;
A4,B,C,and D, E, F,......

moments and products of inertia relative to the moving axes fixed in the

moving body ;

the mass of the aeroplane. Then the dynamical equations of motion are:

du ]
wg—vr=X
at +wg—vr
dv
Yur—wp=Y 1
7 ur—wp (1
dw
—tvp—ug=272
dt Top-ue J
,_d-]i—rh2+qhs=mL‘
dt
i'k—z——ph,+r =mM (2)
dt |
agz"‘ — ghy+phy=mN |
hy=pA—qF—rE A
hy=qB—rD—pF 3)
hy=rC—pE—qD

In the case of a symmetrical aeroplane, such as commonly exists in
practice, the zoz plane will be the plane of symmetry, so that
D=0 and F=o.
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1f the motion is supposed to be in the vertical plane of symmetry, so

that the “line of flight” is confined in the vertical plane, then
Y=L=N=o0
and T v=p=r=o,

The axes of reference ox, oy, and oz at any instant are supposed to
‘coincide instantancously with a second set fixed in the air, and u,v,w are
the velocities of the centre of gravity of the machine along the axes of «,
¥,z relative to the latter. If we choose the direction of z-axis always
tangential to the line of flight, then w would be zero. ‘

Putting these values in the equations of motion, we have:

du _x

di
—ug=2 4)
Biq—=mM. '

dat

In the above defined system of axes, the axes of reference in a steady
horizontal flight would always remain in the same direction with the azes
fixed in spase, the z-axis always being vertical. For investigation of a
finite movement of an aeroplane along any line in a vertical plane in space,
it is convenient to make some slight modifications of the usual system for
defining the angular position of the aeroplane.

Let o) be a line of flight, ¢.e., the path of the centre of gravity O
of an aeroplane (Fig 1); ox and oz the instantaneous axes, remaining
always along and normal to
the path; ox’ the z-axis fixed Zy ;
to the aeroplane, directing to-
ward the chord of the wing;

a
H\

ox, and oz, the horizontal and

the vertical axes fixed in space ; <

\
h——
e

y-axis of all set lying perpen- oy
dicular to the plane of figure.

Measure the inclination, 7, of q

ox, counter clockwise from the Fig. 1.
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horizontal ; and also measure the inclination, 8, of ox’ in the same sense,
so that the angle of attack, o, to the wing is: '
a=t—0.
In eq. (4) » has always a negative value and may be put
u=—"U,
if U is the velocity of flight.
g represents the angular velocity about oy-axis relative to the axes
fixed in space; and as the angles 7 and # are measured in the opposite
sense to that which was stipulated for measurement of ¢, 7.e., left hand

direction, it iz put:

="

dg

in the last equation in (4) is, however, the rate of change of

angular velocity of the aeroplane about its own transverse axis. Hence it

is expressed :

dg ___ d
di dt
In the new system of axes eq. (4) takes the following form:
_94U _x
at
dr .
-U =7 4
T (4)
d t2 J

In the right hand side of eq (4') the external forces X and Z along
the instantaneous axes ox and oz and the moment of force about the oy-
axis are all functions of U,r, and 8. X and Z consist of components of
the gravity force, compenents of the propeller thrust and components of the
air resistance, along and normal, respectively, to the wind direction.

Thus : ‘

=1L (I)— W sin r— 7T cos (a+/9):|

m N
1 : )
=1 [L— W cos T+ 1'sin (a+ﬂ)J

m
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where,
L= the total lift in pounds,
D=the total drift in pounds,
W =the weight of the machine in pounds,
T'=the propeller thrust in pounds,
B =the angle between the axis of propeller and the chord of
wing.

As is well known, the air resistance on many parts of the machine
does not follow the ‘“law of square” relative to the speed, on account of
the skin friction. - But, if the change of velocity be very small, we may
put with sufficient accuracy,

D=k, U 2} )
L=k, U*
where k, and k, are the drift and lift coefficients in pounds per unit speed;
that is, components of the air resistance upon the whole machine, respec-
tively, along and normal to the direction of the wind. As experiments
show, these coefficients are not constant, but are certain functions of the
angle of incidence a. Within certain variations of « they may, in brevity,

be expressed:

kx=G + G a?
’ “} @

k,= H,+ Ha.

These expressions give values close enough to the result of experiments
to serve in our mathematical treatment of the problem, if the values of
the constants @, G, H,, and H are chosen for a small variation of a.

If we assume no change of the propeller thrust with small change in
forward speed and the axis of propeller to be parallel to the wind direction,
as has been done in many discussions of stability, then terms containing
the thrust vanish out in equations of small osci]laﬁous, due to conditions
of equilibrium. In our case here, the propeller thrnst is negligibly small
in comparison with the head resistance. For simplicity we assume that the
motor is shut off in gliding and the machine has no thrust exerted by the
propeller, as is often actnally the case.

Substituting the values of (6) and (7) in eq (5), we have:
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x= Gt Ge 4

Z_gsinrt
m
H,+ Ha (8)
Z="2""" [J'~gcosr.
m

For mM in eq (4) we may put:
a8
nM=M,—H (-—_——) 9
m A T 9)

in which M, is the pitching moment of the aeroplane with its elevator set
at a certain angle; M, is the damping moment against pitching oscillations
of the whole machine per unit pitching \'elocity.

We now assume a relation, ‘

M,=(M,+ M a) U?, . (10)
in which #, and J7 are certain constants to be determined from experi-
mental data.

Experimental data is scanty concerning the pitching moment of the
aeroplane with the elevator set at various angles. To find the lift, drift,
and pitching moment of the complete machine experiments on models with
stabilizer and elevator made in one have been performed in the wind
tunnel of the National Physical Laboratory, Teddington, England, and in
that of the Massachusetts Institute of Technology, U.S. A, Values resulting
from these experiments were plotted taking as abscissa the angle of incidence.

In a small change of the angle of incidence we can foHow the curves
by properly choosing the constants M, and M in the above expression.

In all these experiments the elevators occnpied the neutral position.
There méy be certain washing effects of the stabilizer, when the elevator
is placed at an angle relative to the former. In “ Dynamical Stability of
Aeroplanes ” Dr. Hunsaker gives the curves of })Aitching moments of a
complete model with the horizontal tail surface making angles of —2.°75,
—5°, and —7° with the wing-chord. These curves show that the pitching
noments vary about proportionately to the change of angle of incidence
within values smaller than twelve degrees, while at higher angles the usual
characteristics of pitching moments are considerably changed. This subject

will be considered later in numerical calculations.
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M, Ty is the damping moment due to wings, horizontal fail, body,

and all other parts forward and aft of the centre of gravity. The dam-
ping of a surface should depend on the area of the surface, the linear
velocity with which it swings through the air, and the velocity of advance;
thus :

M__oo[ﬁxz xf(UJ

for similar aeroplanes, / being a linear dimension. Therefore, for a par-
ticular aeroplane, we may put:
d 0

where N is a certain constant.

By tests on models it is found that the damping is proportional to
U, ie., F(U)=U
in the case of aeroplanes; and that N is not a real constant. The value
of N for the model of the Clark plane decreases as a increases, while that
of the Curtiss JN2 increases with a. For this strange discrepancy we
cannot get any satisfactory explanation; but in both cases the variations
of N are relatively slight.

Assuming that thé value of N varies proportionately to the change of
a, we may put: :
M d_”_(zv +N )Uﬂ (11)
where values of constants N, ahd N should be determined, so as to follow
the experimental results.

Substituting the valnes of (8), (9), (10), and (11) in eq (4), we have:

dU _ _ G+ G o Ui+gsinrt ‘
dt m
U ar _ _ HytHoa Ur4gcost (12)
dt m
Adil - M+ Ma Ut N+ Na U do .
d B B dt '}

2 Y 2
or 14U __ Gt Ga Ul+gsint ]
2 ds m
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dr _  H+Ha )
U?  rani 0 Ul+gcost (12/)
gpdf 1 AU d8 _ My+Ma g, NetNo g, df
ds 2 ds ds B B ds ’
where s is the length of path in feet.
Putting, Ui=v,
eq (12') is rewritten as follows:
dV=_2___G0+Ga2 V+2g¢gsinzt
ds m
dr Hy+Ha CoS T
— 14
ds m 9 V ()
d20+ L dV df _ _ My+Ma Ny+Na d¥
dst 2V ds ds B B Tds )

These are the general differential equati(;ns of symmetric motion of the
aeroplane containing 7, 7,0, and s as variables. If the general solution of
these equations is obtained, the symmetric motion of an aeroplane in a
vertical plane would be traced within the limits between which the
assumptions made are held correct. Accordingly we can get by calculation
the maximum loading on the wing at sudden flattening-out after a steep

glide, and also obtain the time required.

III The First Method of Solution.
(Equations of Small Oscillations.)

If ¢ denotes the small variation of V, 7, and #; then, by neglecting

the small quantities of higher order, we have the following equations from
eq(14). '
di(aV)= M—@V) g1 02 7L (35— 26) +2g cos 7.(51)
/s

d cos 8in 7
____3=__8—80— e (07— o
= 00 m(f )sz( )gV(f)

d? 1 dV d 1 df d
00 . o6 Bhuadidiy ¢} 74
_ ds? (96) + 2V  ds ds (96) + 2V ds (/s( ) (15)
1 d0 arv

oV
2V: ds  ds %)
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Ny+ Na

oM
B B

20— N df J

o)~ (30— 20)

These are the differential equations for small symmetric occillations,
in which three variables 0V, &r, and 00 are each a function of the path
ds; and the three equations should be satisfied at any point of the path
by a concordant set of values of dV, dr, and 6. The equations arve,

therefore, simultaneous and are linear differential equations without constant

av d_‘r dO
ds ~ ds ds

Writing the operator D to indicate differentiation with regard to the

terms ; being all zero.

path or Ed—, we have:
s

l—D+2 M—JBV+[4——V 2g cos TJOT—[4
CcoS T H sint
[g > J3V+[D +-hy ]3T_L__J 30 =0.

[ﬁ]a +[ D — M N+N“ 1)]50 0.

Ga

V]ad 0)

(16)

J

The physical condition that the three equations shall be simultaneous
is expressed mathematically by equating to zero the determinant formed by
the coefficient of the variables ¢V, dr, and 6. Thus:

2 i)
D+2 Got+ Gd , 4 G V—2g cosz, —g Ge 14 =0
m m m
cos T H gint H
g 7T D+7+9 ) T (17)
0, M,D2_11{+N+Na
B B
Expanding the determinant we obtatn :
D+ 4D+ B D*+ O\D + E,=0, (18)
where 4,=2 M+——+g sin © + ,N°+Na
m V B
B,=2 Gyt Ga? [—+g s1nr:|+[2 G+ Ga? +£
m -m V , m m

+g su;v‘r ] N,+ Na

Q i,
—g C(;j; [g ?: V—2g cos TJ
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G, + Gd? sint’| M G+ Ga* [ H
0=—[2 o J~_ 2 Go _[_
\ - +9 7 B + -~ p” L (19)
sint’| Ny+ Na cosrr4@V_2 ] ]N0+Na
+g v J B g 7L m goose o
Fy=—2 G0+Ga2'g gin 7 £'_g coST _Zl!_.4 Ga e
m V B V*: B m
+9 C(;jf [4 i: V' —2g cos r] ig-

If 2,4, 4, and 4, be the roots of the biquadratic equation (18), the
solution of the simultaneous linear differential equations (15) is of the type:

OV =0y €+ 0, + Opye™ + O, 4
» 62': /'-;16)\18 + 0:26)\28 + OT;;G)\as + 0146)\48 (20)
0= Ciue™® + Chee’® + Cse’® + Coue™**

where Cy,, Un, Ca, etc., are integration constants and determined by initial
conditions. '

The condition of stahility of motion is that 67,dr; and 08 shall
vanish as time goes on. Hence, each of the roots of the biquadratic
equation must be negative if real, or, if imaginary, must have its real part
negative. Bryan has shown that by use of Routh’s discriminant the bi-
quadratic need not be solved. The necessary and sufficient condition that
a biquadratic equation have negative roots or imaginary roots with real
parts negative, is that 4,, By, 0, &, and 4,B,C,—C— A2E, are each
positive. Solving the biquadratic for 4,, 4,, 4, and A, however, we can
calculate the period and the decreament of small oscillations expressed by
eq (20). Furthermore, to get the complete solution we have to find the
values of constants Cy,, Cu. Ca, etec., by applying the initial conditions.

Substituting dV. dr, and 00 in eg (16), we obtain:

¥ v,2 7t -
[:( 11 + 2 M) 0]/1 + (4 Ga V— 29 CcOo8 T) 01'1 _— (4: Ga V ) UﬂlJ 6)\18
m m m

+|:(22+ 2 M) Crat (4 Ga V' —2g cos r)C‘n-— (4 Ga_ V) C’ez] e’
m

m m

+....;..-. =O.
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o 252 0 1 Z g B22) 60— (2) ]
p? m

+[( cos ¢ ) 0m+( dop Ly g ST ) 012—(£) 002] R
m V m

((__) Cla+ (l 2 __ M No ‘;Na 1) 001] 6)\13
M s
+K§V”@“§*M?W@Oﬂk

These relations should hold identically for any value of s, and there-

fore the coefficient of eks, edes, etc., in each must vanish. - Accordingly we
obtain the three homogeneous equations for each three of unknowns, Cy,,
C:, and O, ete. Thus.

G, + Ga? )0V1 ( Ga V'—2g cos T)Oﬂ ( Ga V) Cop=0
m m m
(-55) o (4L g 525 0, ( ) ym
& m V m
(o= 2,
ete., etc., @n
The relation,
2
42 Gt G 4 Gy 9 cest, —4 Gy oo
m m m
CO8 T H sin 7 H
, A , -
| & Y +g V m
M M, N,
O S Rk RS LN
etc., etc.. (22)

are consistent, because 4,, 4,, etc., are the roots of these determinants.

Hence the solutions of Cy;, Cy,, etc., are:

OVl: 0‘:1. 001=
2
Ga V—2gcost, 4 Ga V Ga V, 4 +2————G°+Ga
m m m
H sin H H CO8 T
x + — ’ - »
Y m 9 vV m m g 4% [



Flattening-Out of Aeroplanes after Steep Glides.

2
A+2 Gt Ga , 4 Ga V—2gcost
m m
H sin .
C(;/ir’ 11+7n—+9 inz

ete., ete.
The general solutions of eg (15) are:
OV =07 + Oy €% + 0y + Oy e
8t = P07 €%+ PyCpye® + Pyl €5 + POy, e
00=Q,Cy18" + Q,0ry € + QuC13" + Q.0 €™ ;

G+ Ga’
m

where 4.9y 440
m

H cos T
b
2.
> m V
¥

4 Ga V' —2g cos T, 4_G-a—V
m - m

/11+—H—+g Sin 7 s —E- 5 ete.;
m m

2
PN S L L2 P
o m m

)

cos T H sin 7
—_, A+ —+
g 3 1 g 4

V
V—-2gcosr, 1. 0%y
m

Ql =

8 ]
4 Ga
m

Al+£+gsmr, H
m

s etc.

21

(23)

(24)

(25)

It now remains to determine the values of comstants Oy, Cy,, ete.

from the initial conditions of steep glide. Let initial values of variables be:

(OF Jomo= 8V )s,
(67)3-0 = (67)0 ’
(86) 4o = (06),

and -(Ldﬁ) =g, ; then
ds om0

@V )o=Cp1+ s+ Cyps+ Uy,
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(0t)o=P,Cpy+ PoCps + PCps+ P05,
(50)0_= Qi0v1+ QuCys+ Q03+ Q404
00=Q A0+ QAL+ Qs 40+ QA Cy, (26)

The values of Cy,,Cys, etc., are obtained by solving eg (26).

Thus: Cri= OV, 1, 1, 1 |+4
(07, P, B P
@ O Gy
Qo, ol (shs, Qudy
Cre= 1, (@V), 1, 1 |+4
g 13 (37)0: B, 3 P, 4
@y (90, G
Gy Qs Qs @aks
ete. ; (27)

where 4= 1, 1, 1, 1

Qdy, Gk sk, Quly
In general the roots of the biquadratic are of two couples of the -
conjugate imaginaries, thus:
PR L .
' p-H_q and m+m} (28)
h=p—1iq Ai=m—1in

Putting these in eq (24), we have:

oV =e?(l}cos gs+ Fysin gs)+ ™ (J} cos n s+ Ky sin ns)
ot =e? (E: cos ¢gs+ Frsin gs)+ e™(Jr cos ns+ K sin ns)
, 00=e?* (Ejcos qs + Fysin gs)+ e™(Jp cos ns+ Kp sin ns) (29)
where Ey=Cy14Cyey, E=PCypi+PCr, Ey=0pn+@Cr,
Fv=i(0V1— 0?2)7 FT:i(Plon— P20V2): Fy =’£(Q10V1'— Qzaw):
Jy=Cps+Cpi, Je=FBC0p+PCp, Jo=0Q:iC0ps+QuCrs,
Ky=i(Cp;—Oyy); K= t(FsCys — P0ys); Ko=1(Q:0p;— QiCy). (30)

In the above analysis we built up the equations of small oscillations

(15) upon the assumptions, sin dr=0Jr and cos r=1, and also by neglecting



Flattening-Out of Aeroplunes after Steep Glides. 23

squares and products of dr, 00, and 6V. These are approximations commonly
employed in treatises on theoretical mechanics, when small oscillations are
concerned, in order to get linear differential equations.

Finding the roots, 4, 4;, 4;, and 4, of the biquadratic (18) which are
deduced.from the simultaneous linear differential equatiohs (15), and then
calculating the unmerical valnes of integration constants, C'y, Cy,, etc.,
from initial conditians hy means of eq (27), we can obtain the general
solution, eq (29). In these calculations the roots 4, 4, 4,, and 4, must be
found with considerable accuracy by trial, as was done by Wilson. The
rough approximations, which were indicated by Bairstow and which will be
employed in the preliminary investigation of the gliding stability later,
would be insufficient for present use; because an intolerable inaccuracy
would be introduced into the results of calculation of eight numerical coef-
ficients, Cr1,eveven, Oy , by eg(23), by such rough values of 4, etc.

As may be easily seen, in approximations made for small oscillations
the assumptions, sin dr=dr and cos dr=1, lead to the greatest inaccuracy
in results of calculation of oscillations in gliding ; and consequently this
limits the application of eg (29) to the oscillatory motion set up by a
disturbance from a steady gliding. Suppose the case of an aeroplane
gliding steadily at the angle r, whose elevator is suddenly turned by such
an aﬁgle, that it disturbes the equilibrium condition of motion and brings
finally the machine to a new equilibrium condition gliding at angle, 7+8°.
To apply eg(29) to the disturbed motion in this cage, would cause an
inaccuracy of about one per cent in assuming, cos dr=1; the initial varia-
tion of = being, (67r),=0.1396 radian. The variations, of V and 6 are,
however, so slight in such a case that the higher terms may be safely
neglected.

After all, the equations of small oscillations developed above are appli-
cable merely to the disturbed motion set up by a minute change of position
of the elevator ; and we come to the necessity of finding another way of

approach for the solution of our problem.
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IV The Second Method of Solution.

(Approximate Equations for Successive Calculations.)

'By putting U?= 1 as before, eq (12) may be written :

AV __ 260y 9 G (c_gpri2gsine (31a)
ds m m
pdt By H o g\yigese (31D)
ds m m
.2
p &0 LAV db Mo, M gy N diy N gdf
dst 2 ds ds B B B ds B ds
(31c)
Assuming 7,6, and V" to be expressed as exponential series of s, thus:
T=0y+ @8+ As® + a;8° +a s ... '
O=by+ b8+ bs* + bss® + b st +...... (32)
V=cy+c;s +cst+ 8+ 8 +......
where a;, ay,...... Doy byyunenn. Co+ Clyrnveen are certain constants. Accordingly
we have : -
dr__ a1+ 20,8+ 3azst + da,st+ ..., 3
ds
_i_” =b,+2bss + 30,8 +4b,S+ ......
s
d*0 ; (33)
L ——=2b, +6bgs +12b,8+......
ds?
v _ 1+ 20,8+ e, +4esS+ ... J
ds
and sin 7 =sin (@, d7) =sin a, cos 67+ cos a, 8in or 34)
cos T =08 (a, + 07) =cos @, cos 0t —sin q, sin Jr,
in which 0T =08+ a8’ + a8+ ...... ;
5
80 that sin r=31—ir_3—+ LS
6 120
=a,;s+ a8+ (ag—-% a{“’) L
i .
cosdr=1— o + A (35)

2 24
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=1—% alzsz.‘—ala2,g3+ ...... J

Substituting these values in eq (31a), we have:
C+20,8+ 3¢St +4cs +nnene

—_ 200 [CO+CIS+0282+ ('333-[- ...... -I
n _

m L

26 [co (ap—Do)*+ { 2¢0 (@ — by) (a;—by) + (@ — bo)2}s
+ {200(% — Do)ty —Dy) - oy — by + 2ex(o —bo)(aty —by) + (s — 1;0)2}.«2
+ {200((10 — By — bs) +2¢o{y — by)(as —bs) +264(at0 — bo)(@s—by)

+ €(@y — by)? +2co(@g — oY@y — by) + ex(ato— 00)2}33 - ]
+2g sin ao[l-—%_ a1282——(,‘t1a283+ ...... ]
+2g cos a, [als +a,8t+ (a,, - % al“) S eeenns J

Equating the coefficients of the same power of s on both sides of the

above equation, we get the following relations:

2G, . 26

€= — o o —0o)* + 29 sin a,
m
20y=— 2G, ¢ — 275 {2c0(a0— bo)(a,—by) + ¢y(a, — 1)0)2} +2g a, cos a,
3ey= — 2”(5" Co— 2;3 {.‘).,c(,(oz0 —bo)(az—by) + coa— by} + 2¢,(ag—bo)(01 — b,)
+ co(ay— bo)"’} —-ga,? sin a,+ 2ga, cos a,
4o = — 26, Cy— 273 {200(0.0 —bo)(5 —by) + 2¢q(@,— by)(a,—b,)

+2¢,(ag— bo)(az— bs) + (@ —by)* + 2e5(@y — bo)(a, — by)
+ es(@— 60)2}

—3ga,0, 8in a, + 2g(a3 - % af‘) CO8 (g

.......................................... (36)
Similarly from eg (31b)

Colly=— ﬂco—'g— ¢o(tto—bo) +9 cos a,
m m ,
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e, 4 c1a,
H, H .
=—le—~"= {(a(,— by)ei+ (ay —b,)co} —ga;sin a,
m "

3egay + 2¢.a, + ey,

H H{,
=, {(ao—bo)c2+(al—bl)cl+(a2——b2)co}
m m

1 .
—5 ga,® cos a, — ga, sin a,
4eya, +3¢,0;5 + 2¢50, + Ca14

H I
B oL {(ao—bo) Cat (y—b1) 03 + (@a— D) ¢, + (a5—by) co}

1 .
—ga4a, COS Ay—g (a3— '6‘a13) sin a,

..........................................

.......................................... ; (37)
and from eg (3lc)
1 M, M N, N
2¢4b,+ 5 bicy=— —H-"- Co— 3 oty — bg) — ?" Co bl—? cobi{ay—by)
6eoby + 3eyb, + 5D,
N, M N,
= —?" C'l_‘lB— {co (a,—by) + ¢, (up— bo)} - ?" (2¢obs +¢1by)

N
- {20062 (@0 bo) + coby (s — by) + bacy (g — bo)}

12¢,0,+ l25— ¢, s + 4cb, + % by,

- _% - f_g {co(az—b2)+ cx(ay =) +c2(a0~bo)}
N

y {3001,3 + 20, + cgbl}
_% {3001,3 (o Do) + by (ty — bo) F by (@ —by) + 2esby (@g—bo)

+2cob2(a1—bl>+b1c1(a1—b1)}

..........................................

.......................................... (38)
The constants in eg (32) are, therefore, solved by means of eq (36), egq
(37), and eg (38). For that purpose the initial conditions of the motion

have to be determined.
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Taking the starting point at the beginning of the turn from the
gliding : -
Let 7,,8,, and 7, be the respective values of 7,6, and ¥, when s=o,

so that
=1y, by=0y, co=V,

and g~ by= at,. (39)

When the pilot turns up the elevator attempting to flatten out his
machine from a steep glide, there iz a sudden change of the pitching mo-
ment, and the motion is governed by the new conditions. There will be,
therefore, the discontinuity of motion between the paths before and after
the control.

Substituting the inital conditions (39) in eg (36), eg (37), and eq (38)
we can get the values of constants by successive solutions. Thus:

01'————2[ Gy + Gay’ _g sin 7, ]Vo

m

a1=—[ H,+Hu, —g cos T,
m V,

02=___|: G+ Gag? %+g Ga, (@—b))— g co;:‘o al]VO
a2=—%[%. Ic; +_(al—bl)+g sin 7, a1+7a1]
by = — I:Mo+Ma0 - 1\70-1391\7110 1)1+— b_l
6= _[ Gy + Gay’ e +2(’“0 (az—b2)+—(a1—bl)2+2 G“o & Sfaa=b)
0
+%g sn;/:“ alf—g “0;:-0 .y V0
ty= — L[ HotHay _«%+%{%(al_bl)+(a2—b2)}+é_gﬂ’%&.af
+g Si;:‘) a2+270'a2+_170_u1:|

-;_iv_b(a1 —b)+3 L c‘ b + 2 b]



28 Genjiro Hamabe.

G=- _}2— [—G'O——I__Gi' B ot2 Gao {(a3— ['3)+ = (“2 by) +- 2 (‘11 1)}

m P,
+ (i {Q(al— by) (as—b,) + 4 (01— b, }

sin 7, €08 T, LY
7 - Aty — Y - 7, *(aa E‘“l)JVo

+9

1 [ Hy+ H H
a=—= "Lm—a?_ _';;04._ {02 (a 1-b,)+ (a‘, Ba)+ (a5 —by)) J
+3% 4,422 4.+ % 0. 40 %% 4a,+ _8in 7,
vy ’ Vo ? Vo g VO 102+ 9 Vs

b= — L [ML.C_Z.I. M {(02_ b2)+c_1(a1—bl)}

12 B v,

Ny+ Na l
+0_";23L {3/;3+ 2%0— byt 2 bl}+7 {bl(“rb?)

Vo

om0

+2b2(a1_b1)+~“(al—bx)b}+ 125 (;, by+4 S 1)2+3 G bJ

Vo

.................................

4

(40)

If the aeroplane reaches its maximum velocity during the glide, then

it will advance along a straight path at that maximum velocity; and

there will be no change in velocity nor in direction of glide.

is the condition previous to the flattening-out, we have:

(.d_r) = a’l= O,
=0

()=

d ——~) =b,=0,
an' ( 8 /s=0 !
since (ﬂ) =(_d_0_) . (_d_s_)
) dt 8=0 =0 dt g=0
(dﬂ) V,=0.
ds
In this case cg (40) is simplified as follows:
ay=0

c,=0

When this
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! 1 M+ Ma,
)2 —_—
2 B
03__2 Gao.Vo_ M, + Ma,
3 m B
we L H M Mo
? 6 m B
b:i No+Nay Mo+ May,
6 B B
C4=l[ {G’ o+ Gaf Ll (H Ny+ Na, )}
3 m 2 Vm B
1 cost, H~ M+ Mo,
Lot 4 Ny Mt May
4g Ve m ° B
1 [Gao H0+Hao 1 H (H .N0+Na0 Sin To )—I M'*'Mao
= —— | — +
“elm  m TTwm\mTT B U7 )T
b4=__1,[£+(No+Nao )]M+M
24 LB
e (408)

The approximate equations (32) are applicable to any symmetric motion
of the aeroplane, by choosing properly the values of A, by,y ¢y, and 0. If
the scheme is, for instance, to apply these equations to the investigation
of the motion of a machine which dives from a horizontally propelled,
straight flight at the angle of incidence «,, by sudden shut off of the

motor, the initial conditions must be taken as follows:

7,=0, Vy=Up,
di
fy=—a,, b =(_> =0,
[} @, o ds /oo

where the value of U, is to be found from the equilibrium condition in the
preliminary horizontal flight.

The numerical values of constants ¢,,a,, ete. in eq (32) are then
calculated by means of eq (40). Thus we can follow the motion by eq
(32) having numercial coefficients.

Applications of these equations are, however, limited within certain
small fractions of a second in order to. retain sufficient accuracy.

Therefore we are forced to follow the motion successively by repeating



30 Genjiro Hamabe.

the caleulations. This method seems tedious; and in fact a very laborious
calculation is made in obtaining eq (32) for each step of repetition. But,
for the sake of accuracy, this method will be applied in the present in-
vestigation. The .results will thus retain much greater accuracy than those
of successive calculations by equations as usually constructed under assump-
tions of constancy of velocity and angles during a time of slight duration.

Before entering into numerical applications, the problem of the pitching
moment must be settled. As we have not sufficient experimental data for
the pitching moments of acroplanes with the clevator set at various angles,
we must calculate the necessary values.

If we take the gliding at the angle of incidence 10° (this angle of
incidence will be taken as the basis for comparison in all the numerical
calculations herewith presented) as the final condition of disturbed motions,
we shall have :—first, to find the angle of the elevator at which the aeroplane
can glide steadily at the angle of incidence 10°; and then, to calculate pitching
moments of the machine having the elevator set at this same angle. The
curve Me in Fig. 6 is an example of a curve of pitching moments derived
from experiments on the Clark plane, representing the change of the pitching
moment when the horizontal tail surface is set at the angle —5° relative
to the wings. This arrangement of the horizontal tail was adopted by
Hunsaker in his stability investigation of the same aeroplane. From this
curve we find that the Clark plane with the tail set at the angle —5° flying
at the angle of incidence 10° has the pitching moment,

Me= —-25T 1b. ft. per 1 ft. sec. velocity. This moment may be counter-
balanced by the opposing moment produced by changing the angle of the
elevator, which may be found by repeated calculations to be about 6°, so
that the angle of the elevator becomes —11° relative to the wings.

Taking —11° as the fixed angle of the elevator we will calculate values
of Me corresponding to various angles of incidence of the machine under
the assumption that the “ wash” of the stabilizer has no effect upon the
elevator. Of course, this assumption is quite incorrect, because. the flow of
air would be considerably deviated after having passed over the stabilizer,

so that the actual angle of incidence of the e¢levator to the wind would be
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different. Furthermore, at a higher angle of the elevator relative to the
stabilizer, we inay infer the generation of certain eddy currents near the corner
of intersection of the two _surfaces, as the leading edge of the elevator is
usually situated close to the rear ¢dge of the stabilizer.  Therefore certain
corrections of calculated result under such an assumpticn would be necessary.

The “ wash” of the wings has also certain effects on the tail surfaced.
By tests on wings put in tandem Eiffel found that the ¢ wash? of the front
wing would change the flow relative to the rear wing. As has been done
by Klemin, we will make here corrections for deviation of stream due to
“wash” of the wings to obtain the actual angle of incidence of the tail

surfaces, under the assumption.
. . o .
deviation of stream=<—2—+ 1) in degrees,

where a is the angle of incidence of the wings; this empirical formula
having been derived by Klemin* from data by Eiffel.
The calculations for obtaining the pitching moment under these as-

sumptions are shown in tabular form as fallows:

TABLE A
. . ;o | R=AVEI+E}F | KyKe ] My=Ry,
dogroes | degrecs | dogrees | 1 ound per JIE | mto O, | foin feet | inh . per
10 5 —1 00251 33 1778 045
8 3 —2 00571 50 1841 105
—1 —4 01132 65 1872 212
2 -3 -5 01277 71 18-82 240
-5 —6 .01452 76 18:86 274
-2 -7 -7 .01646 Y 18-93 312
—4 -9 -8 01938 7:3 1894 367

* Course in Aerodynamics and. Aeroplane Design, Part 1, Section 9; Aviation and Aero-
nautical Engiueering, Dec. 1, 1916,
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TABLE B
_ f
. . ;o R= A1/Kx2 + K2 Ith/Kz‘ } ) M=nl
d:grl:es dggll';les dggrg:es llnftl.) 0:;;('1 j’:r { Iili":';c‘o‘,d?i'ft‘ I in feet 1inft].b§;ei<‘;t.. 5):]1:

10 —1i -7 ‘01646 77 18:62 306
8 -3 —8 ‘01938 73 1863 361

4 -7 —-10 ‘02283 51 - 1860 425
-2 -9 —11 02414 45 1857 448
0 —11 —-12 ‘02536 - 41 18:55 471
-2 —13 —13 ‘02660 39 18:58 ‘494
—4 » -'—15 —14 ‘02792 36 1857 519

In Table A, for various angles of incidence « of the wings, shown in
the first column, we have corresponding values of 7,, the angle of the
elevator relative to the horizontal when it is at the neutral position, ¢*e',—5°
relative to the wing; y,/ is the actual angle of incidence of the elevator at
the same position, corrected for the deviation of the stream. The air resis-
tances upon the elevator, Ry= A/Wfl?f, are obtained from experimental
data on flat plates,* assuming the elevator to be a flat plate with aspect
ratio 3:1 and having the area, 4=16 square feet. [, is the perpendicular
distance from the centre of gravity of the aeroplane to the line of action
of K, The values of I, at various angles of incidence of the machine may
be obtained by means of the ratio of the lift to drift. In this case the
distance between the centre of gravity of the machine and the centre of
pressure on the elevator is assumed constant and to be 19 feet, neglecting
small shifts of the centre of pressure due to the change of the angle of
incidence of the elevator. Then multiplying together the values of R, and
l,, we obtain the moments contributing to the pitching moments of the
machine by the elevator at the neuntral position. ’

In Table B,y,7 B,l, and M represent corresponding values in the case

when the elevator is set at the angle — 11° relation to the wings

* Course in Aerodynamics and Aeroplane Design, Part 1, Section 4; Aviation, Sep. 15,
19186.
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The difference of these moments,
M =M—-M,
would be the change of the pitching moment of the aeroplane, owing to
the change of-the angle of elevator from —5° to —11° relative to the
wings. Therefore we may obtain required values of the pitching moment of
the machine with the elevator set at the angle —11°, by adding the values
of M! calculated above and shown in the second column of Table C, to
the corresponding values of M, which are indicated in Fig 6. The third

column in the same table shows these moments. It we plot these values

TABLE C.

a M M+ M M, + 257
10° 261 004 0
8° 256 044 045
4° 213 ‘113 166
2° 208 +200 249
0° 197 288 348
—2° 182 303 378
—4° 152 348 454

as ordinates on the same abscissa as in Fig. 6, the curve thus obtained
will be nearly a straight line and will cut the axis of abscissa near
10° of a. .

However, to use these values as actual pitching moments of the aero-
plane a considerable inaccuracy would be introduced into our calculations of
motions, because of errors more or less serious in values of M in Table B,
which must be expected from heglecting effects of the “wash” of the
stabilizer. Hence, certain corrections should be made wpon the values of
M ; but, without reliable experimental data, no reasonable corrections can
be obtained in the present knowledge of hydromechanics. We understand
that Mr. Klemin is performing arduous experiments concerning this subject.

When these experiments are accomplished we shall obtain valunable data.
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Tt may not be acceptable to use values of the pitching moment formed
by adding calculated values of M/, without correction from reliable data,
to values of M, from Fig. 2 and Fig. 6. Therefore we will add a certain
constant moment (257 Ib. ft. per 1 ft. sec. velocity for Clark aeroplane and
‘193 1b. ft. per 1 ft. sec. velocity for the Curtiss JN2) in the following
numerical calculations of motions. :

Figures thus obtained for the Clark machine are shown in the fourth
colamn of Table C. These pitching moments would represent those when
the stabilizer is set at a negative angle slightly higher.

Inaccuracy caused by applying these assumed values for pitching
moments would be tolerable in obtaining comparative figures for the study
of the behaviors of the machines in their flattening-out motions.

Tests* on a model of a tail plane with the elevator attached were

performed in the National Physical Laboratory. The model used was made
to a scale of -1% full size from drawings of an aeroplane of the BE-2,

pattern. The lift, drift, and pitching moment were measured at angles of
inclination of the chord of the tail plane, from —6° to 4 6° by 2° steps,
and at angles of the elevator planes to the chord of the tail plane from
—45° to +45°, by 15° steps. The curves of the lift, drift, and pitching
moment have been plotted with the angle of incidence as abscissa, separate
curves being drawn for each angle of the elevator planes.

The lift curves at angles, 0°, 15°, and —15°, of the elevator are
nearly straight and parallel to each other. The drift curves and the pitching
moment curves for these angles show very similar characteristics. These
results of experiments give us confirmation that our assumption is by no

means absurd.

V Application of Successive Calculation to Curtiss JN2,

The principal dimensions of the aeroplane used in the stability discus-
sion of Hunsaker were as follows :

Weight full load 1,800 1bs.

° Technical Report of the Committee for Aeronautics for the Year 1912-13, No. 74.
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Total wing area (including aelerons) 384 sq. ft.
Area of fixed tail ’ 23 sq. ft.
Area of horizontal rudder 19 sq. ft.
Area of vertical rudder 78 sq. ft.
- Span of wings 36 ft.
Chord of Wings 53 ft.
Gap of Wings 53 ft.
Length of body 26 ft.
Radius of gyration about oy-axis 5.83 ft.

Fig. 2 shows the curves of the lift, drift, pitching moment, and damping
moment of this machine. These curves are plotted so as to indicate K,
K,, M,, and M, in the foregoing equations. All these quantities were com-
puted by using the experimental data of Hunsaker. ‘

Taking this aeroplane as an actual example, the motion at flattening-
out after a steep glide will be traced by the application of successive cal-
culations. '

Before going into these, as a preliminary calculation, we must determine
the conditions of motion of the aeroplane in the gliding attitude at a
possible steep angle.

The features of the gliding motion are expressed by the general
equations of motion (4). In a steady gliding, there is no pitching moment
to swing the machine about its transverse axis, and no components of force
either to deviate it from the straight path or to accelerate it along the path.

Hence, X, Z, and mM should be zero. In such a condition the pitch-
ing moment of the machine, indicated by the curve M, in Fig. 2, should
be counterbalanced by the moment created by the elevator settled at a
certain definite angle.

The first two conditions give us the relations,

D=K,U*=Wsint il
L=K,U*=Wcos t (41)

from which we have:
?: —tan. (42)

>
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This gives the gliding angle 7 at a particular angle of incidence at
which the drift and lift coefficient are K, and K,.

In the “ Official Specification for Army Hydroaeroplane of U.S. A.,
it is required that:—“Dive with longitudinal axis of the aeroplane at an
angle at least 50° to the horizon and hold this approximate angle for bet-
ween one and two seconds, then pull out reasonably quick.” If the machine

glides at 50° to the horizon, from eq (42) it should be:
Ke —tan50°=1.1918
K,

Y

3

The same value of the ratio, g" , may be found from curves of K, and

K, in Fig 2, at a=—.0436 radiyan; so that

K,=-0315
and : - K,="02645
Hence, if
U= Wsin - 1800 x *766 43700
K, 0315
or Ui=209 feet per second
or +142'5 miles per hour,

the machine will glide steadily at this angle.

This velocity seems enormously high, and it might be difficult to main-
tain the steep gliding, long enough to attain such a high velocity. But, as
it is well known, a gliding aeroplane has greater longitudinal stability than
a horizontally propelled aeroplane.

The coefficients of the biquadratic equation (18) and Routh’s discrimi-
nant at this gliding attitude of the present machine are computed by eg
(19), from the given data; and are as follows: '

4,=-0722
B,=001336
(,="000,00191
£, =-000,000,00183
Routh’s diseriminant=-000,000,171
These figures satisfy the conditions of longitudinal stability. In this

calculation it has been assumed that the damping at this angle of incidence
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has no change from that at 1°, failing the existence of experimental data
at such a low angle of incidence; and the same assumption will be made
in our future calculations. This assumption will not, however, induce any
material error in the result, for the change of the damping would be slight
in the vicinity of 0° of the angle of incidence.

The numerical biquadratic equation here is:
D* 40722 D° +-001336 D% + -000,00191 D + -000,000,00183 =0.
Multiplying each term of this equation by U* or (Uy+0U)", we have:
(D8UY* +.0722 (U, + 0 U)(DIU Y +-001336 (U, + U (DU Y
+-000,00191 (U, + 6 U y* (Do U ')+ -000,000,00183 (U, + 8U)*=0
or D" 40722 (U, +0U) D" ++001336 (U, + 6U D'
+000,00191 (U, + 0 U y* D’ 4--000,000,00183 (U, + 0 U)*=0,

where D’ is the new operator which indicates differentiation with regard to
time, so that

Neglecting small variation of U,, we have approximately :
D" 415:1D% 4+ 584D +-17-5D' + 349 =0.

As Bairstow has done, the biquadratic equation is factored approxi-
mately as follows : '

[D’2+15°1D’+58-4] [1)/2+ ( 175 _ 151x3-49 )D’+ 3-49 ]:0.
534 5842 584

The first factor reduces to
D'=~—T755+1225 ¢,
where ¢=,/—1 .
This represents a short oscillation of :

g
1-225

and the amplitude is damped to one half in:

period =

=513 reconds ;

time= Eg‘-_g— =092 second.
55
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" This oscillation dies out so rapidly that it may be left out of conside-
ration.
The second factor reduces to:
D* 4 -2835D" +-0598 =0
D= —-14184"-199 1.
This represents a long oscillation of:

period= —12;,—9 =316 seconds,

log 2
1418

The long oscillations, which form the important factor in stability pro-

and time to damp 50 per cent=

=4-9 seconds.

blems, are here more easily and shortly damped out than in the horizontal
flight at high speed (compare with figures in Hunsaker’s stability discussion).
Thus we have assured ourselves that this aeroplane can glide very steadily
at the angle 50° at full speed. Taking as the initial condition this glide
at the angle 50° in the equilibrium condition, we will calculate the motions
at flattening-out caused by two different controls, as will be presented in
Case I and Case II.

Case I.—Suppose the elevator suddenly turned up to such a position
that the aeroplane shall come to its new steady flight at the angle of inci-
dence of 10°. Taking as the starting point the instant at which the

equilibrium condition of glide is broken by a control, we have the initial

values of V, 7,0, and (%0;),

s
V,=43700,
T0=‘8727,
0,=-9163,
and _o_li) =0
\ds/s=0

By putting in eg (40a) the values:
Gy + Ga?="0304 + 579 x (— 0436)="0315
Hy+ Ha,="104 + 1778 x (— "0436) = 02645
M, + May=-2T76 + (—*513) x (— "0436)= 300
No+ Na,=727+0
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which are picked out from curves in Fig. 2, and taking:

322
B=559 x (583 =1900;
we can evaluate constants of eg (32), thus:

7="8727 —+000,00084 s* +-000,000,01484 5* 4- -+ .-+

6=-9163 —-000,079 s* + -000,001008 s* — -000,000,00788 s* + .+« ..

V'=43700 +-00204 s*—-000,0457 s* 4 +«« ...« (32,)
By putting serial values of s in feet in these equatians we get the

corresponding values of 7, #, and V.

s T 0 V

10 8720 9093 43700
20 - 8684 8915 43709
30 8620 ‘8662 43718

------------------------

We carry the calculation to only 30 feet of s during the first stage
of solution of eq (32,) in order to retain great accuracy; and have:
V,=43718,
7,="8620,
0,=.8662,
ay= —-0042,
and (-%% | =—1000,079 (2 x 30) +000,001008 (3 x 30°)
—+000,000,00788 (4 x 30%) 4 -++ .-
==—-00286
as initial conditions of fhe second stage of calculation.
Similarly we can get the numerical equations for the second stage.
Thus :
7="8620—"00124 s—000,02532 s* + *000,000,0843 8> 4 ¢+« -+

0 = -8662 —-00286 s —+000,0187 s* + 000,000,347 &* + --- - -+
V' =33718+4565s—01612 &~ 004925+ ...... _ (32,)
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Continuing the same way we get the successive amounts of 7, §, and
V, corresponding to serial values of s. These are tabulated in Table I
The fifth column in the same table gives the velocity U in feet per second
at each point.

. d . .
From the relation, t= f —i]i, we can get the time elapsed on running a

length s, by infegrating _Tl]— with regard to s, This time ¢ is given in
the last column of Table I. Curves of these values are shown in Fig. 3,
in which points are plotted indicating these values for each value of s.

Case II.—Let us make a slight modification upon control in Case I1;
supposing that the elevator on its way to full control is settled for a while
in an intermediate position at which a righting moment, say M,=-193 Ib.
ft., is caused to arise instead of full moment -3 Ib. ff., and after 30 feet
run it is turned up to the final position. :

In this case the values of 7,8, U, and ¢ are calculated in the same
way as in the previous case, except that the pitching moment in this case
is developed in the machine in two steps. The calculated results are shown
in Table II, and are plotted in Fig. 4.

As will be seen in Fig 3 and Fig 4, the aéroplane has great residual

velocities when the path has come into the horizon, such that:

U=191-8 ft. per sec. in Case I,
U=1919 ft. per sec. in.Case IL.

Hence, after that, the aeroplane mill climb up on account of its own kinetic
energy, if the elevator is left in the same position. Indeed, we may find
the fact that the machine has its velocity of 111 ft. per sec., even when
it has stalled high up to 7= —1-0821 or ==—62°, in case II. It would be
then on the brink of danger. If the elevator be left untouched the aero-

plane would be capsized, hecause the decrease of gravity component along -

the normal to the path makes the stall much easier. On the other hand,
this velocity seems not great enough to lead the machine to a smooth
gsomersault. But study of these conditions are out of the scope of the pre-
sent work.

At angle of incidence of 10°, the aeroplane has the lift and drift
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coefficients, K,='0621 and K,='378;

and consequently the gliding angle corresponding to this angle of incidence is:
= tan“f{_"_= 1627 radian,
v
and 6, ='1627—-1745= —-0118 radian, where 6, is the angle of the longi-
tudinal axis of the aeroplane relative to the ground in this glade.

If we take the instant at which the longitudinal axis arrives first at
this angle, §;=—-0118, as the datum for comparison of time 7 required
for flattening-out, then we can read this time as follows:

T'=157 seconds. in Case I.
7=1'65 seconds. in Case IIL

Of course, the time which elapsed throughout the entire oscillatory
motion until the machine come again to its final steady condition is much
longer.

The loading on the wings through the motion is calculated by means

of the second equation in (12/). Since %T— in the equation represents the
s

curvature at any point of the line of flight, -mU2%1 indicates the cen-
8 :

tritugal force due to the curved path. Hence the expression,
2 dT 17
(Hy+ Ho) U= - mE—-U + mg cos T,
s

gives the values of the total loading on the wings in pounds, which resists
the centrifugal force and the gravity component normal to the path.

As is seen in Fig 3 and Fig 4, the increase of a, or 7—40, is’ very slow
after its rapid change in the first short run, while the velocity falls off
quickly for further run after passing its maximum point. Accordingly the
maximum point of the lift can easily be found by plotting a few points
indicating the product of @ and U? for a short length of path; or more
accurate1y by plotting the value of the actual lift which may be picked up
from the lift curve in Fig. 2. ‘

The maximum loadings L thus obtained for two cases are as follows:

Case I, at s==180 feet,
L=K,U*=-208 x 42180=8773 pounds ;
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Case 1I, at s=200 feet
L=K,U*=-205 x42025=8615 pounds.

And the load facter R are computed as follows:

=873 - 4.9 iy Case I
1800

R=3615 - 48 in Case IL
1800

Case III.—We here consider the flattening-out of the same aeroplane
from gliding at the angle 60° for sake of comparison with Case I and
Case II.

For steady glide the angle of incidence must be:

a= —-048 radian.

so that K, _ ‘0319 =1-7321==tan 60°;
K, 0184
and 72=1800 - 4800
‘0319
or U=220-9 feet per second.

The biquadratic equation in this case is:
D* +-07191.0% +-001326 D*+ -000,00192 D 4 +000,000,000,234 =0,
and " Routh’s discriminant=-000,000,000,178.
We know, therefore, that the aeroplane in this condition has a stabi-
lity not greatly different from that of the glide at angle 50°. Assuming
the same angle of the elevator after the control, as in Case I and in case 1I,

the results of calculation are shown in Table III, and illustrated in Fig. 5.

On the same datum of comparison of time as before, we obtain :
T=1-765 seconds.
Maximum loading on the wings is also obtained, at s=260 feet to be:

L=K,x U*="211 x 45736=9650 pounds,
_9650 . 5,
1800

so that R
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VI Application of Successive Calculation to the Clark Plane.

In his “ Dynamical Stability of Aeroplanes’ Hunsaker says:— The
curtiss machine is a practical aeroplane with povwerful control, which does
not pretend to possess any particular degree of stability. The Clark aero-
plane, on the other hand, was designed to be inherently stable while
departing as little as possible from the lines of the ordinary military aero-
plane as typified by the Curtiss JN2.” It will be interesting to compare
these two aeroplanes as regards their flattening-out motion under similar
conditions.

The principal dimensions of the Clark acroplane are as follows:

Whole weight 1600 1b.
Total wing area (including aelerons) 464 sq. ft.
Area of Siabilizer 16-1 sq. ft.
Area of elevator 16:0 sq. ft.
Area of vertical rudder 9-35 sq. ft.
Span of wings 41 ft.
Gap of wings - 6:37 ft.
Length of body 24'5 ft.
Radius of gyration about oy-axis 4-65 ft.

Fig. 6 gives the necessary data for our calculation to the same scale as
those in Fig. 2.
When this aeroplane is steadily gliding at angle 50°, the angle of
incidence will be :
a= —'0378 radian,

at which K,=-03814
K,="032,

and gr=1800x766 - 39109
‘03814 :

or U=179 feet per second.

The bigquadratic equation here is:

D*+ 1311 + 004192 4. -000,01085 D + -000,000,0111 =0,
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and Routl’s discriminant="000,000,00565.

Substituting the new operator 1)’ which indicates differentiation with

regard to time ¢, we have:

D*423:45D” 41346 D" + 62:4 D" +11-42 =0,
which is divided into two factors approximately :
3 ~ . ’ 62-4 2345 x 1142 11-42 °
D4+ 93451 1_34-6J [1)/2 ( - Yo+ __Jzo
| * 1346 1346 1346
ot [ D" +23:45D' +134-6][ D" + -4488.D" +-0849] =0.

The short oscillations are not important. The long oscillativns which

are indicated by the second factor in the above equation have:

period =. ‘271 =337 seconds,
1863
and
time to damp out 50 percent= log, 2 =3'1 seconds.
2244

We see that the Clark machine in this glide is much more stable
dynamically than the Curtiss JN 2 under the same condition.

Case 1V.—Suppose this aeroplane gliding at angle 50° to be recovered
by the same control as in Case I of the Curtiss JN 2.

The flattening-out motion obtained by the method of successive calcu-
lations is shown in Table IV, and these are plotted on curves in Fig. 7.

At angle of incidence of 10°, this machine has:

K,=-0628

K, =-5074
so that T;=tan™! :0622 =tan™!-1238="1232 radian,
and 0,="1232 —1745= —-0513 radian.

The time required for the machine to arrive at this 6, is:
7'=1-614 second.

The maximum wing loading, ariging at” s=200 feet, is:

L=-219x30072=6586 pounds,
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and the load factor here is:

6586 .
1600

=

VII Summary.

To ‘trace the actual path of the centre of gravity of the aeroplane will
" facilitate the comparison of various motions. To do this we assume that
a small length of path coincides with a circular arc of radius equal to the
radius of curvature of the actual path at the point concerned. This as-
sumption may be good enough in our case, if special care is taken in
plotting the first part of the path, in which the change of curvature is
appreciable. At a short distance from the starting point, the curvature of
the path becomes nearly constant. The chordal length of each segment of

the path is expressed by 2 sin %’ in which » is the radius of curvature

and 4r the small angle at the centre of curvature suspended on the seg-
ment. Taking the horizontal and vertical axes with origin at the position
of the centre of graviry at start, we can get the rectangular co-ordinates
of any end-point of the segment by adding the projections of all the
scgments previous to it upon these axes. The results of calculations are
shown in Fig. 8.

For the benefit of an obvious comparisou, the results obtained above

in various cases are concentrated in the following table :

H feet S feet T'second Vi3

Case 1 153 321 1-57 4-9

Case IT } Curtiss JN2 162 338 1-64 4-8

Case III 204 378 1-765 54

Case IV Clark Plance 123 286 1-614 41
where

H is the maximum vertical distance of the centre of gravity from its
starting point, in the first flattening-out of flight;

S is the length of path traversed by the centre of gravity, until the
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longitudinal axis of the machine first assumes its final inclination
relative to the ground ;
T is the time elapsed for running the length S mentioned above;

R is the ratio of the maximum wing loading through the motion to

the normal wing loading in the horizontal flight.

" The flattening-out in Case 1I of the Curtiss JN2 is slower and less
sharp than in Case I; and, consequently the wings are slightly  relieved
from the excessive loading in Case I. These differences in results were
caused by a slight modification of control. If the recovering of the aero-
plane from a steep glide is carried on more gently by a gradual turning of
the elevator, the excessive loading on the wings would be considerably
diminished. Moveover, by a gentle control, the greater part of the excess
velocity dies out through the longer run, until the machine comes to its
first flattened flight; and consequently the swinging up of the machine
would be considerably diminished. As a result, a violent oscillation or
capsizing may be averted.

Even in such a steep gliding as in Case IIT the flight may be easily
flattened-out by a careful control without imposing upon the wings a load
in excess of that allowed by the factor of safety. Of course, the vertical
distance H of the fall of the machine through the sharp flattening-out is
increased by the gradual turning of the elevator. Also, this height is much
longer when the initial gliding is steaper. There is, therefore, some
necessary allowance in altitude previous to the manoeuvering, corresponding
to particular conditions.

The Clark aeroplane flattens out in a considerably shorter distance of
H, and the wing loading through the motion is much lighter than that of
Curtiss JN2 under the same conditions. Thus the results are all favorable
to the Clark aeroplane.

Loading on the wings of the Clark machine is light on account of its
low velocity throughout the manoeuvering, the sharpness of its longitudinal
turning being rather superior to that in other cases. The lower gliding velocity
at a certain angle is obtained by the greater head resistance or by a poor

lift-drift ratio in the corresponding angle of incidence. The quick recovering
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from a steep dive, on the other hand, is obtained by a rapid increase of
the lift with angle of incidence.

By comparing the lift and drift curves of the Clark aeroplane in Fig.
7 with those of the Curtiss JN 2, we find that the drift coefficient of the
former machine is considerably greater than that of the latter, especially in
lower angles of incidence; and that the lift curve of the former is much
steeper than that of the latter. The steepness of the lift curve and the
greater drift coefficient are both effected by the large area of wings, or, in
other words, by the light wing load per unit area at normal flight.

The wing loads per unit area of the two machines are as follows:

1800
————=4-69 d . ft.
384 pounds per sq. ft
for Curtiss JN2
lfﬁ(f =345 pounds per sq. ft.

for Clark plane.

The former is about the average for biplanes in present practice, and
the latter is much smaller. Thus, light loading corresponding with large
wing areas give a larger margin of safety against excessive loadings due to
manoeuvering. On the other hand, the greater head resistance due to large
wing areas necessitates in general large engine powers to fly at a given

speed.
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TABLE 1L
$ feet Tradien | O radian | V(ftfsec)?| U fisec. _;.—sec,/ft, ? seconds

0 8727 9163 43700 209-05 ‘004783 0
20 ‘8684 ‘8915 43709 209-06 ‘004782 09566
40 8472 8361 43718 209:09 004782 19130
60 8050 7734 43680 209-00 004784 28696
80 7537 ‘7104 43591 208-78 ‘004789 38268
100 6968 6479 43467 208-49 ‘004797 47854
120 6369 5882 43240 207-94 004808 57458
140 5785 5241 42962 207-24 ‘004824 67090
160 5180 ‘4641 42597 206-44 ‘004844 ‘76758
180 4615 4042 42181 20538 ‘004869 86470
200 4015 3441 41701 20421 004896 96234
220 3432 2847 41180 -1 20293 004927 | 106056
240 2841 2257 40586 201-46 ‘004964 | 115946
260 2250 1659 39910 19977 005006 1-25916
280 1666 1074 39177 197-91 ‘0050563 | 1-35974
300 1090 ‘0484 38390 195-93 ‘005104 | 1-46130
320 0505 | —-0091 37570 19375 005161 156394
340 —-0072 | —-0680 36670 191-49 005221 | 1-66776
360 —-0638 | —-1237 35760 189-10 ‘005288 | 1-77284
380 —+1204 | —-1810 34820 18660 ‘005359 : 1'37930
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TABLE II '

8 feet. Tradian. | Oradian. | V(ft/sec)? | U fi/sec. —}f sec/ft. | T seconds
0 -8727 9163 | 43700 | 20905 | -004783 0

20 -8699 8976 | 43706 | 20906 | -004783 09566
40 -8551 ‘8594 | 43725 | 20911 004782 19132
60 -8210 ‘8060 | 43743 | 20915 | ‘004781 28696
80 7768 7460 | 43685 | 20901 | -004784 -38260.
100 7262 8653 | 43551 20868 004791 47834
120 6735 6241 43349 208-30 004800 57424
140 6169 5657 | 43093 | 207-59 ‘004816 67040
160 5599 5078 | 42789 206:85 | 004834 76690
180 5024 4488 | 42440 | 206-01 ‘004854 ‘86378
200 4452 3899 | 42025 | 20500 | -004878 96110
220 -3874 3224 | 41559 | 20386 | ‘004905 | 1-05892
240 -3290 2732 | 41027 | 20255 | ‘004937 | 115734
260 2715 2157 | 40429 | 20107 | -004973 | 1-25644
280 2127 1578 | 39758 199-46 | 005013 | 1-35630
300 *1538 1000 | 39050 | 19761 005060 | 1-45702

- 320 0974 0421 | 38283 19566 | -005111 | 1-55872
340 0380 | —0180 | 37463 193-55 | -005167 | 1:66150
360 —0174 | —0749 | 36600 | 19125 | -005228 | 1-76544
380 —-0737 | ~-1326 35664 188:85 ‘005295 | 1:87066
400 —-1291 | —-1885 | 34696 186-27 | -005368 | 1-97728
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TABLE III.
8 feet Tradian | O radian | V (it fsec)? | U ft./sec. —[1]— (sec./ft.)| second
0 1-0472 1-0952 48800 220-91 004526 0
20 1-0430 1-0701 48814 220-94 004524 09050
40 1:0220 1-0164 48853 221-00 004523 ‘18098
60 9787 9526 48836 220-99 004524 27144
80 9282 8899 48779 220-81 ‘004527 36194
100 8720 8296 48670 220-61 004532 45252
120 8177 7710 48517 220-27 004539 54322
140 7580 7065 48320 219-82 004549 63410
160 -7000 6447 48057 219-22 ‘004561 72520
180 6372 5841 47724 218'46 004578 81658
200 5789 5232 | 47314 | 21752 | 004597 | 90832
220 5190 4625 46830 21640 004620 | 1-00048
240 4561 4014 46322 21523 ‘004646 | 109314
260 3970 3375 45736 213-87 ‘004675 | 1-18634
280 3359 2778 » 45102 212-37 004708 1-28016
300 2760 2170 44420 21076 ‘004744 | 1-37468
320 2162 ‘1578 43679 209-00 ‘004784 1-46996
340 1541 0989 42870 207-01 ‘004830 | 1-56610
360 ' 0982 0402 42008 205-00 ‘004878 1'66318
380 ‘0404 | —0186 41093 202'71 004933 176128
400 —-0181 | —-0771 40125 200-31 ‘004992 | 1-86052
420 —-0756 | —'1354 39100 19774 -005057 | 1-96100
440 —-1337 | —-1938 38031 195-02 ‘005127 | 206284
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TABLE IV.

8 feet Tradian | Oradian | Viftfsec)® | U ft.jsec. iU-sec' Jte. t second
o | 8727 | 9105 | 32100 | 179-16 | -005581 0
20 | 8594 | 8617 | 32139 | 17927 | ‘005578 | 11160
40 8102 7935 | 32174 | 179-37 | -005575 | 22312
60 | 7485 | 7219 | 32143 | 17931 | -005576 | -33462
80 6836 6520 | 32056 | 17903 | -005585 | -44622
100 6165 | 5841 | 31898 | 17860 | -005598 | 55804
120 5480 5142 | 31672 | 177-97 | -005618 | 67020
140 4778 | -4447 | 31373 | 17712 | ‘005645 | 78282
160 4088 3778 | 31004 | 176:08 | -005678 | -89604
"180 3422 | -3097 | 30576 | 174:86 | ‘005718 | 1-01000
200 9766 | 2401 | 30072 | 173-41 | ‘005766 | 112484
220 2065 1726 | 29480 | 17170 | -005823 | 1-24072
240 1375 1046 | 28840 | 169-82 | -005888 | 1-35782
260 | -0735 0371 | 28129 | 16772 | ‘005962 | 1-47632 -
280 0065 | —-0319 | 27361 | 16541 | 006045 | 1:59638
300 | —0637 | —-1004 | 26508 | 16281 | 006141 | 171824
320 | —1301 | —-1686 | 25614 | 16004 | 004248 | 1-84212
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TABLE V.
Curtiss JN2 Clark
Case 1 Case 1I Casge 111 Care IV

8 % y . % y z Y z y

10 6444 7.647 6437 7651 5018 8:650 6517 7-585

20 19-364 22-913 19-335 22937 156:090 25928 19575 22785

40 32:606 37-893 32-459 38:029 25522 42992 33'365 37223

60 46470 52309 46089 52667 36682 59590 48019 54 835

80 61054 66:037 60-356 66687 48'668 75602 63525 63-467
160 76:394 78871 75309 79967 616534 90-914 79843 75029
120 92474 90 765 90-944 92441 75212 | 105506 96915 85447
140 | 109220 | 101701 | 107-258 | 104:009 89736 | 119256 | 114:649 94643
160 | 126596 | 111:605 | 124204 | 114631 | 105032 | 132140 | 133001 | 102'593
180 | 144502 | 120-511 141782 | 124249 | 1211112 | 144:040 | 151843 | 109-301
200 | 162912 | 128327 | 159784 | 132:861 | 137-854 | 154'982 | 171083 | 114763
220 | 181746 | 135057 | 178302 | 140417 | 155220 | 164902 | 190657 | 118:865
240 | 200044 | 140661 | 197230 | 146879 | 173176 | 173712 | 210469 | 121607
260 | 220440 | 145123 | 216496 | 152243 | 191620 | 181446 | 230415 | 123077
280 | 240164 | 148435 | 236044 | 156467 | 210502 | 188'040 | 250415 | 123-207
300 | 260046 | 150611 | 255808 | 159°581 | 229-746 ; 198-490 | 270-377 | 121933
320 | 280-020 | 151619 | 275714 | 161'475 | 249280 | 197-780-| 290-207 | 119:339
340 | 300020 | 151475 | 295700 | 162235 | 269042 200'850 -
360 | 319980 @ 1507199 | 815696 | 161887 | 288946 | 202810
380 | 339836 | 147797 | 335646 | 160413 | 308930 | 203618
400 355488 | 157839 | 328926 | 203-256
420 375144 | 154145 | 348768 | 201744
440 368590 | 199078
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